李會(huì)麗
摘要用三角對(duì)稱下3d5組態(tài)離子的完全能量矩陣方法, 通過理論模擬電子順磁共振EPR譜, 研究了Fe3+離子摻雜到石榴石晶體YAG(Y3Al5O12)和LAG(Lu3Al5O12)中形成的絡(luò)合物離子(FeO6)9-的局域微觀結(jié)構(gòu). 結(jié)果表明,摻雜體系YAG:Fe3+中絡(luò)合物離子(FeO6)9-的FeO鍵長R為2.017 4 , LAG:Fe3+中絡(luò)合物離子(FeO6)9-的R為2.029 6 , 與相應(yīng)的實(shí)驗(yàn)數(shù)據(jù)吻合. 并且YIG(Y3Fe5O12) 和 Fe2O3光譜數(shù)據(jù)計(jì)算值與實(shí)驗(yàn)觀測(cè)數(shù)據(jù)也一致.
關(guān)鍵詞石榴石晶體; 微觀結(jié)構(gòu); 光譜; 完全能量矩陣
中圖分類號(hào)O56 文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04005705
1理論方法
2計(jì)算結(jié)果與討論
3結(jié)論
基于配體場(chǎng)理論,通過理論模擬電子順磁共振EPR譜,計(jì)算了石榴石摻雜體系YAG:Fe3+和LAG:Fe3絡(luò)合物離子(FeO6)9-的局域微觀結(jié)構(gòu), 得出以下兩點(diǎn):
(1)摻雜體系中將會(huì)發(fā)生拉伸效應(yīng)是由摻雜離子的半徑大于主晶體中主離子的半徑?jīng)Q定的, 以至于雜質(zhì)離子將沿著C3軸向外推氧(O2-)配體;(2)當(dāng)A4 從28.048 au增加到30.186 au時(shí), 對(duì)兩種摻雜晶體的扭曲參數(shù)(R的影響相似約減少0.030 , 而對(duì)扭曲參數(shù)Δθ的影響相差10倍左右.作者推測(cè)由于c占位離子的不同, 導(dǎo)致相同的Fe3+離子摻雜到兩種晶體中, 引起明顯的不同程度的影響.
參考文獻(xiàn):
[1]〖ZK(#〗KUANG X Y, CHEN Z H. Groundstate zerofield splitting for the Fe3+ ion in a cubic field[J]. Phys Rev B, 1987,36(1):797798.
[2]KUANG X Y. Analysis of the electron paramagnetic resonance zerofield splitting for Fe3+ in sapphire[J]. Phys Rev B, 1987,36(1):712714.
[3]GERLOCH M, SLADE R C. Ligandfield parameters[M]. Oxford: Cambridge University Press, 1973.
[4]SUGANO S, TANABE Y, KZMIMURA H. Multiplets of transition METAL ions in crystsls[M]. New York: Macmillan Press, 1970.
[5]SHARMA R R, DU T P. Zerofield splitting of sstate Ions I pointmultipole model[J]. Phys Rev, 1966,149(1):257269.
[6]HEMPEL J C, MILLER M E. Trigonal ligand field and zero field splitting diagrams for the d5 configuration[J]. J Chem Phys, 1976,64(11):43074313.
[7]GOPAL N O, NARASIMHULU K V, LAKSHMANA R J. Optical absorption, EPR infrared and Raman spectral studies of clinochlore mineral[J]. J Phys Chem Solids, 2004,65(11):18871993.
[8]NISTOR S V, GOOVAERTS E, SCHOEMAKER D. Trapped hole Fe3+centres in layered CdCl2:Fe crystals [J]. J Phys Condens Matter, 1994,13(6):26192630.
[9]EDGAR A. Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts [J]. J Phys C: Solid State Phys, 1976,23(9):43044314.〖ZK)〗
[10]〖ZK(#〗ZHENG W C, WU S Y. Local tilting angles τ for Fe+ in Cd2+ site and Fe3+ in Si4+ site of CdSiP2 semiconductor spectrochim [J]. Acta Part A, 2002,58(8):17791783.
[11]KUANG X Y, GOU Q Q, ZHOU K W. Theory of covalent magnetic exchange interaction for diiron(III) core in the active site of ribonucleotide reductase [J]. Phys Lett A, 2002,293(5):293298.
[12]CURIE D, BARTHON C, CANNY B. Covalent bonding of Mn2+ ions in octahedral and tetrahedral coordination [J] . J Chem Phys, 1971,61(8):30483062.
[13]YEOM T H, CHOH S H. EPR study of Fe3+ impurities in crystalline BiVO4 [J]. Phys Rev B, 1996,53(6):34153421.
[14]KUANG X Y, LU C. Characterization of electron transition energies and trigonal distortion of the (FeO6)9- coordination complex in the Al2O3 system: A simple method for transitionmetal ions in a trigonal field[J]. J Phys Chem A, 2006,110(39):1135311358.
[15]SHERMAN D M. The electronic structure of Fe3+ coordination sites in iron oxides. Applications to spectra, bonding, and magnetism[J]. Phys Chem Minerals, 1985,12(3):161175.
摘要用三角對(duì)稱下3d5組態(tài)離子的完全能量矩陣方法, 通過理論模擬電子順磁共振EPR譜, 研究了Fe3+離子摻雜到石榴石晶體YAG(Y3Al5O12)和LAG(Lu3Al5O12)中形成的絡(luò)合物離子(FeO6)9-的局域微觀結(jié)構(gòu). 結(jié)果表明,摻雜體系YAG:Fe3+中絡(luò)合物離子(FeO6)9-的FeO鍵長R為2.017 4 , LAG:Fe3+中絡(luò)合物離子(FeO6)9-的R為2.029 6 , 與相應(yīng)的實(shí)驗(yàn)數(shù)據(jù)吻合. 并且YIG(Y3Fe5O12) 和 Fe2O3光譜數(shù)據(jù)計(jì)算值與實(shí)驗(yàn)觀測(cè)數(shù)據(jù)也一致.
關(guān)鍵詞石榴石晶體; 微觀結(jié)構(gòu); 光譜; 完全能量矩陣
中圖分類號(hào)O56 文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04005705
1理論方法
2計(jì)算結(jié)果與討論
3結(jié)論
基于配體場(chǎng)理論,通過理論模擬電子順磁共振EPR譜,計(jì)算了石榴石摻雜體系YAG:Fe3+和LAG:Fe3絡(luò)合物離子(FeO6)9-的局域微觀結(jié)構(gòu), 得出以下兩點(diǎn):
(1)摻雜體系中將會(huì)發(fā)生拉伸效應(yīng)是由摻雜離子的半徑大于主晶體中主離子的半徑?jīng)Q定的, 以至于雜質(zhì)離子將沿著C3軸向外推氧(O2-)配體;(2)當(dāng)A4 從28.048 au增加到30.186 au時(shí), 對(duì)兩種摻雜晶體的扭曲參數(shù)(R的影響相似約減少0.030 , 而對(duì)扭曲參數(shù)Δθ的影響相差10倍左右.作者推測(cè)由于c占位離子的不同, 導(dǎo)致相同的Fe3+離子摻雜到兩種晶體中, 引起明顯的不同程度的影響.
參考文獻(xiàn):
[1]〖ZK(#〗KUANG X Y, CHEN Z H. Groundstate zerofield splitting for the Fe3+ ion in a cubic field[J]. Phys Rev B, 1987,36(1):797798.
[2]KUANG X Y. Analysis of the electron paramagnetic resonance zerofield splitting for Fe3+ in sapphire[J]. Phys Rev B, 1987,36(1):712714.
[3]GERLOCH M, SLADE R C. Ligandfield parameters[M]. Oxford: Cambridge University Press, 1973.
[4]SUGANO S, TANABE Y, KZMIMURA H. Multiplets of transition METAL ions in crystsls[M]. New York: Macmillan Press, 1970.
[5]SHARMA R R, DU T P. Zerofield splitting of sstate Ions I pointmultipole model[J]. Phys Rev, 1966,149(1):257269.
[6]HEMPEL J C, MILLER M E. Trigonal ligand field and zero field splitting diagrams for the d5 configuration[J]. J Chem Phys, 1976,64(11):43074313.
[7]GOPAL N O, NARASIMHULU K V, LAKSHMANA R J. Optical absorption, EPR infrared and Raman spectral studies of clinochlore mineral[J]. J Phys Chem Solids, 2004,65(11):18871993.
[8]NISTOR S V, GOOVAERTS E, SCHOEMAKER D. Trapped hole Fe3+centres in layered CdCl2:Fe crystals [J]. J Phys Condens Matter, 1994,13(6):26192630.
[9]EDGAR A. Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts [J]. J Phys C: Solid State Phys, 1976,23(9):43044314.〖ZK)〗
[10]〖ZK(#〗ZHENG W C, WU S Y. Local tilting angles τ for Fe+ in Cd2+ site and Fe3+ in Si4+ site of CdSiP2 semiconductor spectrochim [J]. Acta Part A, 2002,58(8):17791783.
[11]KUANG X Y, GOU Q Q, ZHOU K W. Theory of covalent magnetic exchange interaction for diiron(III) core in the active site of ribonucleotide reductase [J]. Phys Lett A, 2002,293(5):293298.
[12]CURIE D, BARTHON C, CANNY B. Covalent bonding of Mn2+ ions in octahedral and tetrahedral coordination [J] . J Chem Phys, 1971,61(8):30483062.
[13]YEOM T H, CHOH S H. EPR study of Fe3+ impurities in crystalline BiVO4 [J]. Phys Rev B, 1996,53(6):34153421.
[14]KUANG X Y, LU C. Characterization of electron transition energies and trigonal distortion of the (FeO6)9- coordination complex in the Al2O3 system: A simple method for transitionmetal ions in a trigonal field[J]. J Phys Chem A, 2006,110(39):1135311358.
[15]SHERMAN D M. The electronic structure of Fe3+ coordination sites in iron oxides. Applications to spectra, bonding, and magnetism[J]. Phys Chem Minerals, 1985,12(3):161175.
摘要用三角對(duì)稱下3d5組態(tài)離子的完全能量矩陣方法, 通過理論模擬電子順磁共振EPR譜, 研究了Fe3+離子摻雜到石榴石晶體YAG(Y3Al5O12)和LAG(Lu3Al5O12)中形成的絡(luò)合物離子(FeO6)9-的局域微觀結(jié)構(gòu). 結(jié)果表明,摻雜體系YAG:Fe3+中絡(luò)合物離子(FeO6)9-的FeO鍵長R為2.017 4 , LAG:Fe3+中絡(luò)合物離子(FeO6)9-的R為2.029 6 , 與相應(yīng)的實(shí)驗(yàn)數(shù)據(jù)吻合. 并且YIG(Y3Fe5O12) 和 Fe2O3光譜數(shù)據(jù)計(jì)算值與實(shí)驗(yàn)觀測(cè)數(shù)據(jù)也一致.
關(guān)鍵詞石榴石晶體; 微觀結(jié)構(gòu); 光譜; 完全能量矩陣
中圖分類號(hào)O56 文獻(xiàn)標(biāo)識(shí)碼A文章編號(hào)10002537(2014)04005705
1理論方法
2計(jì)算結(jié)果與討論
3結(jié)論
基于配體場(chǎng)理論,通過理論模擬電子順磁共振EPR譜,計(jì)算了石榴石摻雜體系YAG:Fe3+和LAG:Fe3絡(luò)合物離子(FeO6)9-的局域微觀結(jié)構(gòu), 得出以下兩點(diǎn):
(1)摻雜體系中將會(huì)發(fā)生拉伸效應(yīng)是由摻雜離子的半徑大于主晶體中主離子的半徑?jīng)Q定的, 以至于雜質(zhì)離子將沿著C3軸向外推氧(O2-)配體;(2)當(dāng)A4 從28.048 au增加到30.186 au時(shí), 對(duì)兩種摻雜晶體的扭曲參數(shù)(R的影響相似約減少0.030 , 而對(duì)扭曲參數(shù)Δθ的影響相差10倍左右.作者推測(cè)由于c占位離子的不同, 導(dǎo)致相同的Fe3+離子摻雜到兩種晶體中, 引起明顯的不同程度的影響.
參考文獻(xiàn):
[1]〖ZK(#〗KUANG X Y, CHEN Z H. Groundstate zerofield splitting for the Fe3+ ion in a cubic field[J]. Phys Rev B, 1987,36(1):797798.
[2]KUANG X Y. Analysis of the electron paramagnetic resonance zerofield splitting for Fe3+ in sapphire[J]. Phys Rev B, 1987,36(1):712714.
[3]GERLOCH M, SLADE R C. Ligandfield parameters[M]. Oxford: Cambridge University Press, 1973.
[4]SUGANO S, TANABE Y, KZMIMURA H. Multiplets of transition METAL ions in crystsls[M]. New York: Macmillan Press, 1970.
[5]SHARMA R R, DU T P. Zerofield splitting of sstate Ions I pointmultipole model[J]. Phys Rev, 1966,149(1):257269.
[6]HEMPEL J C, MILLER M E. Trigonal ligand field and zero field splitting diagrams for the d5 configuration[J]. J Chem Phys, 1976,64(11):43074313.
[7]GOPAL N O, NARASIMHULU K V, LAKSHMANA R J. Optical absorption, EPR infrared and Raman spectral studies of clinochlore mineral[J]. J Phys Chem Solids, 2004,65(11):18871993.
[8]NISTOR S V, GOOVAERTS E, SCHOEMAKER D. Trapped hole Fe3+centres in layered CdCl2:Fe crystals [J]. J Phys Condens Matter, 1994,13(6):26192630.
[9]EDGAR A. Electron paramagnetic resonance studies of divalent cobalt ions in some chloride salts [J]. J Phys C: Solid State Phys, 1976,23(9):43044314.〖ZK)〗
[10]〖ZK(#〗ZHENG W C, WU S Y. Local tilting angles τ for Fe+ in Cd2+ site and Fe3+ in Si4+ site of CdSiP2 semiconductor spectrochim [J]. Acta Part A, 2002,58(8):17791783.
[11]KUANG X Y, GOU Q Q, ZHOU K W. Theory of covalent magnetic exchange interaction for diiron(III) core in the active site of ribonucleotide reductase [J]. Phys Lett A, 2002,293(5):293298.
[12]CURIE D, BARTHON C, CANNY B. Covalent bonding of Mn2+ ions in octahedral and tetrahedral coordination [J] . J Chem Phys, 1971,61(8):30483062.
[13]YEOM T H, CHOH S H. EPR study of Fe3+ impurities in crystalline BiVO4 [J]. Phys Rev B, 1996,53(6):34153421.
[14]KUANG X Y, LU C. Characterization of electron transition energies and trigonal distortion of the (FeO6)9- coordination complex in the Al2O3 system: A simple method for transitionmetal ions in a trigonal field[J]. J Phys Chem A, 2006,110(39):1135311358.
[15]SHERMAN D M. The electronic structure of Fe3+ coordination sites in iron oxides. Applications to spectra, bonding, and magnetism[J]. Phys Chem Minerals, 1985,12(3):161175.