李鵬等
摘 要: 細(xì)胞質(zhì)雄性不育(Cytoplasmic male sterility,CMS)廣泛存在于高等植物,CMS-S是玉米CMS的一種,其育性可以被恢復(fù)基因 Rf3完全恢復(fù)。目前Rf3 基因尚未成功克隆。本試驗根據(jù)玉米CMS-S配子體不育特點,提出一種全新的同質(zhì)群體構(gòu)建方法,通過該方法獲得群體的所有個體均攜帶 Rf3 恢復(fù)基因,省去田間表型鑒定工作,并可在同一世代獲得足夠的重組個體。該方法可直接用種子提取基因組DNA,大大提高 Rf3 定位的效率。利用該同質(zhì)定位群體,將恢復(fù)基因 Rf3 精細(xì)定位到分子標(biāo)記A165與CG2之間,參照玉米自交系B73的基因組序列,兩個標(biāo)記之間的物理距離約為1.4 Mb。
關(guān)鍵詞: 玉米;細(xì)胞質(zhì)雄性不育;S型;恢復(fù)基因
中圖分類號: S513.035.3 文獻(xiàn)標(biāo)識號:A 文章編號: 1001 - 4942(2014)08 - 0001 - 05
Fine Mapping of Fertility Restorer Gene Rf3 of S-Type Cytoplasmic
Male Sterility and Candidate Gene Prediction in Maize
Li Peng1, Xiao Senlin2, Wang Shuxia2, Liu Juan2, Zhao Xianrong2, Chen Huabang2*
(1.College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Taian 271018, China;
2.Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/
State Key Laboratory of Plant Cell and Chromosome Engineering, Beijing 100101, China)
Abstract Cytoplasmic male sterility (CMS) is widespread in higher plants. CMS-S, one of the major CMS in maize, can be restored by Rf3 gene which has not been cloned yet. Based on the gametophytic nature of maize CMS-S, a novel homogeneous population constructing method was put forward for mapping. All the individuals obtained through this method carried the Rf3 gene making the phenotype identification unnecessary, and enough recombinants could be obtained in the same generation. Using this method, the DNA extracted from seeds could be used directly, so the efficiency of Rf3 mapping could be improved greatly. With this homogeneous population, Rf3 gene could be fine mapped in the locus between molecular marker A165 and CG2. The physical distance between the two SSR markers was about 1.4 Mb according to the genome sequence of maize inbred line B73.
Key words Maize; Cytoplasmic male sterility (CMS); S type; Restorer gene
細(xì)胞質(zhì)雄性不育是指雄性器官不能產(chǎn)生可育花粉而雌性器官正常發(fā)育的母系遺傳現(xiàn)象,廣泛存在于高等植物中[1]。我國第一大糧食作物玉米是一種典型的異花授粉植物,雜種優(yōu)勢明顯。早在20世紀(jì)60年代,基于細(xì)胞質(zhì)雄性不育系的三系法制種技術(shù)已經(jīng)在玉米雜交種生產(chǎn)中得到廣泛應(yīng)用。通過三系法進(jìn)行制種,既能省去人工去雄的繁瑣工作,又能提高種子純度和產(chǎn)量。玉米細(xì)胞質(zhì)雄性不育可分為三種類型,分別被命名為:CMS-T(Texas)、CMS-S(USDA)、CMS-C(Charrua)。1970年,與玉米T型不育基因緊密連鎖的玉米小斑病大面積爆發(fā),造成玉米大面積減產(chǎn),使T型不育系的應(yīng)用受到很大限制。目前,生產(chǎn)上主要利用S型和C型不育系進(jìn)行制種。S型不育系因其亞種較多、不易感染單一的病原生理小種等優(yōu)勢而在生產(chǎn)中得到廣泛應(yīng)用,其育性可以被恢復(fù)基因 Rf3 完全恢復(fù)。
在玉米CMS-S細(xì)胞質(zhì)中,線粒體內(nèi)比正常個體多兩條線性的質(zhì)粒S1、S2[2],而在線粒體基因組嵌合基因 orf355/orf77 上游,存在一段與線性質(zhì)粒S1和S2同源的末端反向重復(fù)區(qū)(Terminal inverted repeats,TIRs)[3]。TIRs與S1和S2重組后,環(huán)化的線粒體基因組被線性化,導(dǎo)致嵌合基因 orf355/orf77 轉(zhuǎn)錄異常,產(chǎn)生一段1.6 kb的RNA導(dǎo)致花粉敗育[4]。該RNA在雄穗小孢子發(fā)育過程中表達(dá)量較高,但在其他組織內(nèi)表達(dá)量很低。
3 討論
3.1 Rf3 的定位情況
最初Kamps和Chase將該基因定位在第2染色體上RFLP標(biāo)記 whp 與 bnl17.14 之間[20], Rf3 與兩個標(biāo)記的遺傳距離均為6.4 cM。石永剛等將 Rf3 基因定位在RAPDE08-1.2與UMC49之間[15],兩個分子標(biāo)記與 Rf3 的遺傳距離分別為2.7 cM和4.6 cM。Zhang等將 Rf3 基因定位在分子標(biāo)記E7P6和SCARE12M7之間[16],與 Rf3 的遺傳距離分別為0.9 cM和1.8 cM,與 Rf3 緊密連鎖。Xu等[17]通過與水稻恢復(fù)基因 Rf1a進(jìn)行同源比對的方法克隆到 4 個Rf3的候選基因Rf814a、Rf814b、Rf814c、Rf817。 從以上信息看,對玉米S型細(xì)胞質(zhì)雄性不育恢復(fù)基因 Rf3 的定位區(qū)間還不夠精細(xì),而且在不同的文獻(xiàn)報道中,定位區(qū)間存在差異。
3.2 新型群體構(gòu)建
針對現(xiàn)有玉米 Rf3基因定位表型鑒定易受人為、環(huán)境因素影響及工作量大限制定位群體大小的缺點,提出一種不需要進(jìn)行表型鑒定的Rf3基因定位方法。該方法由于定位群體基因型已知、表型無需鑒定,可以構(gòu)建大群體,在一個世代就可以找到充足的重組個體對Rf3基因進(jìn)行精細(xì)定位。本方法為定位Rf3 基因提出了一種簡單、高效、省時的途徑,促進(jìn)生產(chǎn)上利用 Rf3 基因進(jìn)行三系不育化制種。
本研究通過對12 000個群體單株進(jìn)行標(biāo)記鑒定,將恢復(fù)基因 Rf3 定位在標(biāo)記A165和CG2之間。參照玉米自交系B73的序列,兩個標(biāo)記之間的物理距離約為1.4 Mb。
3.3 候選基因預(yù)測
因為很多PPR蛋白的靶作用位點是線粒體,可以對線粒體內(nèi)的RNA進(jìn)行轉(zhuǎn)錄前或者轉(zhuǎn)錄后的調(diào)控,而植物大多數(shù)的敗育與線粒體內(nèi)調(diào)控能量代謝的基因異常轉(zhuǎn)錄有關(guān)。因此很多學(xué)者認(rèn)為恢復(fù)基因有可能是從PPR家族蛋白進(jìn)化而來的,能對異常的RNA轉(zhuǎn)錄過程進(jìn)行調(diào)控,從而恢復(fù)線粒體的正常功能。例如,已克隆的恢復(fù)基因 Rf-PPR592、Rfo/Rfk1、Rf1a/Rf1b 均編碼以線粒體為靶作用位點的PPR蛋白。但是,也有一些恢復(fù)基因不編碼PPR蛋白。
玉米S型細(xì)胞質(zhì)雄性不育的恢復(fù)基因 Rf3 編碼PPR蛋白的可能性較大,但也不能完全排除是其他基因的可能性。因此,只有最終克隆出 Rf3基因,才能真正證明Rf3 基因的分子功能。在本試驗定位結(jié)果中,有兩個基因能編碼PPR蛋白。因此,可作為重要的候選基因進(jìn)行功能驗證,為最終克隆恢復(fù)基因 Rf3 提供了重要的研究方向。
參 考 文 獻(xiàn):
[1] Hu J, Wang K, Huang W, et al. The rice pentatricopeptide repeat protein Rf5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein grp162[J]. Plant Cell,2012, 24(1): 109-122.
[2] Zabala G, Gabay-Laughnan S, Laughnan J R. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize [J]. Genetics,1997, 147(2): 847-860.
[3] Matera J T, Monroe J, Smelser W, et al. Unique changes in mitochondrial genomes associated with reversions of S-type cytoplasmic male sterility in maizemar [J]. PLoS ONE,2011, 6(8): e23405.
[4] Gabay-Laughnan S, Kuzmin E V, Monroe J, et al. Characterization of a novel thermosensitive restorer of fertility for cytoplasmic male sterility in maize [J]. Genetics,2009, 182:91-103.
[5] Fujii S, Small I. The evolution of RNA editing and pentatricopeptide repeat genes [J]. New Phytol.,2011, 191: 37-47.
[6] Saha D, Prasad A M, Srinivasan R. Pentatricopeptide repeat proteins and their emerging roles in plants [J].Plant Physiol. Biochem.,2007, 45: 521-534.
[7] Schmitz-Linneweber C, Small I. Pentatricopeptide repeat proteins: a socket set for organelle gene expression [J].Trends Plant Sci.,2008, 13: 663-670.
[8] Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-dterile plants [J]. Proc. Natl. Acad. Sci. USA,2002, 99: 10887-10892.
[9] Desloire S, Gherbi H, Laloui W, et al. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family[J]. EMBO Reports, 2003, 4:588-594.
[10] Zou Y, Wang Z, Li X, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing[J]. Plant Cell,2006, 18: 676-687.
[11] Cui X, Wise R P, Schnable P S. The Rf2 nuclear restorer gene of male-sterile T-cytoplasm maize[J]. Science,1996, 272: 1334-1336.
[12] Liu F, Schnable P S. Functional specialization of maize mitochondrial aldehyde dehydrogenases [J]. Plant Physiol.,2002, 130: 1657-1674.
[13] Itabashi E, Iwata N, Fujii S, et al. The fertility restorer gene, Rf2 , for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein[J]. Plant J.,2011, 65: 359-367.
[14] Fujii S, Toriyama K. Suppressed expression of Retrograde-Regulated Male Sterility restores pollen fertility in cytoplasmic male sterile rice plants[J]. Proc. Natl. Acad. Sci. USA,2009, 106: 9513-9518.
[15] 石永剛, 鄭用璉, 李建生. 玉米S組CMS育性恢復(fù)基因的分子標(biāo)記定位[J]. 作物學(xué)報,1997, 23(1): 1-6.
[16] Zhang Z F, Wang Y, Zheng Y L. AFLP and PCR-based markers linked to Rf3 , a fertility restorer gene for S cytoplasmic male sterility in maize[J]. Mol. Genet. Genomics,2006, 276: 162-169.
[17] Xu X, Liu Z, Zhang D, et al. Isolation and analysis of rice Rf1-orthologus PPR genes co-segregating with Rf3 in maize[J]. Plant Molecular Biology Reporter,2009, 27: 511-517.
[18] 李強,萬建民. SSRHunter,一個本地化的SSR位點搜索軟件的開發(fā)[J]. 遺傳,2005, 27(5): 808-810.
[19] Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome: complexity, diversity, and dynamics[J]. Science,2009, 326: 1112-1115.
[20] Kamps T L, Chase C D. RFLP mapping of the maize gametophytic restorer-of-fertility locus ( rf3 ) and aberrant pollen transmission of the nonrestoring rf3 allele [J]. Theoretical and Applied Genetics,1997, 95(4): 525-531.
[9] Desloire S, Gherbi H, Laloui W, et al. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family[J]. EMBO Reports, 2003, 4:588-594.
[10] Zou Y, Wang Z, Li X, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing[J]. Plant Cell,2006, 18: 676-687.
[11] Cui X, Wise R P, Schnable P S. The Rf2 nuclear restorer gene of male-sterile T-cytoplasm maize[J]. Science,1996, 272: 1334-1336.
[12] Liu F, Schnable P S. Functional specialization of maize mitochondrial aldehyde dehydrogenases [J]. Plant Physiol.,2002, 130: 1657-1674.
[13] Itabashi E, Iwata N, Fujii S, et al. The fertility restorer gene, Rf2 , for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein[J]. Plant J.,2011, 65: 359-367.
[14] Fujii S, Toriyama K. Suppressed expression of Retrograde-Regulated Male Sterility restores pollen fertility in cytoplasmic male sterile rice plants[J]. Proc. Natl. Acad. Sci. USA,2009, 106: 9513-9518.
[15] 石永剛, 鄭用璉, 李建生. 玉米S組CMS育性恢復(fù)基因的分子標(biāo)記定位[J]. 作物學(xué)報,1997, 23(1): 1-6.
[16] Zhang Z F, Wang Y, Zheng Y L. AFLP and PCR-based markers linked to Rf3 , a fertility restorer gene for S cytoplasmic male sterility in maize[J]. Mol. Genet. Genomics,2006, 276: 162-169.
[17] Xu X, Liu Z, Zhang D, et al. Isolation and analysis of rice Rf1-orthologus PPR genes co-segregating with Rf3 in maize[J]. Plant Molecular Biology Reporter,2009, 27: 511-517.
[18] 李強,萬建民. SSRHunter,一個本地化的SSR位點搜索軟件的開發(fā)[J]. 遺傳,2005, 27(5): 808-810.
[19] Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome: complexity, diversity, and dynamics[J]. Science,2009, 326: 1112-1115.
[20] Kamps T L, Chase C D. RFLP mapping of the maize gametophytic restorer-of-fertility locus ( rf3 ) and aberrant pollen transmission of the nonrestoring rf3 allele [J]. Theoretical and Applied Genetics,1997, 95(4): 525-531.
[9] Desloire S, Gherbi H, Laloui W, et al. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family[J]. EMBO Reports, 2003, 4:588-594.
[10] Zou Y, Wang Z, Li X, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing[J]. Plant Cell,2006, 18: 676-687.
[11] Cui X, Wise R P, Schnable P S. The Rf2 nuclear restorer gene of male-sterile T-cytoplasm maize[J]. Science,1996, 272: 1334-1336.
[12] Liu F, Schnable P S. Functional specialization of maize mitochondrial aldehyde dehydrogenases [J]. Plant Physiol.,2002, 130: 1657-1674.
[13] Itabashi E, Iwata N, Fujii S, et al. The fertility restorer gene, Rf2 , for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein[J]. Plant J.,2011, 65: 359-367.
[14] Fujii S, Toriyama K. Suppressed expression of Retrograde-Regulated Male Sterility restores pollen fertility in cytoplasmic male sterile rice plants[J]. Proc. Natl. Acad. Sci. USA,2009, 106: 9513-9518.
[15] 石永剛, 鄭用璉, 李建生. 玉米S組CMS育性恢復(fù)基因的分子標(biāo)記定位[J]. 作物學(xué)報,1997, 23(1): 1-6.
[16] Zhang Z F, Wang Y, Zheng Y L. AFLP and PCR-based markers linked to Rf3 , a fertility restorer gene for S cytoplasmic male sterility in maize[J]. Mol. Genet. Genomics,2006, 276: 162-169.
[17] Xu X, Liu Z, Zhang D, et al. Isolation and analysis of rice Rf1-orthologus PPR genes co-segregating with Rf3 in maize[J]. Plant Molecular Biology Reporter,2009, 27: 511-517.
[18] 李強,萬建民. SSRHunter,一個本地化的SSR位點搜索軟件的開發(fā)[J]. 遺傳,2005, 27(5): 808-810.
[19] Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome: complexity, diversity, and dynamics[J]. Science,2009, 326: 1112-1115.
[20] Kamps T L, Chase C D. RFLP mapping of the maize gametophytic restorer-of-fertility locus ( rf3 ) and aberrant pollen transmission of the nonrestoring rf3 allele [J]. Theoretical and Applied Genetics,1997, 95(4): 525-531.