何永琪 林邦姜 李巨浩
認(rèn)為當(dāng)采用低頻段的射頻資源時(shí),色散導(dǎo)致的雙邊帶功率衰落對正交頻分復(fù)用無源光網(wǎng)絡(luò)(OFDM-PON)的影響很小。基于時(shí)分復(fù)用(TDM)架構(gòu)的OFDM-PON,充分利用正交頻分復(fù)用(OFDM)技術(shù)的優(yōu)勢與TDM架構(gòu)的無色性,與現(xiàn)有的以太網(wǎng)無源光網(wǎng)絡(luò)(EPON)、千兆比無源光網(wǎng)絡(luò)(GPON)兼容性高,是解決上行無色性傳輸?shù)淖顑?yōu)方案?;贠FDM的時(shí)波分復(fù)用無源光網(wǎng)絡(luò)(TWDM-PON)充分利用了OFDM調(diào)制優(yōu)勢,用來提升單載波容量,在不改變TWDM-PON系統(tǒng)結(jié)構(gòu)情況下,實(shí)現(xiàn)100 Gbit/s的高速接入,是未來無源光網(wǎng)絡(luò)的重要候選方案。
正交頻分復(fù)用;無源光網(wǎng)絡(luò);時(shí)分復(fù)用;時(shí)波分復(fù)用
In this paper, we propose that the power fading of double sideband for OFDM-PON induced by chromatic dispersion is small when using low radio frequency (RF). The OFDM-PON based on time division multiplexing (TDM) architecture is the best solution for uplink colorless transmission. This makes full use of the advantages of OFDM technique and colorless TDM architecture and is highly compatible with existing EPON and GPON. Time wavelength division multiplexing (TWDM) PON based on OFDM is a strong candidate for future PON, which makes full use of OFDM modulation to increase the capacity of a single carrier without changing the structure of TWDM-PON system, achieving 100 Gbit/s high-speed access.
orthogonal frequency division multiplexing; passive optical network; time division multiplexing; time wavelength division multiplexing
隨著云計(jì)算、高清視頻、在線游戲等新互聯(lián)網(wǎng)業(yè)務(wù)的爆炸性增長,無源光網(wǎng)絡(luò)亟需升級(jí)以支持更高的數(shù)據(jù)速率?;谡活l分復(fù)用多址(OFDMA)的無源光網(wǎng)絡(luò)(PON)技術(shù)自2007年以來受到了眾多研究機(jī)構(gòu)的關(guān)注[1]。OFDMA-PON的基本原理如圖1所示。在下行傳輸中,OFDM信號(hào)由數(shù)字信號(hào)處理(DSP)芯片生成,通過光強(qiáng)度調(diào)制器調(diào)制到[λdw]上,調(diào)制生成的光雙邊帶信號(hào)經(jīng)過光纖傳輸,廣播給所有的用戶。在用戶端,光信號(hào)由光接收機(jī)實(shí)現(xiàn)光電轉(zhuǎn)化,電正交頻分復(fù)用(OFDM)信號(hào)由DSP芯片實(shí)現(xiàn)解調(diào)。下行信號(hào)的帶寬被諸多正交的子載波劃分。每一個(gè)光網(wǎng)絡(luò)單元(ONU)分配到一個(gè)子信道,包括一個(gè)或多個(gè)子載波。在上行傳輸中,每一個(gè)用戶的數(shù)據(jù)被調(diào)制到特定的子載波上,其他的子載波上不調(diào)制數(shù)據(jù),生成的電OFDM信號(hào)被調(diào)制到不同的波長上。所有上傳的信號(hào)由分光器合束,再經(jīng)光纖傳輸?shù)街行木?。在光線路終端(OLT)端,一個(gè)光接收機(jī)實(shí)現(xiàn)所有用戶信號(hào)的接收。由于子載波之間的正交性,不同用戶之間的信號(hào)不存在串?dāng)_。OFDMA-PON的主要優(yōu)勢為:
(1)子載波的頻譜部分相互交疊,結(jié)合高階調(diào)制格式,易于實(shí)現(xiàn)高頻譜效率。
(2)發(fā)射端與接收端的數(shù)字信號(hào)處理方法可以消除各種線性損傷,如光纖中的色散與偏振模色散。
(3)每一個(gè)子載波可視為一個(gè)透明的輸送管道,用以傳送任意的網(wǎng)絡(luò)數(shù)據(jù)。根據(jù)網(wǎng)絡(luò)需求,子載波可以被動(dòng)態(tài)地分配給不同的網(wǎng)絡(luò)服務(wù)。
此外,這種正交多址的復(fù)用方式可以與時(shí)分多址結(jié)合在時(shí)域與頻域?qū)崿F(xiàn)動(dòng)態(tài)帶寬分配。
盡管OFDMA-PON有著如此多的技術(shù)優(yōu)勢,但也存在著不少技術(shù)難題,下面對相關(guān)技術(shù)進(jìn)行分析。
1 色散引起光雙邊帶信號(hào)
功率衰落
色散對光雙邊帶傳輸?shù)挠绊懭鐖D2所示。電OFDM信號(hào)經(jīng)過強(qiáng)度調(diào)制生成一個(gè)光雙邊帶信號(hào),包括一個(gè)光載波與兩個(gè)信號(hào)邊帶。兩個(gè)信號(hào)邊帶上的數(shù)據(jù)信息是相同的。在背靠背傳輸中,光接收機(jī)接收到的射頻信號(hào)是兩個(gè)信號(hào)邊帶功率的疊加,不存在功率衰落。與單邊帶傳輸相比,雙邊帶傳輸有3 dB的功率增益。由于光纖色散的影響,兩個(gè)邊帶經(jīng)過光纖傳輸后,有著不同的相位延遲。接收機(jī)接收到的射頻信號(hào)是兩個(gè)邊帶信號(hào)的矢量疊加。與背靠背傳輸相比,射頻信號(hào)功率變小。當(dāng)兩個(gè)邊帶的相位差為180度時(shí),接收到的電信號(hào)功率甚至為0。光纖傳輸后,接收到的射頻信號(hào)的功率,可由公式(1)給出:
[P ∞cosπLDλc2fr2c1-2πarctan(αMz)] (1)
其中L為光纖的長度,D為光纖色散系數(shù),fr為射頻信號(hào)的頻率,[λc]為光載波波長,[αMz]為調(diào)制器的啁啾系數(shù)[2]。單邊帶傳輸可以避免這種功率損傷,但是會(huì)增加發(fā)射機(jī)的復(fù)雜度[3-4]。通過仿真分析,筆者認(rèn)為對于20~100 km的接入系統(tǒng),采用低頻段的射頻資源(0~10 GHz),色散引起的雙邊帶功率損傷很小。結(jié)合高階調(diào)制格式,我們在26.7 km與100 km標(biāo)準(zhǔn)單模光纖上成功實(shí)現(xiàn)了20 Gbit/s雙邊帶OFDM-PON[5]。
2 無色上行傳輸endprint
當(dāng)采用正交頻分多址接入,上行相近的波長會(huì)在光接收機(jī)中相互拍頻,拍頻產(chǎn)生的接收光信號(hào)極其不穩(wěn)定。因此,ONU在上行傳輸時(shí)需要不同的波長來避免拍頻噪聲。這大大增加了系統(tǒng)成本與波長管理維護(hù)的難度。當(dāng)前實(shí)現(xiàn)無色上行傳輸?shù)姆椒ㄖ饕校嚎烧{(diào)諧光源;波長重用;反射性調(diào)制器,如反射半導(dǎo)體光放大器(RSOA)[6-8]??烧{(diào)諧光源復(fù)雜度大,成本高,不適合接入系統(tǒng)。在波長重用方案中,上行波長經(jīng)過兩次鏈路傳輸,使得上行傳輸?shù)墓β暑A(yù)算不足。而RSOA器件帶寬較小,較難產(chǎn)生性能良好的OFDM信號(hào)。總的來說,這些解決方案都不太成熟,在成本或傳輸性能上存在不足。為了解決該無色傳輸難題,筆者提出了TDM-OFDM-PON的系統(tǒng)架構(gòu)[9],如圖3所示。其下行傳輸可采用正交頻分多址的接入方式,亦可采用頻分與時(shí)分相結(jié)合的混合接入方式,而上行傳輸則采用時(shí)分多址的方式對帶寬資源進(jìn)行分配。TDM-OFDM-PON充分利用OFDM技術(shù)優(yōu)勢與TDM架構(gòu)的無色性,與現(xiàn)有的EPON、GPON兼容性高。就當(dāng)前來看,基于TDM架構(gòu)的OFDM-PON是解決上行無色性傳輸?shù)淖顑?yōu)方案。
3 面向40 Gbit/s與100 Gbit/s
的高速傳輸
高速OFDM信號(hào)的產(chǎn)生嚴(yán)重依賴于DSP器件,特別是數(shù)模(DAC)、模數(shù)轉(zhuǎn)換(ADC)芯片。目前,DAC、ADC芯片在速度與精度上都受限,較難實(shí)現(xiàn)高速率的轉(zhuǎn)換;此外,高速DSP芯片比較昂貴,ONU的成本較難控制。為了降低DSP芯片的帶寬需求,NEC(美國)實(shí)驗(yàn)室提出了一種偏振復(fù)用的解決方案。該方案結(jié)合多輸入多輸出(MIMO)算法,可以實(shí)現(xiàn)40 Gbit/s的偏振復(fù)用OFDM-PON[10]。筆者也提出了一種偏振交織的解決方案[11],該方案是偏振復(fù)用的改良方案。相較于偏振復(fù)用,偏振交織有著較低的系統(tǒng)復(fù)雜度。結(jié)合多波帶技術(shù),這兩種方案均可實(shí)現(xiàn)100 Gbit/s的OFDM-PON[12-13]。然而,偏振復(fù)用與偏振交織的OFDM-PON系統(tǒng)的復(fù)雜度較高,需要一定的偏振控制技術(shù),不具有成本優(yōu)勢。富士通公司采用65 GS/s的高速非商用DAC與ADC成功實(shí)現(xiàn)了100 Gbit/s的OFDM接入系統(tǒng)[14]。這種高速的DAC與ADC成本較高,短期內(nèi)得不到商用。在2012年4月的全業(yè)務(wù)接入論壇(FSAN)會(huì)議上,綜合考慮技術(shù)成熟度、成本、復(fù)雜度,時(shí)波分復(fù)用無源光網(wǎng)絡(luò)(TWDM-PON)成為了NG-PON2的主流候選方案[15]。TWDM-PON采用4個(gè)XG-PON以WDM方式混合來實(shí)現(xiàn)40 Gbit/s下行速率和10 Gbit/s上行速率。ONU端的濾波器用以選擇下行波長,而激光器可調(diào)諧到任意上行波長上。那么OFDM技術(shù)在未來的接入系統(tǒng)中是否會(huì)被棄用?筆者認(rèn)為,隨著集成技術(shù)與DSP技術(shù)的發(fā)展,基于DSP的調(diào)制在未來的100 Gbit/s以上速率的接入系統(tǒng)中會(huì)扮演一個(gè)十分重要的角色?;陂_關(guān)鍵控(OOK)調(diào)制的TWDM-PON系統(tǒng),由于光纖色散的影響,其單載波容量很難升級(jí)。因此,只能使用多載波技術(shù)來升級(jí)系統(tǒng)的容量(堆疊更多的XG-PON),這對ONU端的發(fā)射機(jī)與接收機(jī)的調(diào)諧性提出了更高的要求。OFDM作為一種優(yōu)秀的調(diào)制格式,可以很好提升單載波傳輸容量。文獻(xiàn)[16]給出了基于OFDM的4×25 Gbit/s TWDM-PON。在該結(jié)構(gòu)中,每一時(shí)隙傳輸?shù)氖荗FDM符號(hào),而不是OOK信號(hào)。結(jié)合高階調(diào)制,單載波的速率很容易達(dá)到25 Gbit/s。在下行傳輸中,4個(gè)25Gbit/s OFDM的信號(hào),經(jīng)WDM復(fù)用器合束,再經(jīng)光放大,廣播給所有用戶。用戶首先對波長進(jìn)行選擇,再選擇相應(yīng)的時(shí)隙。在上行傳輸中,用戶在相應(yīng)的時(shí)隙發(fā)送OFDM符號(hào),可調(diào)諧激光器調(diào)諧到相應(yīng)的上行波長上。在OLT端,上行信號(hào)經(jīng)過光放大,由WDM解復(fù)用器分開4個(gè)上行波長,分別進(jìn)行數(shù)據(jù)解調(diào)?;贠FDM的TWDM-PON充分利用了OFDM技術(shù)優(yōu)勢,提升單載波容量,在不改變TWDM-PON系統(tǒng)結(jié)構(gòu)下,實(shí)現(xiàn)100 Gbit/s的高速接入,是未來無源光網(wǎng)絡(luò)的有力候選方案。
4 結(jié)束語
在新型互聯(lián)網(wǎng)業(yè)務(wù)的驅(qū)動(dòng)下,未來的無源光網(wǎng)將面向更高速率更高容量。隨著集成技術(shù)與數(shù)字信號(hào)處理技術(shù)的發(fā)展,OFDM技術(shù)在未來的接入系統(tǒng)中會(huì)扮演一個(gè)十分重要的角色。正交頻分多址的接入方式,很難實(shí)現(xiàn)低成本的無色上行傳輸。OFDM作為一種優(yōu)秀的調(diào)制方法,結(jié)合成熟的TDM技術(shù)以及多載波技術(shù),是未來100 Gbit/s以上速率無源光網(wǎng)絡(luò)的有力候選方案。
參考文獻(xiàn)
[1] QIAN D Y, HU J Q, YU J J. Experimental Demonstration of a Novel OFDM-A Based 10Gbit/s PON Architecture [C]//Proceedings of the 2007 European Conference on Optical Communications (ECOC), Oct 6-7, 2007, Calgary, Canada. New York, NY, USA:ACM, 2007: 5.
[2] SMITH G H, NOVAK D, AHMED Z. Overcoming chromatic dispersion effects in fiber-wireless systems incorporating external modulators [J]. IEEE Trans. Microwave Theory Tech., 1997,45(8): 1410-1415.
[3] CHOW C W, YEH C H, LO S M G, LI C, TSANG H K. Longreach radio-over-fiber signal distribution using single-sideband signal generated by a silicon-modulator [J]. Opt. Express, 2011,19(12): 11312-11317.endprint
[4] WANG C H, CHOW C W, YEH C H, WU C L, CHI S, LIN C. Rayleigh noise mitigation using single sideband modulation generated by a dual-parallel MZM for carrier distributed PON [J]. IEEE Photon. Technol. Lett., 2010,22(11): 820-829.
[5] LIN B J, LI J H, YANG H, WAN Y S, HE Y Q, CHEN Z Y. Comparison of DSB and SSB transmission for OFDM-PON [J]. IEEE/OSA Journal of Optical Communications and Networking, 2012,4(2): 94-100.
[6] QIAN D, CVIJETIC N, HU J, WANG T. A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks [J]. IEEE Photon. Technol. Lett., 2009,21(17):1-5.
[7] LEE J H, LEE K, LEE S B, KIM C H. Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs [J]. Opt. Fiber Technol., 2009,15(3): 310-319.
[8] CHOW C W, YEH C H, WANG C H, SHIH F Y, CHI S. Rayleigh backscattering performance of OFDM-QAM in carrier distributed passive optical networks [J]. IEEE Photon. Technol. Lett., 2008,20(22): 1848-1850.
[9] YANG H, LI J H, LIN B J, WAN Y S, GUO Y, ZHU L X, LI L, HE Y Q, CHEN Z Y. DSP-Based Evolution From Conventional TDM-PON to TDM-OFDM-PON [J]. Journal of Lightwave Technology, 2013,31(5): 2735-2741.
[10] QIAN D, CVIJETIC N, HU J, WANG T. 40-Gbit/s MIMO-OFDM-PON Using Polarization Multiplexing and Direct-Detection [C]//Proceedings of the 2009 Opt. Fiber Commun. (OFC), Oct 9-11, 2009, Calgary, Canada. New York, NY, USA:ACM, 2009: 3.
[11] LIN B J, LI J H, HUI Y, JIANG S, ZHU L X, HE Y Q, CHEN Z Y. Experimental demonstration of optical MIMO transmission for SCFDM-PON based on polarization interleaving and direct detection [J]. Optics Communications, 2012,285(6): 5163-5168.
[12] LIN B J, LI J H, HUI Y, WAN Y S, LUO Y B, ZHANG P, HE Y Q, CHEN Z Y. 100-Gbit/s Multi-band OFDM-PON Based on Polarization Interleaving and Direct Detection [C]//Proceedings of the ACP 2012, Oct 6-7, 2012, Calgary, Canada. New York, NY, USA:ACM, 2012:5.
[13] QIAN D, CVIJETIC N, HU J, WANG T. 108 Gbit/s OFDMA-PON with polarization multiplexing and direct detection [J]. Light Technol., 2010,28(4): 484-493.
[14] TAKAHARA T, TANAKA T, NISHIHARA M, KAI Y, LI L, TAO Z N, RASMUSSEN J C. Discrete Multi-Tone for 100 Gbit/s Optical Access Networks [C]//Proceedings of the OFC 2014, Oct 6-7, 2014, Calgary, Canada. New York, NY, USA:ACM, 2014:1.
[15] LUO Y Q, ZHOU X P, EFFENBERGER F, YAN X J, PENG G K, QIAN Y B, MA Y R. Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2) [J]. Journal of Lightwave Technology, 2013,31(4): 484-493.
[16] LUO Y B, LIN B J, HUI Y, LI J H, HE Y Q, CHEN Z Y, LI Z B. Symmetric 100-Gbit/s TWDM-PON with DSB OFDM Modulation [C]//Proceedings of the OFC 2014, Oct 6-7, 2014, Calgary, Canada. New York, NY, USA:ACM, 2014:61.endprint
[4] WANG C H, CHOW C W, YEH C H, WU C L, CHI S, LIN C. Rayleigh noise mitigation using single sideband modulation generated by a dual-parallel MZM for carrier distributed PON [J]. IEEE Photon. Technol. Lett., 2010,22(11): 820-829.
[5] LIN B J, LI J H, YANG H, WAN Y S, HE Y Q, CHEN Z Y. Comparison of DSB and SSB transmission for OFDM-PON [J]. IEEE/OSA Journal of Optical Communications and Networking, 2012,4(2): 94-100.
[6] QIAN D, CVIJETIC N, HU J, WANG T. A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks [J]. IEEE Photon. Technol. Lett., 2009,21(17):1-5.
[7] LEE J H, LEE K, LEE S B, KIM C H. Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs [J]. Opt. Fiber Technol., 2009,15(3): 310-319.
[8] CHOW C W, YEH C H, WANG C H, SHIH F Y, CHI S. Rayleigh backscattering performance of OFDM-QAM in carrier distributed passive optical networks [J]. IEEE Photon. Technol. Lett., 2008,20(22): 1848-1850.
[9] YANG H, LI J H, LIN B J, WAN Y S, GUO Y, ZHU L X, LI L, HE Y Q, CHEN Z Y. DSP-Based Evolution From Conventional TDM-PON to TDM-OFDM-PON [J]. Journal of Lightwave Technology, 2013,31(5): 2735-2741.
[10] QIAN D, CVIJETIC N, HU J, WANG T. 40-Gbit/s MIMO-OFDM-PON Using Polarization Multiplexing and Direct-Detection [C]//Proceedings of the 2009 Opt. Fiber Commun. (OFC), Oct 9-11, 2009, Calgary, Canada. New York, NY, USA:ACM, 2009: 3.
[11] LIN B J, LI J H, HUI Y, JIANG S, ZHU L X, HE Y Q, CHEN Z Y. Experimental demonstration of optical MIMO transmission for SCFDM-PON based on polarization interleaving and direct detection [J]. Optics Communications, 2012,285(6): 5163-5168.
[12] LIN B J, LI J H, HUI Y, WAN Y S, LUO Y B, ZHANG P, HE Y Q, CHEN Z Y. 100-Gbit/s Multi-band OFDM-PON Based on Polarization Interleaving and Direct Detection [C]//Proceedings of the ACP 2012, Oct 6-7, 2012, Calgary, Canada. New York, NY, USA:ACM, 2012:5.
[13] QIAN D, CVIJETIC N, HU J, WANG T. 108 Gbit/s OFDMA-PON with polarization multiplexing and direct detection [J]. Light Technol., 2010,28(4): 484-493.
[14] TAKAHARA T, TANAKA T, NISHIHARA M, KAI Y, LI L, TAO Z N, RASMUSSEN J C. Discrete Multi-Tone for 100 Gbit/s Optical Access Networks [C]//Proceedings of the OFC 2014, Oct 6-7, 2014, Calgary, Canada. New York, NY, USA:ACM, 2014:1.
[15] LUO Y Q, ZHOU X P, EFFENBERGER F, YAN X J, PENG G K, QIAN Y B, MA Y R. Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2) [J]. Journal of Lightwave Technology, 2013,31(4): 484-493.
[16] LUO Y B, LIN B J, HUI Y, LI J H, HE Y Q, CHEN Z Y, LI Z B. Symmetric 100-Gbit/s TWDM-PON with DSB OFDM Modulation [C]//Proceedings of the OFC 2014, Oct 6-7, 2014, Calgary, Canada. New York, NY, USA:ACM, 2014:61.endprint
[4] WANG C H, CHOW C W, YEH C H, WU C L, CHI S, LIN C. Rayleigh noise mitigation using single sideband modulation generated by a dual-parallel MZM for carrier distributed PON [J]. IEEE Photon. Technol. Lett., 2010,22(11): 820-829.
[5] LIN B J, LI J H, YANG H, WAN Y S, HE Y Q, CHEN Z Y. Comparison of DSB and SSB transmission for OFDM-PON [J]. IEEE/OSA Journal of Optical Communications and Networking, 2012,4(2): 94-100.
[6] QIAN D, CVIJETIC N, HU J, WANG T. A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks [J]. IEEE Photon. Technol. Lett., 2009,21(17):1-5.
[7] LEE J H, LEE K, LEE S B, KIM C H. Extended-reach WDM-PON based on CW supercontinuum light source for colorless FP-LD based OLT and RSOA-based ONUs [J]. Opt. Fiber Technol., 2009,15(3): 310-319.
[8] CHOW C W, YEH C H, WANG C H, SHIH F Y, CHI S. Rayleigh backscattering performance of OFDM-QAM in carrier distributed passive optical networks [J]. IEEE Photon. Technol. Lett., 2008,20(22): 1848-1850.
[9] YANG H, LI J H, LIN B J, WAN Y S, GUO Y, ZHU L X, LI L, HE Y Q, CHEN Z Y. DSP-Based Evolution From Conventional TDM-PON to TDM-OFDM-PON [J]. Journal of Lightwave Technology, 2013,31(5): 2735-2741.
[10] QIAN D, CVIJETIC N, HU J, WANG T. 40-Gbit/s MIMO-OFDM-PON Using Polarization Multiplexing and Direct-Detection [C]//Proceedings of the 2009 Opt. Fiber Commun. (OFC), Oct 9-11, 2009, Calgary, Canada. New York, NY, USA:ACM, 2009: 3.
[11] LIN B J, LI J H, HUI Y, JIANG S, ZHU L X, HE Y Q, CHEN Z Y. Experimental demonstration of optical MIMO transmission for SCFDM-PON based on polarization interleaving and direct detection [J]. Optics Communications, 2012,285(6): 5163-5168.
[12] LIN B J, LI J H, HUI Y, WAN Y S, LUO Y B, ZHANG P, HE Y Q, CHEN Z Y. 100-Gbit/s Multi-band OFDM-PON Based on Polarization Interleaving and Direct Detection [C]//Proceedings of the ACP 2012, Oct 6-7, 2012, Calgary, Canada. New York, NY, USA:ACM, 2012:5.
[13] QIAN D, CVIJETIC N, HU J, WANG T. 108 Gbit/s OFDMA-PON with polarization multiplexing and direct detection [J]. Light Technol., 2010,28(4): 484-493.
[14] TAKAHARA T, TANAKA T, NISHIHARA M, KAI Y, LI L, TAO Z N, RASMUSSEN J C. Discrete Multi-Tone for 100 Gbit/s Optical Access Networks [C]//Proceedings of the OFC 2014, Oct 6-7, 2014, Calgary, Canada. New York, NY, USA:ACM, 2014:1.
[15] LUO Y Q, ZHOU X P, EFFENBERGER F, YAN X J, PENG G K, QIAN Y B, MA Y R. Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2) [J]. Journal of Lightwave Technology, 2013,31(4): 484-493.
[16] LUO Y B, LIN B J, HUI Y, LI J H, HE Y Q, CHEN Z Y, LI Z B. Symmetric 100-Gbit/s TWDM-PON with DSB OFDM Modulation [C]//Proceedings of the OFC 2014, Oct 6-7, 2014, Calgary, Canada. New York, NY, USA:ACM, 2014:61.endprint