黃明陽 周新星
摘 要 對羥基苯甲醛與1,5二氨基萘(NDA)發(fā)生縮合反應(yīng)制得席夫堿B, 9,10二氫9氧雜10磷雜菲10氧化物(DOPO)與席夫堿B反應(yīng),得到含磷阻燃劑R.采用核磁共振以及紅外光譜技術(shù)對合成的R進行結(jié)構(gòu)的表征鑒定.將R作為NDA的協(xié)同固化劑固化環(huán)氧樹脂,考察固化物的阻燃性能和熱穩(wěn)定性能.結(jié)果表明,R的引入使固化物的阻燃性增強,當(dāng)固化物中磷質(zhì)量分?jǐn)?shù)達到1.5%時,固化物的UL94測試達到V0,極限氧指數(shù)為38.2;然而,隨著磷質(zhì)量分?jǐn)?shù)的增加,環(huán)氧樹脂固化物的熱穩(wěn)定性有所降低.
關(guān)鍵詞 DOPO;環(huán)氧樹脂;阻燃劑
中圖分類號 O62751文獻標(biāo)識碼 A文章編號 10002537(2014)03004805
環(huán)氧樹脂具有良好的粘結(jié)性、尺寸穩(wěn)定性、優(yōu)良的耐腐蝕性以及力學(xué)性能,被廣泛應(yīng)用于涂料、粘結(jié)劑和電子封裝等領(lǐng)域[12].然而,環(huán)氧樹脂固化物具有易燃以及熱穩(wěn)定性差等缺點,限制了其應(yīng)用范圍[34].
傳統(tǒng)的阻燃技術(shù)是向環(huán)氧固化物中添加或引入含鹵組分,使環(huán)氧樹脂固化物在燃燒過程中釋放出含鹵氣體達到阻燃效果.由于釋放出的含鹵氣體有毒性和腐蝕性,因而含鹵阻燃劑逐步被禁止使用[58].有機磷阻燃劑在聚合物燃燒時產(chǎn)生含磷酸類物質(zhì),使聚合物表面形成碳層,從而阻止或延緩燃燒的進行,是一種比較環(huán)保的阻燃劑[3,910].近年,許多學(xué)者將9,10二氫9氧雜10磷雜菲10氧化物(DOPO)及其衍生物引入環(huán)氧樹脂或環(huán)氧樹脂固化劑結(jié)構(gòu)中,使最終的環(huán)氧樹脂固化物具有阻燃性[1114].
本文旨在通過簡單的化學(xué)反應(yīng),合成一種含磷以及含萘環(huán)結(jié)構(gòu)的阻燃劑R(如下圖1所示),將合成的R作為NDA的協(xié)同固化劑固化E51型環(huán)氧樹脂,從而使最終的固化物具有較好的阻燃性.
圖1 固化劑R的合成路線
Fig.1 Synthesis routine of the curing agent R
1 實驗部分
1.1 化學(xué)試劑與儀器
對羥基苯甲醛(98%,阿拉?。?、1,5二氨基萘(NDA, 98%,西亞試劑)、9,10二氫9氧雜10磷雜菲10氧化物(DOPO,98%,阿拉?。51型環(huán)氧樹脂(巴陵石化)、二甲基亞酰胺(DMF,≥99.0%,國藥)、無水乙醇(≥99.5%,探索平臺)、冰乙酸(≥99.5%,天津富宇).
核磁共振儀(400 MHz,Bruker),DTG(DGA 60,Shimadzu),傅里葉變換紅外光譜儀(Nicolet 6700,Themo Fisher),極限氧指數(shù)儀(滄州中亞).
1.2 實驗過程
1.2.1 固化劑R的合成 稱取0.2 mol (24.424 g)對羥基苯甲醛和0.1 mol (15.820 g)1,5二氨基萘(NDA)加入燒瓶中,再加入200 mL無水乙醇,攪拌溶解后向混合液中滴加3~4滴冰乙酸,于60 ℃下磁力攪拌條件反應(yīng)5 h.反應(yīng)液冷卻至室溫,有黃色針狀物析出,過濾并用無水乙醇洗滌濾餅,50 ℃真空干燥黃色濾餅1 h,得黃色產(chǎn)物B 19.841 g (收率49.3%).稱取0.01 mol (3.664 g) B和0.02 mol (4.32 g) DOPO放入燒瓶中,再加入200 mL無水乙醇攪拌溶解,在60 oC氮氣氣氛中磁力攪拌反應(yīng)4 h,冷卻至室溫,過濾并用無水乙醇洗滌濾餅,50 oC真空干燥濾餅1 h,得灰白色產(chǎn)物R 6.232 g (收率78%).
1.2.2 環(huán)氧樹脂固化 以N,N二甲基甲酰胺作為溶劑,按n(環(huán)氧官能團)∶n(固化劑活性官能團)=1∶1加入環(huán)氧樹脂、合成的阻燃劑R以及NDA,再加入溶劑混合均勻,除去溶劑后倒入聚四氟乙烯模具中,依次在160 ℃ 2 h和200 ℃ 1 h固化,然后緩慢冷卻至室溫,得到含磷量分別為:0、0.5、1.0、1.5 wt% 的環(huán)氧固化物,利用紅外光譜法分析環(huán)氧樹脂的固化情況.
1.2.3 環(huán)氧樹脂固化物熱穩(wěn)定性測試 采用熱重分析技術(shù)(TGA)測試 (DTG 60,Shimadzu),取35 mg樣品,在N2氣氛中,升溫速率10 ℃/min.
1.2.4 環(huán)氧樹脂固化物的阻燃性測試 UL94測試參照IPCTM650試驗方法手冊.先將環(huán)氧樹脂固化物制成1.6×12.7×127 mm樣條,經(jīng)打磨、干燥處理;將樣條垂直于火焰上點燃10 s,將火焰移走,記錄火焰移走至樣條熄滅所用時間,并觀察滴落物是否將棉布點燃.重復(fù)5次測試,得平均續(xù)燃時間t:t<5 s,記錄為V0;t<25 s,并且沒有滴落物,記錄為V1;t<25 s,有滴落物,記錄為V2.極限氧指數(shù)(LOI)測試樣的處理方法與UL94方法類似.
2 結(jié)果與討論
2.1 結(jié)構(gòu)表征
2.2 環(huán)氧樹脂固化物的紅外分析
選取了未固化的環(huán)氧樹脂以及磷質(zhì)量分?jǐn)?shù)ω(P)分別為0、0.5、1.0、1.5的環(huán)氧樹脂固化物進行紅外分析(如圖3).從圖3可知,未固化的環(huán)氧樹脂其環(huán)氧官能團: 環(huán)氧官能團伸縮振動位于917 cm-1,而磷質(zhì)量分?jǐn)?shù)分別為0、0.5%、1.0%、1.5%的環(huán)氧樹脂固化物在917 cm-1的吸收峰基本消失,說明環(huán)氧樹脂完全固化.
(a)未固化的環(huán)氧樹脂; (b)w(P)=0; (c)w(P)=0.5%; (d)w(P)=1.0%; (e) w(P)=1.5%
圖3 環(huán)氧樹脂及固化物的紅外光譜圖
Fig.3 IR spectra of the epoxy resins and cured products
2.3 環(huán)氧樹脂固化物燃燒產(chǎn)物形貌、熱穩(wěn)定性及阻燃性表征
2.3.1 固化物燃燒后的形貌 取NDA0、RNDA3片狀樣品在馬弗爐中于400 ℃、空氣氣氛下進行熱處理30 min,NDA0燃燒后成灰粉,而RNDA3燃燒后得到膨脹形碳化物(如圖4 (1)、(2)),其內(nèi)部為海綿網(wǎng)狀(如圖4(3)、(4)).這是由于在燃燒過程形成磷酸類物質(zhì),促進環(huán)氧固化物脫水碳化形成炭質(zhì)層,氮元素在高溫下形成含氮氣體(N2、NH3等氣體),使炭質(zhì)層在高溫下膨脹形成海綿網(wǎng)狀結(jié)構(gòu) [15].
(1) (2) (3) (4)
圖4 固化樣燃燒殘留物形貌
Fig.4 Morphologies of the combusted residues
2.3.2 固化樣熱穩(wěn)定性測試結(jié)果 4種含磷量不同的固化物其熱重分析如圖5所示.失重10%所對應(yīng)的溫度以及800 ℃的殘?zhí)苛靠梢詮腡GA曲線得知.如表1所示,固化樣NDA0的T10%為377 ℃,Tmax為398 ℃,隨著環(huán)氧樹脂中R引入量增加,固化物的T10%和Tmax都在下降,這是因為引入的R中含有DOPO官能團,DOPO中的OPO的穩(wěn)定性比C—C差,因此在較低溫度下亦能分解,降低了固化物的熱穩(wěn)定性.隨著R的引入量增大,固化樣在800 ℃殘?zhí)柯孰S之增加,其中RNDA3固化樣的殘?zhí)假|(zhì)量分?jǐn)?shù)達到21.6%,這是由于引入的R中含磷的官能團在較低的溫度下分解產(chǎn)生較多磷酸類物質(zhì),利于碳層的形成,該層遲滯了材料的進一步降解,提高了進一步降解溫度,從而提高了殘?zhí)柯蔥16].
圖5 固化物的熱重分析
Fig.5 Thermogravimetric analysis of the cured products
2.3.3 固化樣阻燃性測試結(jié)果 由表1可知,當(dāng)固化樣磷質(zhì)量分?jǐn)?shù)達到1.5%,固化樣的UL94測試結(jié)果為V0,極限氧指數(shù)(LOI)為38.2.從UL94測試及極限氧指數(shù)結(jié)果可知,隨著固化物的磷含量增大,固化物的阻燃性也隨之增大.向環(huán)氧樹脂中引入R使環(huán)氧樹脂固化體系在磷含量較低的情況下有較好的阻燃性,這可能是磷氮協(xié)同阻燃的結(jié)果[9,13,17].
3 結(jié)論
合成了一種新型阻燃固化劑R,并利用NMR、FTIR對其結(jié)構(gòu)進行了鑒定.R作為NDA的協(xié)同固化劑固化E51型環(huán)氧樹脂,向環(huán)氧樹脂中引入R所得的固化物在磷含量較低時表現(xiàn)出較好的阻燃性和熱穩(wěn)定性;隨著R引入量增大,固化物的含磷量增大,固化物的阻燃性和殘?zhí)悸室苍龃螅缀枯^高時,其熱穩(wěn)定性有所降低.
參考文獻:
[1] GORDONG K L, THOMPSON C M, LYON R E. Flame retardant epoxy resins containing aromatic poly(phosphonamides)[J]. High Perform Polym, 2010,22(8):945958.
[2] WANG Z H, WEI P, QIAN Y, et al. The synthesis of a novel graphenebased inorganicorganic hybrid flame retardant and its application in epoxy resin[J]. Composites Part B, 2014,60:341349.
[3] QIAN X D, SONG L, YUAN B H, et al. Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: Preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system[J]. Mater Chem Phys, 2014,143(3):12431252.
[4] LIU S, YAN H Q, FANG Z P, et al. Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin[J]. Compos Sci Technol, 2014,90(10):4047.
[5] HAMCIUC C, SERBEZEANU D, CARJA I D, et al. Effect of DOPO units and of polydimethylsiloxane segments on the properties of epoxy resins[J]. J Mater Sci Lett, 2013,48(24):85208529.
[6] JIAO C M, ZHUO J L, CHEN X L, et al. Flame retardant epoxy resin based on bisphenol A epoxy resin modified by phosphoric acid[J]. J Therm Anal Calorim, 2013,114(1):253259.
[7] QIAN L J, YE L J, QIU Y, et al. Thermal degradation behavior of the compound containing phosphaphenanthrene and phosphazene groups and its flame retardant mechanism on epoxy resin[J]. Polym J, 2011,52(24):54865493.
[8] LIU X Q, LIU J Y, CAI S J. Comparative study of aluminum diethylphosphinate and aluminum methylethylphosphinate filled epoxy flame retardant composites[J]. Polym Compos, 2012,33(6):918926.
[9] JIANG S H, SHI Y Q, QIAN X D, et al. Synthesis of a novel phosphorusand nitrogencontaining acrylate and its performance as an intumescent flame retardant for epoxy acrylate[J]. Ind Eng Chem Res, 2013,52(49):1744217450.
[10] SONG S Q, MA J J, CAO K, et al. Synthesis of a novel dicyclic silicon/phosphorus hybrid and its performance on flame retardancy of epoxy resin[J]. Polym Degrad Stab, 2014,99:4352.
[11] ZHANG W C, LI X M, YANG R J, et al. Study on flame retardancy of TGDDM epoxy resins loaded with DOPOPOSS compound and OPS/DOPO mixture[J]. Polym Degrad Stab, 2014,99:118126.
[12] SUN D C, YAO Y W. Synthesis of three novel phosphoruscontaining flame retardantts and their application in epoxy resins[J]. Polym Degrad Stab, 2011,96(10):17201724.
[13] WANG Y Z, ZHAO J Q, YUAN Y C. Synthesis of maleimidosubstituted aromaticstriazine and itsapplication in flameretarded epoxy resins[J]. Polym Degrad Stab, 2014,99:2734.
[14] BEATA S, ANDREA T, PETER K, et al. Comparison of additive and reactive phosphorus based flame retardants in epoxy resins[J]. Period Polytech Chem, 2013,57:8591.
[15] 鮑治宇, 董延茂. 膨脹阻燃劑技術(shù)及應(yīng)用[M]. 哈爾濱:哈爾濱工業(yè)大學(xué)出版社, 2005.
[16] GAO L P, WANG D Y, WANG Y Z, et al. A flameretardant epoxy resin based on a reactive phosphoruscontaining monomer of DODPP and its thermal and flameretardant properties [J]. Polym Degrad Stab, 2008,93(7):13081315.
[17] 黃 麗, 孫慧慧, 王成忠. 含磷阻燃型環(huán)氧樹脂的研究進展[J]. 化工進展, 2011,30(6):12771284.
(編輯 楊春明)
[9] JIANG S H, SHI Y Q, QIAN X D, et al. Synthesis of a novel phosphorusand nitrogencontaining acrylate and its performance as an intumescent flame retardant for epoxy acrylate[J]. Ind Eng Chem Res, 2013,52(49):1744217450.
[10] SONG S Q, MA J J, CAO K, et al. Synthesis of a novel dicyclic silicon/phosphorus hybrid and its performance on flame retardancy of epoxy resin[J]. Polym Degrad Stab, 2014,99:4352.
[11] ZHANG W C, LI X M, YANG R J, et al. Study on flame retardancy of TGDDM epoxy resins loaded with DOPOPOSS compound and OPS/DOPO mixture[J]. Polym Degrad Stab, 2014,99:118126.
[12] SUN D C, YAO Y W. Synthesis of three novel phosphoruscontaining flame retardantts and their application in epoxy resins[J]. Polym Degrad Stab, 2011,96(10):17201724.
[13] WANG Y Z, ZHAO J Q, YUAN Y C. Synthesis of maleimidosubstituted aromaticstriazine and itsapplication in flameretarded epoxy resins[J]. Polym Degrad Stab, 2014,99:2734.
[14] BEATA S, ANDREA T, PETER K, et al. Comparison of additive and reactive phosphorus based flame retardants in epoxy resins[J]. Period Polytech Chem, 2013,57:8591.
[15] 鮑治宇, 董延茂. 膨脹阻燃劑技術(shù)及應(yīng)用[M]. 哈爾濱:哈爾濱工業(yè)大學(xué)出版社, 2005.
[16] GAO L P, WANG D Y, WANG Y Z, et al. A flameretardant epoxy resin based on a reactive phosphoruscontaining monomer of DODPP and its thermal and flameretardant properties [J]. Polym Degrad Stab, 2008,93(7):13081315.
[17] 黃 麗, 孫慧慧, 王成忠. 含磷阻燃型環(huán)氧樹脂的研究進展[J]. 化工進展, 2011,30(6):12771284.
(編輯 楊春明)
[9] JIANG S H, SHI Y Q, QIAN X D, et al. Synthesis of a novel phosphorusand nitrogencontaining acrylate and its performance as an intumescent flame retardant for epoxy acrylate[J]. Ind Eng Chem Res, 2013,52(49):1744217450.
[10] SONG S Q, MA J J, CAO K, et al. Synthesis of a novel dicyclic silicon/phosphorus hybrid and its performance on flame retardancy of epoxy resin[J]. Polym Degrad Stab, 2014,99:4352.
[11] ZHANG W C, LI X M, YANG R J, et al. Study on flame retardancy of TGDDM epoxy resins loaded with DOPOPOSS compound and OPS/DOPO mixture[J]. Polym Degrad Stab, 2014,99:118126.
[12] SUN D C, YAO Y W. Synthesis of three novel phosphoruscontaining flame retardantts and their application in epoxy resins[J]. Polym Degrad Stab, 2011,96(10):17201724.
[13] WANG Y Z, ZHAO J Q, YUAN Y C. Synthesis of maleimidosubstituted aromaticstriazine and itsapplication in flameretarded epoxy resins[J]. Polym Degrad Stab, 2014,99:2734.
[14] BEATA S, ANDREA T, PETER K, et al. Comparison of additive and reactive phosphorus based flame retardants in epoxy resins[J]. Period Polytech Chem, 2013,57:8591.
[15] 鮑治宇, 董延茂. 膨脹阻燃劑技術(shù)及應(yīng)用[M]. 哈爾濱:哈爾濱工業(yè)大學(xué)出版社, 2005.
[16] GAO L P, WANG D Y, WANG Y Z, et al. A flameretardant epoxy resin based on a reactive phosphoruscontaining monomer of DODPP and its thermal and flameretardant properties [J]. Polym Degrad Stab, 2008,93(7):13081315.
[17] 黃 麗, 孫慧慧, 王成忠. 含磷阻燃型環(huán)氧樹脂的研究進展[J]. 化工進展, 2011,30(6):12771284.
(編輯 楊春明)