黃吉春,蔡華榮,江躍全Δ
(1.重慶醫(yī)藥高等??茖W校 護理學院,重慶 404100;2.重慶市腫瘤研究所,重慶 404000)
雙功能RGD-TAT肽修飾脂質(zhì)體的構(gòu)建及其腦膠質(zhì)瘤靶向性研究
黃吉春1,蔡華榮2,江躍全2Δ
(1.重慶醫(yī)藥高等??茖W校 護理學院,重慶 404100;2.重慶市腫瘤研究所,重慶 404000)
目的制備雙功能RGD-TAT肽修飾的脂質(zhì)體(RGD-TAT peptidemodified liposomes,RGD-TAT-LPs),并對其腦膠質(zhì)瘤靶向性進行研究。方法采用薄膜分散法制備雙功能RGD-TAT-LPs并進行表征;細胞攝取實驗研究腦膠質(zhì)瘤C6細胞對普通脂質(zhì)體(liposomes,LPs)、RGD修飾脂質(zhì)體(RGD-LPs)、TAT修飾脂質(zhì)體(TAT-LPs)和RGD-TAT-LPs的攝取效率。構(gòu)建腦膠質(zhì)瘤原位腫瘤模型,研究不同脂質(zhì)體在荷瘤裸鼠的體內(nèi)分布。結(jié)果RGD-TAT-LPs的粒徑為(116.5±11.3)nm,電位為(23.2±3.5)mV。細胞攝取實驗結(jié)果顯示:C6細胞對RGD-TAT-LPs的攝取效率分別是LPs、TAT-LPs和RGD-LPs的4.7倍、2.3倍和2.9倍,差異有統(tǒng)計學意義(P<0.01)。脂質(zhì)體體內(nèi)分布實驗結(jié)果顯示RGD-TAT修飾脂質(zhì)體組荷瘤小鼠腦部熒光最強。結(jié)論RGD-TAT-LPs是一種潛在高效的腫瘤靶向給藥系統(tǒng)。
整合素受體;細胞穿膜肽;藥物靶向
1.1 材料與儀器 SizerNano ZS90型激光粒度儀及ZETA電位分析儀(英國Malvern instruments Ltd)。大豆磷脂(soya bean lecithin,SPC,上海太偉藥業(yè)有限公司,批號:130108);膽固醇(cholesterol,Chol,美國 Sigma公司,批號:C110923);DSPEPEG2000(美國 Avanti polar lipids,批號:P102182);FITC標記磷脂(FITC-PE,美國 sigma公司,批號:F130010);RGD-TAT肽(上海吉爾生化公司);DMEM高糖培養(yǎng)基和胎牛血清(美國GIBCO公司);其余試劑為分析純。小鼠腦膠質(zhì)瘤細胞(C6,美國菌種庫)。雄性小鼠4只(購自重慶醫(yī)科大學實驗動物中心,動物許可證號:CQYKDX109283)。
1.2 方法
1.2.1 RGD-TAT-LPs的制備及其表征 參照文獻方法[17]合成 DSPE-PEG2000-TAT-RGD。使用薄膜分散法制備 RGDTAT-LPs。將 處 方 量 的 SPC,Cho,DSPE-PEG2000-TAT-RGD,DSPE-PEG-OMe[總磷脂∶膽固醇 =75∶25(摩爾比)],分別溶于氯仿,置50m L茄形瓶中旋轉(zhuǎn)蒸發(fā)成膜后,再置真空干燥器中過夜。加入2.5 mL PBS緩沖液(pH 7.4),置空氣浴搖床中,37℃,180 r/min,20min水化,水浴超聲 5min,脫膜,探頭超聲制備得到RGD-TAT-LPs。
1.2.2 C6細胞對FITC標記脂質(zhì)體的攝取 將對數(shù)生長期的細胞以5×105個/孔的密度接種于6孔板中,37℃培養(yǎng)24 h后,每孔加入適量FITC標記的LPs、TAT-LPs、RGD-LPs和RGDTAT-LPs,使孔中FITC濃度為20 nmol/mL,37℃分別孵育2 h和4 h后除去含脂質(zhì)體培養(yǎng)基,冷PBS清洗3次,0.25%胰酶消化后離心,PBS清洗3次,流式細胞儀測定細胞熒光值。
為了定性觀察脂質(zhì)體被細胞攝取后在細胞內(nèi)的分布,將脂質(zhì)體與細胞共同孵育6 h,加入100 nM LysoTracker,于無血清培養(yǎng)基中孵育1 h,冷PBS清洗2次后4%多聚甲醛室溫固定30min,PBS清洗3次,DAPI孵育5min使細胞核染色,冷PBS洗滌3次后甘油封片,激光共聚焦顯微鏡下觀察。
1.2.3 小鼠C6膠質(zhì)瘤模型的建立以及活體成像 C6細胞經(jīng)胰酶消化,離心后將其懸浮于DMEM培養(yǎng)液中,計數(shù)調(diào)節(jié)濃度至5×107/mL。4只小鼠(約25 g,雄性)靜脈注射0.4 g/kg水合氯醛麻醉,內(nèi)毗連線與頭部矢狀中線交匯處縱向1 cm長頭皮切口,分離暴露顱骨,于前囪旁開3mm,向后1mm處顱骨鉆孔。微量注射器吸入10μL上述細胞懸液,固定于立體定位儀上,沿鉆孔垂直進針深6mm(右側(cè)大腦紋狀體區(qū)),后退1mm注射U87細胞懸液10μL,留針5min,緩慢拔針,以生理鹽水沖洗,切口用線縫合打結(jié)。
按照1.2.1中方法制備載近紅外熒光染料DIR的不同脂質(zhì)體,荷瘤小鼠尾靜脈注射12 h后,將小鼠用10%水合氯醛麻醉,于熒光活體成像系統(tǒng)下觀察并拍照(Ex=730 nm,Em=790 nm)。
2.1 脂質(zhì)體的表征 取制備得到的RGD-TAT-LPs用馬爾文激光粒度儀測定粒度和Zeta電位,平行測定3次。結(jié)果顯示RGD-TAT-LPs的粒徑在(116.5±11.3)nm,電位為(23.2±3.55)mV。取適量脂質(zhì)體用磷鎢酸染色,采用透射電鏡觀察形態(tài)(見圖1),鏡下可見制備的脂質(zhì)體成球狀,形態(tài)均一。
2.2 C6細胞對脂質(zhì)體的攝取 不同脂質(zhì)體的攝取實驗結(jié)果見表1:細胞對脂質(zhì)體的攝取量隨著孵育時間的延長而增加,RGD-TAT-LPs在4 h攝取效率是2 h的1.9倍,差異有統(tǒng)計學意義(P<0.05);C6細胞在2 h對RGD-TAT-LPs的攝取效率分別是LPs、TAT-LPs和RGD-LPs的4.7倍、2.3倍和2.9倍,差異均有統(tǒng)計學意義(P<0.01)。
圖1 透射電鏡下觀察RGD-TAT-LPsFig.1 Transmission electronmicroscopy image of RRGD-TAT-LPs
表1 C6細胞對不同脂質(zhì)體的攝取效率Tab.1 Uptake of different liposomes by C6 cells
脂質(zhì)體的細胞內(nèi)分布如圖2所示:RGD-LPs入胞后大量分布于溶酶體中。TAT-LPs脂質(zhì)體攝取入胞后少量分布于溶酶體中,主要分布于細胞質(zhì)中,表明TAT-LPs脂質(zhì)體具有較強的溶酶體逃逸效應(yīng)。RGD-TAT-LPs脂質(zhì)體入胞能力較強,其中部分分布于溶酶體中部分存在于細胞質(zhì)中。
圖2 不同脂質(zhì)體在細胞內(nèi)的分布Fig.2 The distribution of liposomes in cells
2.3 RGD-TAT-LPs的體內(nèi)分布 荷瘤小鼠活體成像實驗結(jié)果如圖3所示,紅色熒光越強,則DIR濃度越高,說明載DIR的脂質(zhì)體在腦部蓄積量越大。RGD-TAT-LPs組的小鼠腫瘤組織紅色熒光最強,其次是RGD修飾脂質(zhì)體和TAT修飾脂質(zhì)體,這說明RGD-TAT-LPs在腦部蓄積能力最強。
圖3 載DIR的不同類型的脂質(zhì)體在小鼠體內(nèi)的分布Fig.3 EX vivo images of given various DIR loaded liposomes
本研究將RGD與TAT通過一個半胱氨酸連接成序列為RGDCRKKRRQRRR的短鏈多肽,將RGD-TAT連接到脂質(zhì)體表面,首先利用RGD的識別能力與腫瘤細胞結(jié)合,再利用穿膜肽TAT的高效穿膜作用介導(dǎo)脂質(zhì)體進入腫瘤細胞。
結(jié)果顯示,制備得到的脂質(zhì)體的粒徑為115 nm左右。有研究顯示納米載體的粒徑范圍在10~150 nm能夠有效避開網(wǎng)狀內(nèi)皮系統(tǒng)的吞噬,通過EPR效應(yīng)到達腫瘤組織[18]。在細胞攝取試驗中,與其他脂質(zhì)體組比較,經(jīng)過RGD或者TAT修飾都能夠顯著增強腦膠質(zhì)瘤細胞對脂質(zhì)體的攝取,RGD-TAT修飾脂質(zhì)體的攝取效率顯著高于RGD或者TAT修飾的脂質(zhì)體,這說明將RGD肽和TAT肽串聯(lián)后能夠發(fā)揮協(xié)同作用,共同促進入胞。本實驗研究了脂質(zhì)體進入細胞后在細胞內(nèi)的分布情況,結(jié)果顯示,TAT修飾脂質(zhì)體和RGD-TAT修飾脂質(zhì)體在溶酶體部位熒光最弱,說明RGD-TAT修飾的脂質(zhì)體能夠和TAT修飾脂質(zhì)體一樣發(fā)揮溶酶體逃逸作用[19]。本實驗還構(gòu)建了腦膠質(zhì)瘤原位腫瘤模型,通過近紅外成像實驗研究共修飾脂質(zhì)體的體內(nèi)分布。結(jié)果與體外研究結(jié)果一致,RGD-TAT修飾脂質(zhì)體在小鼠腦部的熒光強度顯著強于其他脂質(zhì)體組。綜上,RGD-TAT修飾脂質(zhì)體是一種潛在的高效腫瘤靶向給藥系統(tǒng)。
[1]Yao Q,Chen H,Zhang Q,et al.Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals[J].Int JPharm,2011,420(2):304-312.
[2]Shah N,Chaudhari K,Dantuluri P,et al.Paclitaxel-loaded PLGA nanparticles surfacemodified with transferrin and Pluronic-P85,an in vitro cell line and in vivo biodistribution studies on rat model[J].J Drug Target,2009,17(7):533-542.
[3]Raymond M,Molema G,ten Hagen TL,etal.Ligand-targeted liposomes directed against pathological vasculature[J].JLiposome Res,2002,12(8):129-135.
[4]Xiao BX,Huang Y,Lu WL,et al.Enhanced Intracellular Uptake of Sterically Stabilized Liposomal Doxorubicin[J].Pharma Res,2005,6(5):933-939.
[5]Oba M,F(xiàn)ukushima S,Kanayama N,et al.Cyclic RGD peptideconjugated polyplex micelles as atargetable gene delivery system directed to cells possessingαvβ3 andαvβ5 integrins[J].Bioconjug Chem 2007,18(5):1415-1423.
[6]Ying X,Wen H,Lu WL,et al.Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals[J].J Controlled Release,2010,141(2):183-192.
[7]Chee WG,F(xiàn)eng SS.Transferrin-conjugated nanoparticles of Poly(lactide)-D-a-Tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier[J].Biomaterials,2010,31(30):7748-7757.
[8]Ulbrich K,Hekmatara T,Herbert E,et al.Transferrin-and transferrin receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier(BBB)[J].Eur JPharm Biopharm,2009,71(2):251-256.
[9]Kuai R,Yuan W,Li W,et al.Targeted Delivery of Cargoes into a Murine Solid Tumor by a Cell-Penetrating Peptide and Cleavable Poly(ethylene glycol)Comodified Liposomal Delivery System via Systemic Administration[J].Mol.Pharm,2011,8(6),2151-2161.
[10]Kuai R,Yuan W,Qin Y,et al.Efficient Delivery of Payload into Tumor Cells in a Controlled Manner by TAT and Thiolytic Cleavable PEG Co-Modified Liposomes[J].Mol Pharm,2010,7(5),1816-1826.
[11]Li Z.Lipid-polymer hybrid nanoparticles:synthesis,characterization and applications[J].Nano LIFE,2010,1(1):163-173.
[12]Vladimir T.Tumor delivery ofmacromolecular drugs based on the EPR effect[J].Adv Drug Deliv Rev,2011,63(3),3131-135.
[13]Gao HL,ShuaiQP,Zhi Y,et al.A cascade targeting strategy for brain neuroglial cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein[J].Biomaterials,2011,32(33):8669-8675.
[14]R.K.Jain.Angiogenesis in brain tumors[J].Nat.Rev.Neurosci,2007,8(8):610-622.
[15]Tamara M,Patil ML,Zhang M,et al.LHRH-Targeted Nanoparticles for Cancer Therapeutics[J].MethodsMol Biol,2010,624(281):281-294.
[16]Chang SF,Guo J,Sun J,et al.Targeted microbubbles for ultrasound mediated gene transfection and apoptosis induction in ovarian cancer cells[J].Ultrason Sonochem,2013,20(1):171-179.
[17]Jiang X,Xin H,Gu J,et al.Solid tumor penetration by integrinmediated pegylatedoly(trimethylene-carbonate)nanoparticles loaded with paclitaxel[J].Biomaterials,2013,34(6):1739-1746.
[18]M.Al Soraj,He L,Peynshaert K,et al.siRNA and pharmacological inhibition of endocytic pathways to characterize the differential role of macropinocytosis and the actin cytoskeleton on cellular uptake of dextran and cationic cell penetrating peptides octaarginine(R8)and HIV-Tat[J].JControlled Release,2012,161(1):132-141.
[19]Zhang QY,Tang J,F(xiàn)u L,et al.A pH-responsive a-helical cell penetrating peptide-mediated liposomal delivery system[J].Biomaterials,2013,34(32):7980-7993.
(編校:李璐璐)
Construction of RGD-TAT modified liposomes and evaluation of its targeting on glioma
HUANG Ji-chun1,CAIHua-rong2,JIANG Yue-quan2Δ
(1.Department of Nursing,Chongqing Medical and Pharmaceutical College,Chongqing 401331,China;2.Chongqing Cancer Institute,Chongqing 404000,China)
ObjectiveTo construct RGD-TATmodified liposomes(RGD-TAT-LPs)and evaluate its glioma targeting efficiency.MethodsRGDTAT-LPswas constructed by film-ultrasonicmethod,its appearance,particle size and Zeta potentialweremearsured.Cellular uptake of LPs,TAT-LPs,RGD-LPs and RGD-TAT-LPswas used to evaluate the affinity to C6 cells.C6 cellswere xenografted in athymicmice to establish the animalmodel,which were used to evaluate the distribution of liposomes in vivo.ResultsThe particle diameter of RGD-TAT-LPs was(116.5±11.3)nm,and its Zeta potentialwas(23.2±3.5)mV.Cellular uptake experiments demonstrated the cell uptake efficiency of RGD-TAT-LPs by C6 cellswere 2.9-fold,2.3-fold and 4.7-fold than that of RGD-LPs,TAT-LPs and LPs respectively.The in vivo imaging showed that RGD-TAT-LPs had the strongest fluorescence intensity in brain.ConclusionThe RGD-TAT-LPsmight serve as a promising delivery system of antitumor drugs.
integrins receptor;cell-penetrating peptides;drug targeting
R73-3
A
1005-1678(2014)03-0001-03
過去幾十年,隨著現(xiàn)代生物研究的發(fā)展,腫瘤疾病的治療手段日益豐富。探尋新型腫瘤主動靶向治療載體成為了當前研究的熱點[1-2]。有研究表明,腫瘤細胞表面整合素受體高度表達[3-4],且這些整合素受體被廣泛用于腫瘤的靶向治療靶點[5]。由于RGD與腫瘤細胞表面的整合素受體結(jié)合具有飽和效應(yīng)[6],因此脂質(zhì)體入胞效率受到一定的限制。TAT是一種細胞穿膜肽,能夠高效穿過所有細胞膜,但是對腫瘤細胞無選擇性[7-8]。在脂質(zhì)體上連接TAT肽后可以促進脂質(zhì)體高效入胞[9-11],但由于TAT入胞的非特異性,其可以穿透任何細胞,缺乏選擇性,且修飾了TAT的脂質(zhì)體在血液循環(huán)中會迅速被網(wǎng)狀內(nèi)皮系統(tǒng)(reticuloendothelial system,RES)攝取,導(dǎo)致其腫瘤蓄積較低[12]。RGD肽是一種能夠特異性識別腫瘤細胞表面整合素受體的環(huán)狀三肽[13]。已經(jīng)被廣泛用于腫瘤靶向治療研究[14-16]。本研究旨在將RGD與TAT串聯(lián)成一條直鏈多肽,共同發(fā)揮RGD對腫瘤細胞的識別能力和TAT的穿膜作用,實現(xiàn)高效的靶向給藥。
國家自然科學基金(30970843)
黃吉春,女,碩士,講師,研究方向:腫瘤的靶向治療,E-mail:jjichun2000@126.com;江躍全,通信作者,男,博士,主任醫(yī)師,研究方向:腫瘤的靶向治療,E-mail:caihuarong1977@163.com。