喬金靜,高紅亞
(河北大學(xué)數(shù)學(xué)與計(jì)算機(jī)學(xué)院,河北保定 071002)
接近凸雙調(diào)和多項(xiàng)式的構(gòu)造
喬金靜,高紅亞
(河北大學(xué)數(shù)學(xué)與計(jì)算機(jī)學(xué)院,河北保定 071002)
主要介紹單位圓盤上一類保向接近凸的雙調(diào)和多項(xiàng)式.令上述雙調(diào)和多項(xiàng)式的次數(shù)趨于無窮,取極限,進(jìn)而得到一類接近凸的雙調(diào)和映射.
雙調(diào)和映射;接近凸;雙調(diào)和多項(xiàng)式
MSC2010:30C45
解析函數(shù)是復(fù)分析中的主要研究對(duì)象.作為解析函數(shù)的推廣,復(fù)平面上的調(diào)和映射也越來越得到人們的關(guān)注.而作為調(diào)和映射的推廣,雙調(diào)和映射來源于許多物理問題,特別是流體力學(xué)和彈性問題,它在工程學(xué)和生物學(xué)都有許多重要的應(yīng)用[13],故它的研究具有明顯的應(yīng)用特色.本文主要研究單位圓盤上的雙調(diào)和映射.
單葉(解析)多項(xiàng)式在驗(yàn)證幾何函數(shù)論中的諸多猜測(cè)中發(fā)揮了作用,構(gòu)造此類多項(xiàng)式的方法是經(jīng)典的.而構(gòu)造調(diào)和多項(xiàng)式和雙調(diào)和多項(xiàng)式的相關(guān)文獻(xiàn)很少.多項(xiàng)式的單葉性與其零點(diǎn)的位置關(guān)系密切.文獻(xiàn)[4]考慮了調(diào)和多項(xiàng)式解析部分的導(dǎo)數(shù)Q在單位圓盤無零點(diǎn)的情形,給出了一類保向的調(diào)和多項(xiàng)式.如果進(jìn)一步規(guī)定該導(dǎo)數(shù)Q的零點(diǎn)都在單位圓周上,可得一類接近凸的調(diào)和多項(xiàng)式[5].本文的主要目的是把上述結(jié)果推廣到雙調(diào)和映射的情形,構(gòu)造一類接近凸的雙調(diào)和多項(xiàng)式.
設(shè)f是定義在單位圓盤D={z:|z|<1}上的復(fù)值調(diào)和函數(shù),則f可表示為f=h+g,其中h,g在D上
解析.調(diào)和映射f局部單葉且保向的充分必要條件是JacobJf(z)是正的[67],其中
單位圓盤D上的4次連續(xù)可微函數(shù)F是雙調(diào)和的當(dāng)且僅當(dāng)ΔF是調(diào)和的,即Δ(ΔF)=0,且雙調(diào)和映射F具有表達(dá)式其中G和H是D上的復(fù)值調(diào)和映射.如果對(duì)于z∈D/{0},F(xiàn)的Jacob
就稱雙調(diào)和映射F是保向的[89].
在文獻(xiàn)[8,10]中,作者討論了形如式(1)的雙調(diào)和映射的性質(zhì),如單葉性和星形性,這里H(z)≡0.從而引出了形如F=|z|2G的單葉保向的雙調(diào)和映射類.本文討論形如F=|z|2G的雙調(diào)和映射.
如果區(qū)域Ω的補(bǔ)集可以由閉的半直線覆蓋,這里閉的半直線對(duì)應(yīng)的開的半直線是不相交的,就稱區(qū)域Ω是接近凸的.如果單葉雙調(diào)和映射(或調(diào)和映射)映D到一個(gè)接近凸區(qū)域,就稱此雙調(diào)和映射(或調(diào)和映射)是接近凸的.
[1] HAPPEL J,BRENNER H.Low reynolds numbers Hydrodynamics[M].Englewood Cliffs:Princeton-Hall,1965.
[2] KHURI S A.Biorthogonal series solution of Stokes flow problems in sectorial regions[J].SIAMJ Appl Math,1996,56:19 39.
[3] LANGLOIS W E.Slow viscous flow[M].New York:Macmillan Company,1964.
[4] SUFFRIDGE T J.Harmonic univalent polynomials[J].Complex Variables Theory Appl,1998,35:93 -107.
[5] JAHANGIRI J M,MORGAN C J,SUFFRIDGE T J.Construction of close-to-convex harmonic polynomials[J].Complex Var Theory Appl,2001,45:319 326.
[6] CLUNIE J G,SHEIL-SMALL T.Harmonic univalent functions[J].Ann Acad Sci Fenn Ser A I,1984,9:3 25.
[7] DUREN P.Harmonic mappings in the plane[M].Newyork:Cambridge Univ Press,2004.
[8] ABDULHADI Z,ABU MUHANNA Y,KHOURY S.On univalent solutions of the biharmonic equations[J].J Iequal Appl,2005,5:469 478.
[9] ABDULHADI Z,ABU MUHANNA Y KHOURY S.On some properties of solutions of the biharmonic equation[J].Appl Math Comput,2006,177:346 351.
[10] ABU MUHANNA Y.On univalence of biharmonic maps[J].Complex Var Elliptic Equ,2008,53:745 -751.
[11] PONNUSAMY S,QIAO Jinjing.Polynomial approximation of certain biharmonic mappings[J].Nonlinear Analysis,2012,81:149 158.
[12] SHEIL-SMALL T.Complex Polynomials[M].NewYork:Cambridge University Press,2002.
[13] KAPLAN W.Close-to-convex schlicht functions[J].Michigan Math J,1952,1:169 185.
[14] JAHANGIRI J M.A gap condition for the zeros of certain polynomials in Kaplan classes[J].Mathematica,1987,34:53 -63.
(責(zé)任編輯:王蘭英)
Construction of certain close-to-convex biharmonic polynomials
QIAO Jinjing,GAO Hongya
(College of Mathematics and Computer Science,Hebei University,Baoding 071002,China)
A family of sense-preserving biharmonic polynomials that are close-to-convex on the unit disk is introduced.By taking limits as the degree of the polynomials tends to infinity,a family of close-toconvex biharmonic mappings is also obtained.
biharmonic mapping;close-to-convexity;biharmonic polynomial
O174
A
1000 -1565(2014)05 -0467 04
10.3969/j.issn.1000 -1565.2014.05.004
2013 06 -20
河北省自然科學(xué)基金青年科學(xué)基金資助項(xiàng)目(A2013201104)
喬金靜(1980-),女,河北館陶人,河北大學(xué)講師,博士,主要從事函數(shù)論研究.E-mail:mathqiao@126.com