楊歡歡+唐菊興+林彬+應(yīng)立娟+郎興海+鄭文寶
基金項(xiàng)目:國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(“九七三”計(jì)劃)項(xiàng)目(2011CB403103);中國(guó)地質(zhì)調(diào)查局青藏專(zhuān)項(xiàng)項(xiàng)目(12120113093700)
摘要:運(yùn)用質(zhì)量平衡方法,研究西藏甲瑪銅多金屬礦床中位于角巖和矽卡巖接觸帶內(nèi)的矽卡巖化角巖被流體交代蝕變形成矽卡巖過(guò)程中元素的遷移特征和流體性質(zhì)。對(duì)兩類(lèi)樣品分別進(jìn)行主量、微量、稀土元素分析,并運(yùn)用等濃度線方程及其推導(dǎo)方程分別判斷在交代蝕變過(guò)程中元素的帶入、帶出特點(diǎn)及元素的活動(dòng)性,進(jìn)而推斷流體特征。結(jié)果表明:主量元素只有Al2O3、Na2O和K2O為帶出元素,SiO2、Fe2O3和CaO為帶入元素且?guī)肓枯^大;微量元素W、V、Cr帶入量較大,Bi、Ni、Pb、Ga帶入量中等;稀土元素除Pr和La外均為帶入元素,其帶入序列趨勢(shì)由強(qiáng)至弱依次為Eu、Er、Yb、Dy、Ho、Gd、Tm、Lu、Tb、Sm、Nd、Ce;成礦元素Ag、Cu、Mo、Pb、Zn為帶入元素,帶入序列趨勢(shì)由強(qiáng)至弱依次為Mo、Ag、Cu、Pb、Zn;蝕變過(guò)程元素K、Na、Li、Be、Zr被帶出與F、Cl、OH、CO2等組成絡(luò)合物存在于溶液中;帶入元素Cu、Mo、Pb、Zn以硫化物形式存在于礦區(qū)內(nèi),上述硫化物中硫、鐵為低價(jià)態(tài),而貧氧的流體有利于硫、鐵以低價(jià)態(tài)出現(xiàn)??傊茢辔g變流體富F、Cl、OH、CO2,具有富含硫和鐵元素且貧氧的特征。
關(guān)鍵詞:銅多金屬礦床;元素遷移;成礦流體;交代蝕變作用;矽卡巖;甲瑪;西藏
中圖分類(lèi)號(hào):P618.41文獻(xiàn)標(biāo)志碼:A
Element Mobility and Mass Balance of Oreforming System in Jiama Copper Polymetallic Deposit of Tibet
YANG Huanhuan1, TANG Juxing2, LIN Bin1, YING Lijuan2, LANG Xinghai1, ZHENG Wenbao2
(1. School of Earth Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China;
2. Key Laboratory of Metallogeny and Mineral Assessment of Ministry of Land and Resources, Institute of
Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China)
Abstract: Mass balance method was used to study the characteristics of element transfer and fluid property while skarnization hornfels were replaced into skarns at the contact zone between skarnization hornfels and skarns in Jiama copper polymetallic deposit of Tibet. The major, trace and rare earth elements of two different types of samples were analyzed, and the bringin and bringout of elements under the metasomatic alteration were estimated by the isocon equation and its derivation, and the characteristics of fluid were discussed. The results show that only Al2O3, Na2O and K2O among the major elements are bringout, SiO2, Fe2O3 and CaO are bringin and the quantity is large; the bringin quantities of trace elements W, V and Cr are large, while the quantities of Bi, Ni, Pb and Ga are medium; rare earth elements are bringin except for Pr and La, and the bringin sequence trend is Eu, Er, Yb, Dy, Ho, Gd, Tm, Lu, Tb, Sm, Nd and Ce from strong to weak; the oreforming elements Ag, Cu, Mo, Pb and Zn are bringin, and the bringin sequence trend is Mo, Ag, Cu, Pb and Zn from strong to weak; K, Na, Li, Be and Zr in the process of alteration are brought out to form the complex with F, Cl, OH and CO2 existing in the solution; the bringin elements Cu, Mo, Pb and Zn in the mining area exist in the form of sulfides, in which S and Fe are low valence, and the fluid with deficient oxygen is favorable for the S and Fe with low valence. In general, it is concluded that alteration fluid is rich in F, Cl, OH and CO2, and rich in the elements S and Fe and deficient in oxygen.
Key words: copper polymetallic deposit; element transfer; oreforming fluid; metasomatic alteration; skarn; Jiama; Tibet
0引言
礦化蝕變過(guò)程中,元素質(zhì)量遷移常會(huì)導(dǎo)致元素的富集貧化,具有固有的內(nèi)在規(guī)律性[1]。對(duì)蝕變巖石進(jìn)行物質(zhì)組成變化的研究有助于了解成礦流體系統(tǒng)特征及其成礦作用過(guò)程[2]。目前,對(duì)礦床成礦體系元素遷移規(guī)律的研究較多,并且取得了豐碩成果[13]。
西藏甲瑪銅多金屬礦床是岡底斯成礦帶上新評(píng)價(jià)的超大型礦床,礦區(qū)內(nèi)發(fā)育大規(guī)模的矽卡巖。與傳統(tǒng)意義的典型矽卡巖礦床不同的是,甲瑪?shù)V區(qū)矽卡巖主要受早白堊世林布宗組角巖、板巖和晚侏羅世多底溝組大理巖之間的層間構(gòu)造帶所控制。巖體與大理巖之間形成傳統(tǒng)類(lèi)型矽卡巖的同時(shí),外圍沿角巖的巖性界面形成層狀、似層狀的遠(yuǎn)端矽卡巖[4]。角巖和矽卡巖之間的過(guò)渡地帶,角巖常伴有明顯的矽卡巖化,甚至被交代為矽卡巖。角巖進(jìn)一步被交代為矽卡巖的現(xiàn)象與傳統(tǒng)矽卡巖形成理論相悖,是甲瑪?shù)V區(qū)有別于其他斑巖成礦系統(tǒng)所特有的蝕變現(xiàn)象。王登紅等認(rèn)為,這種矽卡巖是巖漿流體交代早期熱變質(zhì)形成的角巖并使之發(fā)生矽卡巖化形成的[5]。巖漿流體與圍巖發(fā)生交代的過(guò)程中常伴隨著大量的元素遷移現(xiàn)象,研究元素遷移規(guī)律可以了解甲瑪?shù)V區(qū)矽卡巖的形成過(guò)程。對(duì)灰?guī)r、大理巖等碳酸鹽發(fā)生矽卡巖化及其所發(fā)生的物質(zhì)組分交換的研究較多[67],而對(duì)角巖的矽卡巖化關(guān)注較少,但它確實(shí)與很多重要礦床類(lèi)型有關(guān)。川西烏拉溪鎢鈹?shù)V區(qū)自巖體向外依次形成巖體邊緣混合花崗巖帶、矽卡巖帶、矽卡巖化大理巖帶和矽卡巖化角巖帶[8];廣東大頂鐵礦床西南部的角巖或弱矽卡巖化角巖層發(fā)現(xiàn)了層控矽卡巖型錫礦床和接觸交代矽卡巖型鉛鋅礦化[9]。筆者運(yùn)用質(zhì)量平衡方法,針對(duì)甲瑪?shù)V區(qū)角巖在矽卡巖化過(guò)程中元素遷移特征進(jìn)行研究,并用定量方法計(jì)算元素的遷出和遷入,以進(jìn)一步豐富矽卡巖型成礦理論,為蝕變與成礦的關(guān)系研究提供參考和借鑒。
1研究區(qū)地質(zhì)概況
甲瑪銅多金屬礦床位于西藏特提斯構(gòu)造域?qū)姿埂钋嗵乒爬?地體)板片中南部, 是產(chǎn)出在岡底斯成礦帶東南段的超大型礦床(圖1)[1014]。岡底斯—念青唐古拉地體南緣的構(gòu)造線總體走勢(shì)近EW向,由于區(qū)域長(zhǎng)期走滑效應(yīng),次級(jí)構(gòu)造線多呈NWW向,推覆構(gòu)造發(fā)育。甲瑪?shù)V區(qū)受控于由北向南的推覆構(gòu)造及由南向北的滑覆構(gòu)造。礦區(qū)推覆構(gòu)造由一系列倒轉(zhuǎn)褶皺組成:紅塔背斜、牛馬塘背斜以及夏工普向斜。礦區(qū)出露地層為一套被動(dòng)陸緣期碎屑碳酸鹽巖系,主要由下白堊統(tǒng)林布宗組(K1l)灰、暗灰色砂巖和板巖互層,灰黑色粉砂巖夾碳質(zhì)泥頁(yè)巖,黑色斑點(diǎn)板巖及灰白色絹云母板巖,上侏羅統(tǒng)多底溝組(J3d)灰黑色中厚層灰?guī)r,發(fā)育不同程度的大理巖化以及在牛馬塘一帶出露的少量第四系組成。礦區(qū)巖漿巖發(fā)育,分布廣泛,主要分布在雅江斷裂以北,是岡底斯火山巖漿弧的重要組成部分。該巖漿巖在淺部呈脈狀產(chǎn)出,其深部存在含礦斑巖體。主要巖漿巖類(lèi)型有花崗斑巖、黑云母二長(zhǎng)花崗斑巖、黑云母花崗斑巖、花崗閃長(zhǎng)斑巖、石英閃長(zhǎng)玢巖、閃長(zhǎng)玢巖、角閃輝綠巖、石英輝長(zhǎng)巖等[15]。其中,含礦花崗閃長(zhǎng)斑巖中輝鉬礦ReOs等時(shí)線年齡為(14.78±0.33)Ma[16]。
1-第四系殘坡積物、沖洪積物;2-下白堊統(tǒng)林布宗組砂板巖、角巖;3-上侏羅統(tǒng)多底溝組灰?guī)r、大理巖;4-矽卡巖化大理巖;5-花崗
閃長(zhǎng)斑巖脈;6-石英閃長(zhǎng)玢巖脈;7-花崗斑巖脈;8-花崗細(xì)晶巖脈;9-矽卡巖;10-矽卡巖型礦體;11-滑覆構(gòu)造斷裂;12-鉆孔;
13-勘探線及編號(hào);14-板邊帶及俯沖方向;15-洋殼仰沖推覆前緣;16-主邊界推覆斷裂;17-礦區(qū)地名;18-甲瑪?shù)V區(qū);19-地名;圖件引自文獻(xiàn)[17]
圖1西藏甲瑪?shù)V區(qū)地質(zhì)圖
Fig.1Geological Map of Jiama Mining Area in Tibet
甲瑪斑巖系統(tǒng)由4種礦體類(lèi)型構(gòu)成:①產(chǎn)于斑巖中的鉬(銅)礦體,主要呈筒狀產(chǎn)于0~40線北邊,賦礦斑巖主要為花崗閃長(zhǎng)斑巖與二長(zhǎng)花崗斑巖,目前已有鉆孔(ZK2414)連續(xù)見(jiàn)礦厚度達(dá)544.73 m,銅平均品位為023%,鉬平均品位為0052%;②產(chǎn)于矽卡巖中的銅多金屬礦體,為斑巖礦床系統(tǒng)的重要組成部分,主礦體呈層狀、厚板狀產(chǎn)于下白堊統(tǒng)林布宗組砂板巖和角巖(礦體頂板)與上侏羅統(tǒng)多底溝組灰?guī)r和大理巖(礦體底板)的層間因推覆滑覆構(gòu)造引起的擴(kuò)容空間內(nèi),矽卡巖型礦體中Ⅰ號(hào)主礦體走向300°,延長(zhǎng)大于3 000 m,傾向30°,延伸大于2 500 m(未控制邊界),礦體產(chǎn)狀受推覆構(gòu)造控制,具明顯上陡下緩特點(diǎn),上部礦體傾角一般為50°~70°,為鉛鋅(金銀)礦石組合,下部礦體傾角一般小于20°,為銅鉬(金銀)礦石組合,目前控制的該礦體最大連續(xù)厚度約為32898 m(ZK1218鉆孔),其Cu平均品位為049%,Mo平均品位為0073%;③產(chǎn)于角巖中的銅鉬礦體,呈筒狀產(chǎn)于0~40線斑巖礦體上部角巖中,目前該類(lèi)礦體最大厚度達(dá)826 m(ZK3216鉆孔),Cu平均品位0.24%, Mo平均品位0.054%;④脈狀獨(dú)立金礦體,目前已在ZK4702、ZK8807、ZK4504等多處發(fā)現(xiàn)該類(lèi)礦體,尤其是在ZK4504, 產(chǎn)于閃長(zhǎng)玢巖中的Au礦體總厚度為23.06 m, 其平均品位為859×10-6。
1-下白堊統(tǒng)林布宗組砂板巖、角巖;2-上侏羅統(tǒng)多底溝組灰?guī)r、大理巖;3-斑巖體;4-角巖型銅多金屬礦體;
5-矽卡巖型銅多金屬礦體;6-采樣位置;7-鉆孔位置;圖件引自文獻(xiàn)[18]
圖2甲瑪?shù)V區(qū)16號(hào)勘探線剖面及采樣位置
Fig.2No.16 Prospecting Line Profile and Sampling Locations of Jiama Mining Area
2樣品的采樣和分析
矽卡巖化角巖多以矽卡巖礦物脈狀充填形式發(fā)育,交代程度由弱至強(qiáng)表現(xiàn)出細(xì)脈狀、脈狀、角礫狀構(gòu)造,其交代界限較規(guī)則且交代范圍較窄,矽卡巖礦物粒度較細(xì)。本文樣品沿礦體勘探線方向的角巖和矽卡巖的過(guò)渡部位采集的,主要在16號(hào)勘探線上的探礦鉆孔巖芯中采集矽卡巖和矽卡巖化角巖樣品(圖2)。矽卡巖樣品均為鈣鐵石榴子石矽卡巖,礦物成分主要為鈣鐵石榴子石,呈暗紅棕色,晶形不明顯,偶見(jiàn)少量硅灰石,樣品礦化弱。其中,矽卡巖化角巖采自角巖和矽卡巖接觸帶處,呈灰綠色—黃綠色,塊狀構(gòu)造[圖3(a)]。礦物成分已基本蝕變?yōu)槭褡邮任◣r礦物,礦化弱,巖石仍保留原來(lái)角巖致密脆性的特征[圖3(b)]。
圖3甲瑪?shù)V區(qū)矽卡巖化角巖和矽卡巖照片
Fig.3Photos of Skarnization Hornfel and Skarn in Jiama Mining Area
樣品的主量、稀土元素及微量元素含量測(cè)試是在西南冶金地質(zhì)測(cè)試中心完成的。主量元素分析方法見(jiàn)文獻(xiàn)[19]。稀土元素采用過(guò)氧化鈉熔融分解樣品,稀土元素在堿性介質(zhì)中隨基體元素一起沉淀,通過(guò)過(guò)濾分離掉大量熔劑,再將沉淀用酸溶解,運(yùn)用NexION 300x等離子體質(zhì)譜儀測(cè)定。微量元素As、Sb采用王水溶解,抗壞血酸硫脲作為還原劑,運(yùn)用AFS2202E原子熒光光度計(jì)測(cè)定;Ag、Sn采用攝譜法,運(yùn)用802W二米平面光柵光譜儀測(cè)定(Ag質(zhì)量分?jǐn)?shù)大于5×10-6,采用王水溶解,用ICE3500原子吸收分光光度計(jì)測(cè)定,Sn質(zhì)量分?jǐn)?shù)大于100×10-6,采用過(guò)氧化鈉熔融分解樣品,用JP2D示波光譜儀測(cè)定);W、Mo采用過(guò)氧化鈉熔融分解樣品,運(yùn)用JP2D示波光譜儀測(cè)定;Nb、Ta、Hf、Zr采用過(guò)氧化鈉熔融分解樣品,用NexION 300x等離子體質(zhì)譜儀測(cè)定;其余微量元素則采用鹽酸+硝酸+氫氟酸+高氯酸溶解,用iCAP6300全譜直讀等離子發(fā)射光譜儀或NexION 300x等離子體質(zhì)譜儀測(cè)定。分析測(cè)試結(jié)果見(jiàn)表1。
3質(zhì)量平衡理論和方法
Gresens提出以實(shí)際巖石化學(xué)來(lái)分析交代過(guò)程中體積和濃度變化的方法,并導(dǎo)出Gresens方程。此方法被廣泛應(yīng)用到熱液蝕變作用研究的眾多領(lǐng)域,但由于Gresens方程涉及體積和質(zhì)量?jī)蓚€(gè)相互關(guān)聯(lián)的變量,無(wú)獨(dú)立的方法確定其中一個(gè)[20],所以Grant在此基礎(chǔ)上對(duì)原方程進(jìn)行了修正,得出等濃度線(Isocon)方程[21]。
等濃度線方程體現(xiàn)了蝕變巖和原巖中化學(xué)成分濃度的線性關(guān)系。在蝕變巖和原巖的濃度圖解上,等濃度線是一條穿過(guò)原點(diǎn)的直線,等濃度線的斜率表示原巖發(fā)生蝕變后與蝕變巖質(zhì)量的比值,其他元素在該圖上的投點(diǎn)與等濃度線的偏移量就是該元素的濃度變化。Grant對(duì)Gresens方程修正得到的等
表1甲瑪?shù)V區(qū)矽卡巖與矽卡巖化角巖主量、稀土元素和微量元素分析結(jié)果
Tab.1Analysis Results of Major, Rare Earth and Trace Elements for the Skarn and Skarnization Hornfel in Jiama Mining Area
巖性鈣鐵石榴子石矽卡巖矽卡巖化角巖
樣品編號(hào)及平均值ZK1607256.11ZK1608317.2ZK1609386.6ZK1612381.2ZK1615574.5ZK1616647.06ZK1617625ZK1618699.58ZK1624817.7平均值ZK1617607.82ZK1607242ZK1609416.4平均值
w(SiO2)/%38.0839.5637.0037.5132.2930.1044.4637.3228.0836.0440.4972.8059.5057.60
w(Al2O3)/%8.6913.742.556.170.690.480.996.601.434.5914.3111.4018.2014.64
w(Fe2O3)/%15.289.1823.1517.5615.1823.1115.0115.2820.6317.159.683.830.474.66
w(FeO)/%0.750.670.710.650.952.720.600.520.650.910.951.170.901.01
w(MgO)/%1.631.601.020.270.180.3710.031.830.541.941.640.961.981.53
w(CaO)/%31.9230.3231.2431.4634.7035.3519.8231.5838.1331.6128.921.146.9012.32
w(Na2O)/% 0.0510.4200.0910.1800.0830.0600.0540.0800.1300.1300.5601.2303.5501.780
w(K2O)/%0.1000.1000.0670.1600.0980.0760.0850.0970.1300.1000.1403.3305.3302.930
w(TiO2)/%0.2900.6300.1900.4100.0670.0640.0730.3100.1400.2400.5800.5500.7700.630
w(MnO)/%0.650.700.400.640.380.400.320.440.170.460.560.030.090.23
w(P2O5)/%0.2300.3600.2900.4500.1600.1200.0790.2800.0570.2200.1400.1100.1400.130
w(As)/10-622.5020.0058.2062.5025.6058.2073.5031.0045.2044.0738.418.7011.6019.57
w(Sb)/10-61.324.500.621.460.810.490.621.210.311.269.021.130.913.69
w(Sn)/10-621.0010.2031.0028.5050.8035.4041.2016.8018.7028.1614.922.362.776.68
w(Ag)/10-60.360.180.110.562.350.941.820.170.190.740.500.50
w(Bi)/10-60.876.051.4916.1051.7021.4016.202.502.6813.2239.182.260.9414.13
w(Ba)/10-68.478.885.0419.2015.708.326.8612.0062.9016.3629.80256.00183.00156.27
w(Be)/10-60.413.130.410.990.542.131.101.670.811.2420.011.612.688.10
w(Cd)/10-60.400.900.190.431.291.621.620.431.030.880.530.280.760.52
w(Co)/10-66.167.765.454.341.6220.003.194.901.766.138.4314.9010.7011.34
w(Cr)/10-6109.0066.90114.0089.80110.0071.8030.7073.70158091.6085.4646.7063.0065.05
w(Cs)/10-67.187.566.852.600.861.7221.507.882.516.5220.5114.6014.0016.37
w(Cu)/10-680.2032.0036.60399.001 708.001 152.00727.00103.00169.00489.58307.10495.00245.00349.03
w(Ga)/10-69.8210.6010.609.5810.5016.107.6212.4014.7011.3113.7514.4018.3015.48
w(Hf)/10-60.381.810.340.720.520.410.920.520.270.652.154.775.464.13
w(In)/10-61.040.483.411.583.414.413.171.092.142.300.95<0.05<0.050.95
w(Li)/10-64.956.214.844.192.892.5612.505.442.815.167.6623.6016.1015.79
w(Mo)/10-637.10240.0023.6059.60363.00509.00481.0081.20288.00231.33118.3059.4093.8090.50
w(Nb)/10-63.287.602.096.691.130.440.894.000.792.9912.6110.1014.0012.24
w(Ni)/10-652.6087.1033.5025.301.3212.5011.0015.505.6427.1625.7935.8036.3032.63
w(Pb)/10-645.5024.4018.3023.0016.4010.6037.0034.908.8124.3326.719.1919.3018.40
w(Rb)/10-67.797.565.289.625.444.258.288.735.026.8812.39254.00254.00173.46
w(Sc)/10-611.5018.108.1510.801.842.491.4012.502.227.6716.7611.6015.7014.69
w(Sr)/10-66.1668.806.0814.9031.808.508.4217.9022.8020.5942.5064.20150.0085.57
w(Ta)/10-60.220.720.040.420.040.020.030.230.060.201.290.670.920.96
w(Th)/10-62.839.911.963.981.270.670.935.061.263.1017.2011.3015.2014.57
w(Tl)/10-60.210.160.130.150.510.110.100.250.110.190.172.081.601.28
w(U)/10-62.617.134.696.7719.0016.407.355.8411.509.0311.302.332.295.31
續(xù)表1
巖性鈣鐵石榴子石矽卡巖矽卡巖化角巖
樣品編號(hào)及平均值ZK1607256.11ZK1608317.2ZK1609386.6ZK1612381.2ZK1615574.5ZK1616647.06ZK1617625ZK1618699.58ZK1624817.7平均值ZK1617607.82ZK1607242ZK1609416.4平均值
w(V)/10-6198.00245.0093.30103.0066.30142.0042.40107.0079.20119.60102.9077.5095.5091.97
w(W)/10-634.10220.00112.00268.00795.00816.00477.00201.00771.00410.47118.8038.0011.5056.10
w(Zn)/10-665.5054.7048.2041.7033.5094.1042.0040.7026.5049.6777.7522.5052.4050.88
w(Zr)/10-684.00124.0050.70118.0017.6011.1015.1072.8018.6056.88143.72190.00220.00184.57
w(Y)/10-638.9033.7027.5034.604.766.106.5718.009.5019.9621.9222.8029.0024.57
w(Ce)/10-655.7050.3022.2028.0010.507.577.5920.909.2923.5880.0547.0045.7057.58
w(Dy)/10-66.745.914.664.720.690.360.583.581.143.154.673.925.234.61
w(Er)/10-64.483.652.782.920.520.300.452.140.832.012.872.383.062.77
w(Eu)/10-61.861.301.091.410.260.140.171.170.320.861.301.041.101.15
w(Gd)/10-67.676.965.545.490.800.480.724.131.203.666.944.335.365.54
w(Ho)/10-61.321.090.880.910.140.070.110.670.230.600.860.821.050.91
w(La)/10-65.4826.7010.4014.705.952.942.759.273.919.1237.7522.2021.2027.05
w(Lu)/10-60.540.470.290.340.070.030.050.280.110.240.360.340.450.38
w(Nd)/10-631.2031.6019.3023.904.362.523.6816.304.9515.3242.6921.1025.2029.66
w(Pr)/10-63.005.313.023.800.880.430.592.510.752.257.895.496.396.59
w(Sm)/10-65.935.914.414.470.710.360.553.580.942.986.804.515.395.57
w(Tb)/10-60.990.860.710.710.100.050.090.540.160.470.770.700.860.78
w(Tm)/10-60.520.460.320.330.060.030.050.280.100.240.340.340.440.37
w(Yb)/10-63.913.512.262.520.480.190.372.040.811.792.662.272.872.60
注:w(·)為元素或化合物含量;樣品ZK1607242、ZK1609416.4數(shù)據(jù)引自文獻(xiàn)[22]。
濃度線方程為
CAi=(MO/MA)(COi+ΔCi)(1)
式中:COi、CA i為原巖、交代巖中第i種元素的含量;MO、MA分別為原巖和交代巖的質(zhì)量;ΔCi為元素i在交代過(guò)程中含量的變化。
當(dāng)元素i為不活動(dòng)元素時(shí),其在交代過(guò)程中遷移量很小,可近似為0,因此,ΔCi近似為0。式(1)可簡(jiǎn)化為
CAi=(MO/MA)COi(2)
式(2)在CAiCOi圖上表示斜率為MO/MA且穿過(guò)原點(diǎn)的直線,即等地球化學(xué)濃度線。令該直線的斜率為k,則
k=MO/MA=CAi/COi(3)
k值可以粗略反映巖石發(fā)生交代蝕變過(guò)程中的體積變化。當(dāng)k>1時(shí),體積虧損;當(dāng)k<1時(shí),t體積增大。將式(3)代入式(1)則可得到元素i的遷移量(i為活動(dòng)元素)
ΔCi=CAi/k-COi(4)
運(yùn)用質(zhì)量平衡方程至關(guān)重要的一點(diǎn)是要確定體系的不活動(dòng)元素。TiO2是交代蝕變過(guò)程中最保守的元素之一[2324],將其作為不活動(dòng)元素具有普遍意義。本文選擇TiO2作為不活動(dòng)元素,根據(jù)表1中數(shù)據(jù)得出k值為0.380 8。其他元素在CAiCOi圖上的投點(diǎn)位于等地球化學(xué)濃度線之上的元素為帶入元素,位于等地球化學(xué)濃度線之下的元素為帶出元素(圖4),同時(shí)運(yùn)用式(4)也可以定量計(jì)算元素遷移量ΔCi(表2)。ΔCi大于0表明該元素有帶入,ΔCi小于0表明該元素有帶出。
從圖4和表2中可知,主量元素中只有Al2O3、Na2O和K2O有少量帶出,其他元素均有不同程度帶入,其中SiO2、Fe2O3和CaO帶入量較大,1 g矽卡巖化角巖在交代蝕變過(guò)程中,SiO2可帶入0370 6 g,F(xiàn)e2O3可帶入0403 8 g,CaO可帶入0707 g。稀土元素只有Pr和La有少量帶出,其他稀土元素均為帶入元素,帶入量由大到小為:Nd、Ce、Gd、Dy、Er、Sm、Yb、Eu、Ho、Tb,Lu和Tm帶入量相同且?guī)肓孔钚 N⒘吭刂蠧u、Mo、Cr、W、V帶入量較大,10×106 g矽卡巖化角巖在交代蝕變過(guò)程中,Cu可帶入937 g,Mo可帶入51698 g,Cr可帶入17549 g,W可帶入1 02181 g,V可帶入22211 g,As 可帶入9616 g,Sn可帶入6727 g,Bi、Ni、Pb、Ga帶入量中等,10×106 g矽卡巖化角巖在交代
表2甲瑪?shù)V區(qū)矽卡巖化角巖中主量、微量和稀土元素向矽卡巖的遷移量
Tab.2Transfer Quantity of Major, Trace and Rare Earth Elements from Skarnization Hornfel to Skarn in Jiama Mining Area
元素或化合物SiO2Al2O3Fe2O3FeOMgOCaONa2OK2OTiO2MnOP2O5
CAi36.044.5917.150.911.9431.610.130.100.240.460.22
COi57.6014.644.661.011.5312.321.782.930.630.230.13
ΔCi37.06-2.5740.381.393.5770.70-1.44-2.670.000.970.46
元素或化合物AsSbSnAgBiBaBeCdCoCrCs
CAi44.071.2628.160.7413.2216.361.240.886.1391.606.52
COi19.573.696.680.5014.13156.278.100.5211.3465.0516.37
ΔCi96.16-0.3867.271.4420.59-113.30-4.841.794.75175.490.74
元素或化合物CuGaHfLiMoNbNiPbRbScSr
CAi489.5811.310.655.16231.332.9927.1624.336.887.6720.59
COi349.0315.484.1315.7990.5012.2432.6318.40173.4614.6985.57
ΔCi937.0014.21-2.41-2.24516.98-4.3938.6945.50-155.385.45-31.49
元素或化合物TaThTlUVWZnZrCeDyEr
CAi0.203.100.199.03119.60410.4749.6756.8823.583.152.01
COi0.9614.571.285.3191.9756.1050.88184.5757.584.612.77
ΔCi-0.44-6.44-0.7818.39222.111 021.8179.55-35.224.333.672.51
元素或化合物EuGdHoLaLuNdPrSmTbTmYb
CAi0.863.660.609.120.2415.322.252.980.470.241.79
COi1.155.540.9127.050.3829.666.595.570.780.372.60
ΔCi1.114.080.67-3.090.2510.56-0.672.270.460.252.09
蝕變過(guò)程中,Bi可帶入2059 g, Ni可帶入3869 g,Pb可帶入455 g,Ga可帶入1421 g,其他微量元素帶入量較小。Rb、Ba、Ta、Tl、Zr、Nb、Li、Hf、Be、Sb、Sr、Th有帶出,帶出量由大到小為:Rb、Ba、Zr、Sr、Th、Be、Nb、Hf、Li、Tl、Ta、Sb。
4元素活動(dòng)性
凌其聰?shù)雀鶕?jù)質(zhì)量平衡方程(COi-CAi)/COi=μ(CAi/COi)-μi(μ為系統(tǒng)質(zhì)量變化,μi為活動(dòng)元素i的質(zhì)量變化率)[6],提出在(COi-CAi)/COiCAi/COi圖解上可以判別元素的活動(dòng)性及活動(dòng)序列。若μ值恒定,則元素在圖上沿斜率為1的直線排列,位于左上端的元素為遷出元素,位置愈靠上端,其遷出的趨勢(shì)愈強(qiáng);位于右下端的元素為帶入元素,位置愈靠下端,其帶入的趨勢(shì)愈強(qiáng)。對(duì)常量元素、稀土元素和部分微量元素進(jìn)行判別(圖5)。從圖5可以看出,主量元素Al2O3、Na2O和K2O帶出序列由強(qiáng)至弱依次為K2O、Na2O、Al2O3,其余均為帶入元素,其帶入序列的趨勢(shì)由強(qiáng)至弱依次為Fe2O3、CaO、MnO、P2O5、MgO、FeO、SiO2[圖5(a)]。稀土元素中,Pr和La為帶出元素,其他均為帶入元素,其帶入序列趨勢(shì)由強(qiáng)至弱依次為Eu、Er、Yb、Dy、Ho、Gd、Tm、Lu、Tb、Sm、Nd、Ce[圖5(b)]。微量元素中,Rb、Ta、Zr、Nb、Li、Be、Ba、Th、Sr為帶出元素,其帶出序列由強(qiáng)至弱依次為Rb、Ba、Be、Ta、Th、Sr、Nb、Zr、Li,其中帶入元素序列由強(qiáng)至弱依次為W、Sn、As、U、Cd、V、Ni、Ga、Co、Sc、Cs[圖5(c)]。成礦元素中,Ag、Cu、Mo、Pb、Zn均為帶入元素,帶入序列由強(qiáng)至弱依次為Mo、Ag、Cu、Pb、Zn[圖5d)]。
圖4甲瑪?shù)V區(qū)矽卡巖化角巖與矽卡巖的等濃度圖解
Fig.4Isocon Diagrams of Skarn and Skarnization Hornfel in Jiama Mining Area
5元素質(zhì)量遷移特征
矽卡巖化角巖被交代蝕變成矽卡巖過(guò)程中,各元素遷移量變化顯示,元素在遷移過(guò)程中表現(xiàn)出了一定規(guī)律(表2)。
在角巖矽卡巖化過(guò)程中,元素遷移特征表現(xiàn)為:只有少數(shù)元素被帶出,包括親石元素、親石分散稀堿元素和親氧元素,其中K、Na、Li、Be帶出量較少,K主要分散在造巖礦物中,在交代過(guò)程中與稀有元素和揮發(fā)分呈絡(luò)合物形式遷移;Na主要富集在含長(zhǎng)石較多的巖石中,在巖漿作用過(guò)程中,Na可以與稀有元素組成絡(luò)合物Na2(NbF7)、Na2(TaF7)等進(jìn)行遷移[25];黑云母是濃集與攜帶Li的主要礦物,Li含量與揮發(fā)分密切相關(guān);Be可以在揮發(fā)分(F、Cl、OH、CO2)含量增加的條件下與K、Na元素形成絡(luò)合物K2(BeF4)、Na2(BeF4)、K2(BeCO3)2等進(jìn)行遷移;Zr帶出量中等,自然化合物中的Zr經(jīng)常與Hf、Ti、Nb、Ta、Th等元素進(jìn)行類(lèi)質(zhì)同象置換,當(dāng)巖漿中富堿及H2O、F、Cl等揮發(fā)分時(shí),Zr呈絡(luò)合物[ZrO4]4-、Na2[Zr(CO3)3]等形式存在于堿性溶液中[25]。由于K、Na、Li、Be、Zr均被帶出,所以蝕變過(guò)程中K、Na、Li、Be、Zr以絡(luò)合物形式存在于熱液中,進(jìn)而推測(cè)熱液中含有F、Cl、OH、CO2等揮發(fā)分。帶出元素中,Ba和Rb的帶出量最大,10×106 g矽卡巖化角巖在交代蝕變過(guò)程中可帶出155.3 g的Rb和 113.3 g的Ba。Rb常在云母、長(zhǎng)石等含鉀礦物中產(chǎn)生類(lèi)質(zhì)同象;同樣,Ba也較多的與鉀產(chǎn)生類(lèi)質(zhì)同象,Ba在含鉀的黑云母及基質(zhì)中含量最高,因此,含有鉀的熱水溶液可以從圍巖中提取Ba,使其富集到溶液中[25]。甲瑪矽卡巖化角巖的礦物成分主要為石英、長(zhǎng)石,并且發(fā)育黑云母,而矽卡巖中的主要礦物是石榴子石和硅灰石,這與表2顯示的帶出元素相吻合。
從表2可知,多數(shù)元素為遷入元素,這些元素在甲瑪矽卡巖中表現(xiàn)出富集的特征。其中,Cu、Mo、Cr、W、V遷入量大,Pb、Zn遷入量中等。Cu、Mo、Pb、Zn是主要的成礦元素,均具有強(qiáng)烈的親硫性,在自然界主要以硫化物形式存在。熱液中Cu的遷移方式主要呈氯的絡(luò)合物及硫氫絡(luò)合物等形式(如[Cu(HS)3]-、[CuCl3]2-等),熱液遷移過(guò)程中條件發(fā)生變化,絡(luò)合物分解而產(chǎn)生Cu沉淀[25]。甲瑪銅多金屬礦床主要以黃銅礦、斑銅礦為主,因此,成礦溶液中富硫、富鐵有利于銅礦的富集;由于硫、鐵以低價(jià)態(tài)出現(xiàn),推測(cè)成礦溶液中貧氧。熱液作用是Pb、Zn的重要析出階段,Pb、Zn的氯化物絡(luò)合物是其在溶液中的主要搬運(yùn)方式,當(dāng)溫度變化時(shí),pH值發(fā)生變化。當(dāng)硫濃度增加時(shí),Pb、Zn發(fā)生沉淀形成方鉛礦和閃鋅礦[25]。Mo能以鹵化物(MoF6、MoCl2等)形式遷移,在硫逸度較高的介質(zhì)中可形成少量輝鉬礦[25]。由于成礦元素Cu、Mo、Pb 在矽卡巖中的含量高于在矽卡巖化角巖中的含量,推測(cè)蝕變熱液也提供Cu、Mo、Pb。內(nèi)生礦物中,V、Cr一般呈三價(jià),三價(jià)的V作為類(lèi)質(zhì)同象的雜質(zhì)存在于鐵及部分鋁的礦物中, 而三價(jià)Cr的化合物和相應(yīng)鐵的化合物相似,Cr幾乎不進(jìn)入鉀長(zhǎng)石和石英晶格[25]。W的帶入量最大,10×106 g矽卡巖化角巖在交代蝕變過(guò)程中可帶入1 02181 g的W,而且W具有形成各種鹵化物和絡(luò)合物的強(qiáng)烈傾向。甲瑪?shù)V床中W主要形成白鎢礦,而且賦存于矽卡巖中,常與鈣鐵榴石、硅灰石和透輝石等矽卡巖礦物共/伴生[26]。W的大量沉淀基本發(fā)生在成礦介質(zhì)溫度降低、pH值增高、氧硫逸度增高、氟降低的條件下[25]。
圖5甲瑪?shù)V區(qū)矽卡巖化角巖在交代過(guò)程中元素活動(dòng)序列圖解
Fig.5Diagrams of Activity Sequence of Elements During Replacement of Skarnization Hornfel in Jiama Mining Area
綜上所述, K、Na、Li、Be、Zr等元素與F、Cl、OH、CO2形成絡(luò)合物被帶入溶液中。Cu、Mo、Pb等元素也以絡(luò)合物形式存在于蝕變流體中,溶液在遷移過(guò)程中當(dāng)溫度與pH值發(fā)生變化且硫逸度增加時(shí),絡(luò)合物發(fā)生分解而使上述元素沉淀。溶液中富鐵有利于黃銅礦、斑銅礦形成,因此,推測(cè)溶液中富含硫和鐵且貧氧。利用元素的帶入帶出,導(dǎo)出蝕變礦物中元素的富集特征,從而可以將這些元素應(yīng)用到找礦預(yù)測(cè)中(如黑云母、絹云母富集Li,可以利用Li元素來(lái)指示蝕變分帶和礦化分帶;深部綠泥石富鎂,淺部的富鐵)。
6結(jié)語(yǔ)
(1)主量元素只有Al2O3、Na2O和K2O有少量帶出,SiO2、Fe2O3和CaO帶入量較大,其他主量元素有不同程度帶入,帶入序列的趨勢(shì)由強(qiáng)至弱依次為Fe2O3、CaO、MnO、P2O5、MgO、FeO、SiO2。
(2)微量元素中,Cu、Mo、Cr、W、V帶入量較大;Rb、Ba、Ta、Tl、Zr、Nb、Li、Hf、Be、Sb、Sr、Th有帶出,帶出量由大至小依次為Rb、Ba、Zr、Sr、Th、Be、Nb、Hf、Li、Tl、Ta、Sb。稀土元素的遷移行為具有一定規(guī)律性,其中Pr和La有少量帶出,其他元素都為帶入元素,帶入序列的趨勢(shì)由強(qiáng)至弱依次為Eu、Er、Yb、Dy、Ho、Gd、Tm、Lu、Tb、Sm、Nd、Ce。成礦元素Ag、Cu、Mo、Pb、Zn為帶入元素,其中Cu和Mo帶入量較大,10×106 g矽卡巖化角巖在交代蝕變過(guò)程中可帶入937 g的Cu,可帶入516.98 g的Mo,帶入序列由強(qiáng)至弱依次為Mo、Ag、Cu、Pb、Zn。
(3)蝕變過(guò)程元素K、Na、Li、Be、Zr被帶出與F、Cl、OH、CO2等組成絡(luò)合物存在于溶液中。帶入元素Cu、Mo、Pb、Zn在甲瑪矽卡巖中表現(xiàn)出富集的特征,以硫化物形式存在。溶液中Cu、Mo、Pb、Zn以氯化物絡(luò)合物形式搬運(yùn),當(dāng)溫度與pH值發(fā)生變化且硫濃度增加時(shí),Cu、Mo、Pb、Zn發(fā)生沉淀形成相應(yīng)的硫化物。這些硫化物中硫、鐵為低價(jià)態(tài),而貧氧的流體有利于硫、鐵以低價(jià)態(tài)出現(xiàn)。由于成礦元素Cu、Mo、Pb 在矽卡巖中的含量高于在矽卡巖化角巖中的含量,所以推測(cè)蝕變熱液也提供Cu、Mo、Pb。根據(jù)研究結(jié)果,推斷蝕變流體富集F、Cl、OH、CO2,具有富含硫和鐵元素且貧氧的特征。
西藏華泰龍礦業(yè)開(kāi)發(fā)有限公司提供了野外工作支持,王勤碩士研究生在論文寫(xiě)作過(guò)程中給予了幫助,在此一并謝忱。
參考文獻(xiàn):
References:
[1]艾金彪,馬生明,樊連杰.內(nèi)蒙古烏努格吐山斑巖型銅鉬礦床元素遷移定量探討[J].地球?qū)W報(bào),2013,34(2):193202.
AI Jinbiao,MA Shengming,F(xiàn)AN Lianjie.A Quantitative Discussion on Element Mass Migration in the Wunugetushan Porphyry CuMo Deposit,Inner Mongolia[J].Acta Geoscientica Sinica,2013,34(2):193202.
[2]張亞輝,張世濤.云南文山官房鎢礦床化學(xué)元素遷移與鎢礦化的關(guān)系[J].礦物學(xué)報(bào),2011,33(增):923924.
ZHANG Yahui,ZHANG Shitao.Relationship Between Elements Migration and Tungsten Mineralization of Guanfang Tungsten Deposit in Wenshan of Yunnan[J].Acta Mineralogica Sinica,2011,33(S):923924.
[3]李培,鄧小虎,陳守余.個(gè)舊蝕變巖型銅多金屬礦床圍巖蝕變過(guò)程中元素遷移定量研究[J].地質(zhì)找礦論叢,2011,26(2):176181.
LI Pei,DENG Xiaohu,CHEN Shouyu.Quantitative Study of Elements Migration During the Wallrock Alteration on Gejiu Altered Rocktype Copperpolymetallic Deposit[J].Contributions to Geology and Mineral Resources Research,2011,26(2):176181.
[4]姚曉峰,王友,暢哲生,等.西藏甲瑪銅多金屬礦矽卡巖特征及成因意義[J].成都理工大學(xué)學(xué)報(bào):自然科學(xué)版,2011,38(6):662670.
YAO Xiaofeng,WANG You,CHANG Zhesheng,et al.Characteristics and the Genesis Implication of Skarn in the Jiama Copperpolymetallic Deposit,Tibet,China[J].Journal of Chengdu University of Technology:Science and Technology Edition,2011,38(6):662670.
[5]王登紅,唐菊興,應(yīng)立娟,等.西藏甲瑪?shù)V區(qū)角巖特征及其對(duì)深部找礦的意義[J].巖石學(xué)報(bào),2011,27(7): 21032108.
WANG Denghong,TANG Juxing,YING Lijuan,et al.Hornfels Feature in the Jiama Ore Deposit,Tibet and Its Significance on Deep Prospecting[J].Acta Petrologica Sinica,2011,27(7):21032108.
[6]凌其聰,劉叢強(qiáng).層控矽卡巖型礦床成礦系統(tǒng)的元素活動(dòng)性及質(zhì)量遷移——以銅陵冬瓜山銅礦床為例[J].礦物學(xué)報(bào),2003,23(1):3744.
LING Qicong,LIU Congqiang.Mass Transfer and Element Mobility of Oreforming System of Stratabound Skarn Type Deposits—A Case Study on the Dongguashan Stratabound Skarn Copper Deposit in Tongling,Anhui Province[J].Acta Mineralogica Sinica,2003,23(1):3744.
[7]袁兆憲,成秋明,姚凌青.元素富集指數(shù)在研究矽卡巖化過(guò)程中元素遷移的應(yīng)用[J].礦物學(xué)報(bào),2013,35(增2):575.
YUAN Zhaoxian,CHENG Qiuming,YAO Lingqing.Application of Element Enrichment Index at Element Migration During Skarnization[J].Acta Mineralogica Sinica,2013,35(S2):575.
[8]張成華,紀(jì)國(guó)棟.川西地區(qū)鎢礦地質(zhì)特征及找礦方向[J].地質(zhì)與勘探,1983(9):1520.
ZHANG Chenghua,JI Guodong.Geological Features and Prospecting Direction of Tungsten Deposit in Western Sichuan[J].Geology and Prospecting,1983(9):1520.
[9]陳婉君,楊智榮.廣東大頂鐵礦田多金屬礦床地質(zhì)特征及成礦規(guī)律[J].科技創(chuàng)新導(dǎo)報(bào),2008(29):9899.
CHEN Wanjun,YANG Zhirong.Geological Features and Mineralization Law of Polymetallic Deposit in Dading Iron Orefield of Guangdong[J].Science and Technology Innovation Herald,2008(29):9899.
[10]郭文鉑,唐菊興,鄭文寶,等.西藏甲瑪銅多金屬礦床矽卡巖形成及礦化過(guò)程中的元素地球化學(xué)行為[J].地質(zhì)與勘探,2014,50(3):397410.
GUO Wenbo,TANG Juxing,ZHENG Wenbao,et al.Geochemical Behavior of Elements During Formation and Mineralization Processes of Skarn in the Jiama Copper Polymetallic Deposit of Tibet[J].Geology and Exploration,2014,50(3):397410.
[11]郭文鉑,鄭文寶,唐菊興,等.西藏甲瑪銅多金屬礦床流體、成礦物質(zhì)來(lái)源的地球化學(xué)約束[J].中國(guó)地質(zhì),2014,41(2):510528.
GUO Wenbo,ZHENG Wenbao,TANG Juxing,et al.Geochemical Constraints on the Source of Metallogenic Fluids and Materials in the Jiama Polymetallic Cu Deposit,Tibet[J].Geology in China,2014,41(2):510528.
[12]唐菊興,鄭文寶,陳毓川,等.西藏甲瑪銅多金屬礦床深部斑巖礦體找礦突破及其意義[J].吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2013,43(4):11001110.
TANG Juxing,ZHENG Wenbao,CHEN Yuchuan,et al.Prospecting Breakthrough of the Deep Porphyry Ore Body and Its Significance in Jiama Copper Polymetallic Deposit,Tibet,China[J].Journal of Jilin University:Earth Science Edition,2013,43(4):11001110.
[13]張志,唐菊興,鄭文寶,等.西藏甲瑪銅多金屬礦富礦體特征[J].地質(zhì)與勘探,2013,49(1):918.
ZHANG Zhi,TANG Juxing,ZHENG Wenbao,et al.Geological Features of the Ore Shoots from the Jiama Copperpolymetallic Deposit in Tibet[J].Geology and Exploration,2013,49(1):918.
[14]應(yīng)立娟,鄭文寶,王崴平,等.西藏甲瑪銅多金屬礦硫同位素地球化學(xué)研究[J].地球?qū)W報(bào),2012,33(4):519527.
YING Lijuan,ZHENG Wenbao,WANG Weiping,et al.Stable Isotopes Geochemistry of the Jiama(Gyama) Copper Polymetallic Deposit in Tibet[J].Acta Geoscientica Sinica,2012,33(4):519527.
[15]唐菊興,鄧世林,鄭文寶,等.西藏墨竹工卡縣甲瑪銅多金屬礦床勘查模型[J].礦床地質(zhì),2011,30(2): 179196.
TANG Juxing,DENG Shilin,ZHENG Wenbao,et al.An Exploration Model for Jiama Copper Polymetallic Deposit in Maizhokunggar County,Tibet[J].Mineral Deposits,2011,30(2):179196.
[16]應(yīng)立娟,唐菊興,王登紅,等.西藏甲瑪銅多金屬礦床矽卡巖中輝鉬礦錸鋨同位素定年及其成礦意義[J].巖礦測(cè)試,2009,28(3):265268.
YING Lijuan,TANG Juxing,WANG Denghong,et al.ReOs Isotopic Dating of Molybdenite in Skarn from the Jiama Copper Polymetallic Deposit ofTibet and Its Metallogenic Significance[J].Rock and Mineral Analysis,2009,28(3):265268.
[17]鄭文寶,黎楓佶,唐菊興,等.基于Micromine軟件下地質(zhì)統(tǒng)計(jì)學(xué)在甲瑪矽卡巖型銅多金屬礦儲(chǔ)量計(jì)算中的應(yīng)用[J].地質(zhì)與勘探,2011,47(4):726736.
ZHENG Wenbao,LI Fengji,TANG Juxing,et al.The Application of Geostatistics to Ore Reserve Calculation of the Jiama Skarn Type Copperpolymetallic Deposit Based on Micromine Software[J].Geology and Exploration,2011,47(4):726736.
[18]林彬,唐菊興,張志,等.西藏甲瑪斑巖礦床裂隙系統(tǒng)的初步研究及意義[J].礦床地質(zhì),2012,31(3):579589.
LIN Bin,TANG Juxing,ZHANG Zhi,et al.Preliminary Study of Fissure System in Jiama Porphyry Deposit of Tibet and Its Significance[J].Mineral Deposits,2012,31(3):579589.
[19]王崴平,唐菊興.西藏甲瑪銅多金屬礦床角巖巖石類(lèi)型、成因意義及隱伏斑巖巖體定位預(yù)測(cè)[J].礦床地質(zhì),2011,30(6):10171038.
WANG Weiping,TANG Juxing.Rock Types and Genetic Significance of Hornfels and Location Prediction of Concealed Porphyry Bodies in Jiama Copper Polymetallic Deposit,Tibet[J].Mineral Deposits,2011,30(6):10171038.
[20]解慶林,馬東升,劉英俊.蝕變巖中物質(zhì)遷移的定量計(jì)算——以錫礦山銻礦床為例[J].地質(zhì)論評(píng),1997,43(1):106112.
XIE Qinglin,MA Dongsheng,LIU Yingjun.Calculation of Mass Transfer in Altered Rocks—A Case Study of the Xikuangshan Antimony Deposit[J].Geological Review,1997,43(1):106112.
[21]GRANT J A.The Isocon Diagram—A Simple Solution to Gresens Equation for Metasomatic Alteration[J].Economic Geology,1986,81(8):19761982.
[22]應(yīng)立娟,唐菊興,王登紅,等.西藏甲瑪超大型銅礦石榴子石特征及成因意義[J].地質(zhì)學(xué)報(bào),2012,86(11):17351747.
YING Lijuan,TANG Juxing,WANG Denghong,et al.Features of Garnet in the Jiama Superlarge Cu Polymetallic Deposit and Its Genetic Significance[J].Acta Geologica Sinica,2012,86(11):17351747.
[23]周永章,涂光熾,CHOWN E H,等.熱液圍巖蝕變過(guò)程中數(shù)學(xué)不變量的尋找及元素遷移的定量估計(jì)——以廣東河臺(tái)金礦田為例[J].科學(xué)通報(bào),1994,39(11):10261028.
ZHOU Yongzhang,TU Guangchi,CHOWN E H,et al.Search for the Mathematical Invariants and Quantitative Estimates of Mass Transfer During the Hydrothermal Rock Alteration—A Case Study of Guangdong Hetai Gold Field[J].Chinese Science Bulletin,1994,39(11):10261028.
[24]鄧海琳,涂光熾,李朝陽(yáng),等.地球化學(xué)開(kāi)放系統(tǒng)的質(zhì)量平衡:1.理論[J].礦物學(xué)報(bào),1999,19(2):121131.
DENG Hailin,TU Guangchi,LI Zhaoyang,et al.Mass Balance of Open Geochemical Systems:1.Theory[J].Acta Mineralogica Sinica,1999,19(2):121131.
[25]劉英俊,曹勵(lì)明,李兆麟,等.元素地球化學(xué)[M].北京:科學(xué)出版社,1984.
LIU Yingjun,CAO Liming,LI Zhaolin,et al.Element Geochemistry[M].Beijing:Science Press,1984.
[26]應(yīng)立娟,王登紅,王煥,等.西藏甲瑪銅多金屬礦床中白鎢礦的產(chǎn)出特征及其找礦意義[J].礦床地質(zhì),2011,30(2):318326.
YING Lijuan,WANG Denghong,WANG Huan,et al.Occurrence Feature of Scheelite from Jiama Copper Polymetallic Deposit In Tibet and Its Oreprospecting Significance[J].Mineral Deposits,2011,30(2):318326.
[17]鄭文寶,黎楓佶,唐菊興,等.基于Micromine軟件下地質(zhì)統(tǒng)計(jì)學(xué)在甲瑪矽卡巖型銅多金屬礦儲(chǔ)量計(jì)算中的應(yīng)用[J].地質(zhì)與勘探,2011,47(4):726736.
ZHENG Wenbao,LI Fengji,TANG Juxing,et al.The Application of Geostatistics to Ore Reserve Calculation of the Jiama Skarn Type Copperpolymetallic Deposit Based on Micromine Software[J].Geology and Exploration,2011,47(4):726736.
[18]林彬,唐菊興,張志,等.西藏甲瑪斑巖礦床裂隙系統(tǒng)的初步研究及意義[J].礦床地質(zhì),2012,31(3):579589.
LIN Bin,TANG Juxing,ZHANG Zhi,et al.Preliminary Study of Fissure System in Jiama Porphyry Deposit of Tibet and Its Significance[J].Mineral Deposits,2012,31(3):579589.
[19]王崴平,唐菊興.西藏甲瑪銅多金屬礦床角巖巖石類(lèi)型、成因意義及隱伏斑巖巖體定位預(yù)測(cè)[J].礦床地質(zhì),2011,30(6):10171038.
WANG Weiping,TANG Juxing.Rock Types and Genetic Significance of Hornfels and Location Prediction of Concealed Porphyry Bodies in Jiama Copper Polymetallic Deposit,Tibet[J].Mineral Deposits,2011,30(6):10171038.
[20]解慶林,馬東升,劉英俊.蝕變巖中物質(zhì)遷移的定量計(jì)算——以錫礦山銻礦床為例[J].地質(zhì)論評(píng),1997,43(1):106112.
XIE Qinglin,MA Dongsheng,LIU Yingjun.Calculation of Mass Transfer in Altered Rocks—A Case Study of the Xikuangshan Antimony Deposit[J].Geological Review,1997,43(1):106112.
[21]GRANT J A.The Isocon Diagram—A Simple Solution to Gresens Equation for Metasomatic Alteration[J].Economic Geology,1986,81(8):19761982.
[22]應(yīng)立娟,唐菊興,王登紅,等.西藏甲瑪超大型銅礦石榴子石特征及成因意義[J].地質(zhì)學(xué)報(bào),2012,86(11):17351747.
YING Lijuan,TANG Juxing,WANG Denghong,et al.Features of Garnet in the Jiama Superlarge Cu Polymetallic Deposit and Its Genetic Significance[J].Acta Geologica Sinica,2012,86(11):17351747.
[23]周永章,涂光熾,CHOWN E H,等.熱液圍巖蝕變過(guò)程中數(shù)學(xué)不變量的尋找及元素遷移的定量估計(jì)——以廣東河臺(tái)金礦田為例[J].科學(xué)通報(bào),1994,39(11):10261028.
ZHOU Yongzhang,TU Guangchi,CHOWN E H,et al.Search for the Mathematical Invariants and Quantitative Estimates of Mass Transfer During the Hydrothermal Rock Alteration—A Case Study of Guangdong Hetai Gold Field[J].Chinese Science Bulletin,1994,39(11):10261028.
[24]鄧海琳,涂光熾,李朝陽(yáng),等.地球化學(xué)開(kāi)放系統(tǒng)的質(zhì)量平衡:1.理論[J].礦物學(xué)報(bào),1999,19(2):121131.
DENG Hailin,TU Guangchi,LI Zhaoyang,et al.Mass Balance of Open Geochemical Systems:1.Theory[J].Acta Mineralogica Sinica,1999,19(2):121131.
[25]劉英俊,曹勵(lì)明,李兆麟,等.元素地球化學(xué)[M].北京:科學(xué)出版社,1984.
LIU Yingjun,CAO Liming,LI Zhaolin,et al.Element Geochemistry[M].Beijing:Science Press,1984.
[26]應(yīng)立娟,王登紅,王煥,等.西藏甲瑪銅多金屬礦床中白鎢礦的產(chǎn)出特征及其找礦意義[J].礦床地質(zhì),2011,30(2):318326.
YING Lijuan,WANG Denghong,WANG Huan,et al.Occurrence Feature of Scheelite from Jiama Copper Polymetallic Deposit In Tibet and Its Oreprospecting Significance[J].Mineral Deposits,2011,30(2):318326.
[17]鄭文寶,黎楓佶,唐菊興,等.基于Micromine軟件下地質(zhì)統(tǒng)計(jì)學(xué)在甲瑪矽卡巖型銅多金屬礦儲(chǔ)量計(jì)算中的應(yīng)用[J].地質(zhì)與勘探,2011,47(4):726736.
ZHENG Wenbao,LI Fengji,TANG Juxing,et al.The Application of Geostatistics to Ore Reserve Calculation of the Jiama Skarn Type Copperpolymetallic Deposit Based on Micromine Software[J].Geology and Exploration,2011,47(4):726736.
[18]林彬,唐菊興,張志,等.西藏甲瑪斑巖礦床裂隙系統(tǒng)的初步研究及意義[J].礦床地質(zhì),2012,31(3):579589.
LIN Bin,TANG Juxing,ZHANG Zhi,et al.Preliminary Study of Fissure System in Jiama Porphyry Deposit of Tibet and Its Significance[J].Mineral Deposits,2012,31(3):579589.
[19]王崴平,唐菊興.西藏甲瑪銅多金屬礦床角巖巖石類(lèi)型、成因意義及隱伏斑巖巖體定位預(yù)測(cè)[J].礦床地質(zhì),2011,30(6):10171038.
WANG Weiping,TANG Juxing.Rock Types and Genetic Significance of Hornfels and Location Prediction of Concealed Porphyry Bodies in Jiama Copper Polymetallic Deposit,Tibet[J].Mineral Deposits,2011,30(6):10171038.
[20]解慶林,馬東升,劉英俊.蝕變巖中物質(zhì)遷移的定量計(jì)算——以錫礦山銻礦床為例[J].地質(zhì)論評(píng),1997,43(1):106112.
XIE Qinglin,MA Dongsheng,LIU Yingjun.Calculation of Mass Transfer in Altered Rocks—A Case Study of the Xikuangshan Antimony Deposit[J].Geological Review,1997,43(1):106112.
[21]GRANT J A.The Isocon Diagram—A Simple Solution to Gresens Equation for Metasomatic Alteration[J].Economic Geology,1986,81(8):19761982.
[22]應(yīng)立娟,唐菊興,王登紅,等.西藏甲瑪超大型銅礦石榴子石特征及成因意義[J].地質(zhì)學(xué)報(bào),2012,86(11):17351747.
YING Lijuan,TANG Juxing,WANG Denghong,et al.Features of Garnet in the Jiama Superlarge Cu Polymetallic Deposit and Its Genetic Significance[J].Acta Geologica Sinica,2012,86(11):17351747.
[23]周永章,涂光熾,CHOWN E H,等.熱液圍巖蝕變過(guò)程中數(shù)學(xué)不變量的尋找及元素遷移的定量估計(jì)——以廣東河臺(tái)金礦田為例[J].科學(xué)通報(bào),1994,39(11):10261028.
ZHOU Yongzhang,TU Guangchi,CHOWN E H,et al.Search for the Mathematical Invariants and Quantitative Estimates of Mass Transfer During the Hydrothermal Rock Alteration—A Case Study of Guangdong Hetai Gold Field[J].Chinese Science Bulletin,1994,39(11):10261028.
[24]鄧海琳,涂光熾,李朝陽(yáng),等.地球化學(xué)開(kāi)放系統(tǒng)的質(zhì)量平衡:1.理論[J].礦物學(xué)報(bào),1999,19(2):121131.
DENG Hailin,TU Guangchi,LI Zhaoyang,et al.Mass Balance of Open Geochemical Systems:1.Theory[J].Acta Mineralogica Sinica,1999,19(2):121131.
[25]劉英俊,曹勵(lì)明,李兆麟,等.元素地球化學(xué)[M].北京:科學(xué)出版社,1984.
LIU Yingjun,CAO Liming,LI Zhaolin,et al.Element Geochemistry[M].Beijing:Science Press,1984.
[26]應(yīng)立娟,王登紅,王煥,等.西藏甲瑪銅多金屬礦床中白鎢礦的產(chǎn)出特征及其找礦意義[J].礦床地質(zhì),2011,30(2):318326.
YING Lijuan,WANG Denghong,WANG Huan,et al.Occurrence Feature of Scheelite from Jiama Copper Polymetallic Deposit In Tibet and Its Oreprospecting Significance[J].Mineral Deposits,2011,30(2):318326.