甘樹(shù)德,甘貴生,王濤,杜長(zhǎng)華,李宏博
(1.重慶理工大學(xué)材料科學(xué)與工程學(xué)院,重慶 400054;2.長(zhǎng)江師范學(xué)院機(jī)械與電器工程學(xué)院,重慶 408100;3.攀枝花材料工程學(xué)院,四川 攀枝花 617000)
傳統(tǒng)的高鉛釬料如95Pb-5Sn,90Pb-10Sn等,常被作為高溫釬料。隨著無(wú)鉛釬料體系逐漸成熟,人們開(kāi)始把注意力投入到高溫?zé)o鉛釬料的研發(fā)中,但至今尚未找到一種與Sn-Pb合金媲美的高鉛替代釬料[1—2]。目前國(guó)內(nèi)外對(duì)高溫?zé)o鉛釬料的研究主要集中在Bi基合金、Au基合金、Zn基合金和Sn-Sb基合金等幾類(lèi)釬料。Au基合金強(qiáng)度高、導(dǎo)電和導(dǎo)熱性?xún)?yōu)良,耐蝕性強(qiáng),焊接時(shí)可以不需要助焊劑,保證了芯片的清潔;但Au基合金較硬、抗拉強(qiáng)度高、伸長(zhǎng)率較低、可加工性差,最為重要的是Au基合金成本太高,因此適用場(chǎng)合極為有限[3—4]。Bi-Ag釬料價(jià)格比Au-20Sn釬料便宜,但是該合金脆性大,加工性差,與基體結(jié)合強(qiáng)度弱,性能較差,故實(shí)際應(yīng)用仍然存在問(wèn)題[5—10]。Zn -Al和 Zn - Al-Cu系二元及多元合金,成本較低,具有價(jià)格優(yōu)勢(shì),但工藝性能和加工性能均有待提高,尤其是要改善與基板的潤(rùn)濕性、降低熔化溫度和提高焊點(diǎn)可靠性等[11—14]。Sn-Sb釬料作為最具有前途的高溫釬料之一,Sn-5Sb合金熔點(diǎn)偏低,Sn-10Sb合金的熔點(diǎn)則有所提高,但開(kāi)始熔化溫度變化不大,為230℃左右,熔化溫度太低而無(wú)法很好地應(yīng)用在二次回流焊,國(guó)內(nèi)外學(xué)者對(duì) Sn-Sb釬料合金進(jìn)行了一些研究[15—17]。文中選擇Sn-Sb合金為研究對(duì)象,添加Bi,Sb后,研究其對(duì)釬料組織的影響。
將稱(chēng)量好的原材料(分析純 Sn,Sb,Bi,其純度均為99.99%),放入多功率熔煉爐中熔煉。為保證合金的均勻性,將合金保溫(爐面溫度400℃)并反復(fù)熔煉3次,約30 min后,用小號(hào)不銹鋼鑰匙清除表面的氧化渣,隨即迅速澆鑄在不銹鋼平盤(pán)中冷卻成片狀合金。采用10℃/min的升溫速率進(jìn)行DSC測(cè)試,采用DX2500型X射線衍射儀進(jìn)行物相分析。
圖1為Sn-Sb合金相圖[18],在共析點(diǎn)(Sn-6.2 Sb)發(fā)生L+Sb2Sn3→β-Sn反應(yīng),其組織為含銻的固溶體β-Sn相。圖2分別為Sn-5Sb和Sn-10Sb,Sn-22Sb及其放大的顯微組織,可以看出合金基體中灰色的為β-Sn,白色點(diǎn)狀和塊狀為Sb2Sn3金屬間化合物。隨著Sb含量的增加,Sb2Sn3金屬間化合物數(shù)量明顯增加,尺寸變大但形狀沒(méi)有規(guī)律。
圖1 Sn-Sb合金相圖[18]Fig.1 Sb - Sn phase diagram[18]
圖2 Sn-5Sb,Sn-10Sb和Sn-22Sb釬料的顯微組織Fig.2 Microstructure of Sn-5Sb,Sn-10Sb,and Sn-22Sb alloy
圖3為Sn-Sb-Bi三元系的液相面投影圖(α為BiSb勻晶相,γ為富Sn相)[19],可以發(fā)現(xiàn),(Sn-22Sb)-xBi(x≤6)合金中除Sb2Sn3和β-Sn外,不存在其他相。圖3為Sn-22Sb釬料添加Bi的組織,對(duì)比Sn-22Sb發(fā)現(xiàn),(Sn-22Sb)-xBi合金中沒(méi)有其他新相的生成,但隨著B(niǎo)i的添加,大塊Sb2Sn3金屬間化合物等組織逐漸細(xì)化和均勻化,而且數(shù)量急劇增加,這說(shuō)明Bi元素的添加不僅有利于細(xì)化組織,而且有利于Sb2Sn3金屬間化合物的形成。
圖3 Sn- Sb-Bi三元系的液相面投影圖[19]Fig.3 Liquidus surface in the Bi- Sn - Sb system[19]
圖4 (Sn-22Sb)-3Bi,(Sn-22Sb)-6Bi釬料的顯微組織Fig.4 Microstructure of(Sn-22Sb)-3Bi and(Sn-22Sb)-6Bi alloy
圖5為Sn-44和Sn-50Sb合金的顯微組織,可以看到Sn-50Sb合金中幾乎全部為表面粗糙的化合物和少量的固溶體β(Sn)。結(jié)合Sn-22Sb和Sn-50Sb釬料的XRD(見(jiàn)圖6)發(fā)現(xiàn),這些表面粗糙的化合物為β-SnSb。當(dāng)Sb的質(zhì)量分?jǐn)?shù)增加到50%時(shí),β-SnSb逐漸變?yōu)榇执蟮膲K狀。
圖5 Sn-44和Sn-50Sb合金的顯微組織Fig.5 Microstructure of Sn-44 and Sn-50Sb alloy
圖6 Sn-22Sb和Sn-50Sb合金的XRDFig.6 XRD of Sn-22 and Sn-50Sb alloy
圖7為Sn-22Sb和Sn-50Sb釬料合金的DSC曲線,可以發(fā)現(xiàn)Sn-22Sb在248.1℃和309.6℃只有2個(gè)拐點(diǎn),分別對(duì)應(yīng)著β-Sn→L+Sb2Sn3共析反應(yīng)溫度和Sb2Sn3金屬間化合物熔化溫度。由于金屬間化合物量小,共析反應(yīng)量不明顯,所以第2個(gè)吸熱峰很弱;Sn-50Sb合金在343.6℃和421.6℃也只有2個(gè)拐點(diǎn),結(jié)合相圖可以發(fā)現(xiàn),其對(duì)應(yīng)著Sb2Sn3金屬間化合物熔化溫度和L+β-SnSb→Sb2Sn3的反應(yīng)溫度。同樣由于Sb2Sn3金屬間化合物很少,共析反應(yīng)的量非常大,前2個(gè)峰幾乎重疊在一起,且第2個(gè)吸熱峰無(wú)限接近相圖的理論值(424℃)。
Sn-50Sb釬料合金的DSC曲線表明,Sn-50Sb釬料合金的開(kāi)始熔化溫度較Sn-22Sb合金有所提高,在300℃以上(超過(guò)250℃),有望應(yīng)用在二次回流焊。然而,其液相線溫度峰值達(dá)到421.6℃,略微偏高,因此有必要通過(guò)添加其他合金元素,降低其液相線溫度。
圖7 Sn-22Sb和Sn-50Sb釬料的DSC曲線Fig.7 DSC of Sn-22 and Sn-50Sb alloy
1)Sn-22Sb釬料合金主要由灰色的β-Sn和白色塊狀的 Sb2Sn3構(gòu)成。添加少量的 Bi,大塊Sb2Sn3金屬間化合物逐漸細(xì)化,數(shù)量卻急劇增加。
2)添加大量的Sb后,Sb2Sn3組織消失,合金幾乎全部為粗大的塊狀β-SnSb組織。Sn-50Sb釬料合金的開(kāi)始熔化溫度較Sn-22Sb合金有所提高,有望應(yīng)用于二次回流焊。
[1]杜長(zhǎng)華,陳方.電子微連接技術(shù)與材料[M].北京:機(jī)械工業(yè)出版社,2008.DU Chang-h(huán)ua,CHEN Fang.Electronic Micro- connection Technology and Materials[M].Beijing:Mechanical Industry Press,2008.
[2]甘貴生,杜長(zhǎng)華,甘樹(shù)德.電子微連接高溫?zé)o鉛釬料的研究進(jìn)展[J].功能材料,2013,44(B06):28—35.GAN Gui-sheng,DU Chang - hua,GAN Shu - de.Development of High-temperature Lead-free Solder in E-lectronic Micro - connection[J].Journal of Functional Materials,2013,44(B06):28—35.
[3]CHIDAMBARAM V,HATTEL J,HALD J.High - temperature Lead - free Solder Alternatives[J].Microelectron Eng,2011,88:981—989.
[4]ZENG G,McDONALD S,NOGITA K.Development of High- temperature Solders:Review[J].Microelectronics Reliability,2012,52:1306—1322.
[5]SHI Y W,F(xiàn)ANG W P,XIA Z D,et a1.Investigation of Rare Earth-doped BiAg High-temperature Solders[J].Journal of Materials Science:Materials in Electronics,2010,21(9):875—881.
[6]LALENA L N,DEAN N F,WEISER M W.Experimenta1 Investigation of Ge-doped Bi-11Ag as a New Pb-free Solder Alloy for Power Die Attachment[J].J Electron Mater,2002,3l(11):1244—1249.
[7]FIMA P,GASIOR W,SYPIEN A,et a1.Wetting of Cu by Bi- Ag Based Alloys With Sn and Zn Additions[J].J Mater Sci,2010,45:4339—4344.
[8]SONG J M,CHUANG H Y,WU Z M.Interfacial Reactions between Bi-Ag High-Temperature Solders and Metallic Substrates[J].Journal of Electronic Materials,2006,35(5):1041—1049.
[9]SHI Y W,F(xiàn)ANG W P,XIA Z D,et a1.Investigation of Rare Earth-doped BiAg High-temperature Solders[J].Journal of Materials Science:Materials in Electronics,2010,21(9):875—881.
[10]FIMA P,GASIOR W,SYPIEN A,et a1.Wetting of Cu by Bi- Ag Based Alloys with Sn and Zn Additions[J].J Mater Sci,2010,45:4339—4344.
[11]LI Li,LIU Yong -chang,GAO Hui-xia,et a1.Phase Formation Sequence of High-temperature Zn-4Al-3Mg Solder[J].J Mater Sci:Mater Electron,2013,24:336—344.
[12]MAHMUDI R,ALIBABAIE S.Elevated - temperature Shear Strength and Hardness of Zn-3Cu-xAl Ultrahigh -temperature Lead -free Solders[J].Materials Science & Engineering A,2013,559:421—426.
[13]MAHMUDI R,ALIBABAIE S.Microstructure and Creep Characteristics of Zn-3Cu-xAl Ultra High-temperature Lead - free Solders[J].Materials and Design,2012,39:397—403.
[14]CHENG Fang - jie,GAO Feng,WANG Yan,et a1.Sn Addition on the Tensile Properties of High Temperature Zn-4Al- 3Mg Solder Alloys[J].Microelectronics Reliability,2012,52:579—584.
[15]EL-DALYA A A,F(xiàn)AWZYB A,MOHAMADA A Z,et a1.Microstructural Evolution and Tensile Properties of Sn-5Sb Solder Alloy Containing Small Amount of Ag and Cu[J].Journal of Alloys and Compounds,2011,509:4574—4582.
[16]PLEVACHUK Y,SKLYARCHUK V,YAKYMOVYCH A,et a1.Electrical Conductivity and Viscosity of Liquid Sn -Sb - Cu alloys[J].J Mater Sci:Mater Electron,2011,22:631—638.
[17]ZENG Q L,GUO J J,GU X L,et a1.Wetting Behaviors and Interfacial Reaction between Sn-10Sb-5Cu High Temperature Lead-free Solder and Cu Substrate the Sn-10Sb - 5Cu Solder were 230.6 and 242.0C,Respec-tively[J].J Mater Sci Technol,2010,26(2):156—162.
[18]OKAMOTO H.Sb-Sn(Antimony-Tin)[J].Jpedav,2012,33:347.
[19]VASSILIEV V,LELAURAIN M,HERTZ J.A New Proposal for the Binary(Sn,Sb)Phase Diagram and Its Thermodynamic Properties Based on a New Emf Study[J].Journal of Alloys and Compounds,1997,247(1):223—233.