国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

內(nèi)蒙古集寧三岔口夕線堇青石榴二長片麻巖變質(zhì)作用及年代學(xué)研究*

2014-09-17 08:20:16蔡佳劉福來劉平華施建榮
巖石學(xué)報 2014年2期
關(guān)鍵詞:石榴石片麻巖尖晶石

蔡佳 劉福來 劉平華 施建榮

中國地質(zhì)科學(xué)院地質(zhì)研究所,北京 100037

1 引言

位于華北克拉通西北緣的孔茲巖帶是一條古元古代碰撞構(gòu)造帶,是由西部陸塊內(nèi)北部的陰山陸塊和南部的鄂爾多斯陸塊碰撞形成的,該孔茲巖帶出露大面積變質(zhì)表殼巖系(Zhao et al.,1999,2003,2005,2012;Zhai et al.,2000),包括西段賀蘭山-千里山變質(zhì)雜巖、中段大青山-烏拉山變質(zhì)雜巖以及東段集寧變質(zhì)雜巖,近年來,許多研究者對上述雜巖中的泥質(zhì)片麻巖的成因礦物學(xué)、礦物相轉(zhuǎn)變、變質(zhì)演化和同位素年代學(xué)等方面進行了深入研究(盧良兆等,1992,1996;Liu et al.,1993;Lu and Jin,1993;Liu et al.,1998;劉福來等,2002;Wan et al.,2006,2009,2013a;Santosh et al.,2006,2007a,b,2009;Xia et al.,2006a,b;Dong et al.,2007,2013;Yin et al.,2009,2011;Yin,2010;周喜文等,2010;Wang et al.,2011;Jiao and Guo,2011;Jiao et al.,2013a,b;Guo et al.,2012;Dan et al.,2012;Liu et al.,2012;Ma et al.,2012;劉平華等,2013;蔡佳等,2013a,b;Cai et al.,2014)。一些研究者(盧良兆等,1992;Lu and Jin,1993;Liu et al.,1993;Yin,2010;周喜文等,2010;Wang et al.,2011;Jiao et al.,2013a;蔡佳等,2013a;Cai et al.,2013)通過對孔茲巖帶出露的變泥質(zhì)巖變質(zhì)作用研究,普遍得到了近等溫減壓的順時針P-T軌跡。大量的鋯石或獨居石的年代學(xué)研究表明孔茲巖帶的變泥質(zhì)巖和變基性巖中的變質(zhì)鋯石記錄了1950~1810Ma的變質(zhì)年齡(Xia et al.,2006a,b;Wan et al.,2006,2009,2013a;Dong et al.,2007,2013;周喜文和耿元生,2009;Yin et al.,2009,2011;劉平華等,2013),其中~1950Ma可能代表了北部的陰山陸塊和南部鄂爾多斯陸塊碰撞拼合的時代(趙國春,2009;周喜文和耿元生,2009;Yin et al.,2009,2011;Zhao et al.,2010;Dong et al.,2013),1920~1890Ma則可能是碰撞后折返的時代(Yin et al.,2009;Jiao et al.,2013b)。然而 Wan et al.(2013a)研究得出大青山-烏拉山變基性巖記錄了1970~1920Ma的巖漿年齡,反映古元古代陸內(nèi)伸展事件,這對~1950Ma所代表的地質(zhì)意義提出了質(zhì)疑。最近,部分研究者(Hu et al.,2013;Wan et al.,2013b)還對孔茲巖帶南部鄂爾多斯陸塊新生代沉積蓋層以下的變泥質(zhì)巖進行了鋯石UPb年代學(xué)研究,獲得了兩組鋯石年齡,一組鋯石顯示>2.4Ga的核和>2.28Ga變質(zhì)邊年齡,另一組顯示~2.08Ga的核和~1.9Ga變質(zhì)邊年齡,認(rèn)為鄂爾多斯陸塊并非太古代克拉通塊體,其基底可能分布著大面積晚古元古代的變沉積巖,這表明鄂爾多斯陸塊可能與孔茲巖帶一樣,也卷入了古元古代的構(gòu)造-熱事件。此外,一些研究者(Santosh et al.,2006,2007a,2009;Jiao et al.,2011;Guo et al.,2012;Liu et al.,2012)在孔茲巖帶東段的土貴烏拉、和林格爾以及中段大青山-烏拉山的東坡地區(qū)識別出超高溫變質(zhì)巖,其變質(zhì)溫度可達(dá)950℃以上,變質(zhì)時代為1930~1920Ma(Santosh et al.,2007a,b)。有研究者認(rèn)為(趙國春,2009;Guo et al.,2012;Wan et al.,2013a)區(qū)域內(nèi)的超高溫變質(zhì)事件與碰撞后伸展環(huán)境下的地幔巖漿底侵有關(guān),而Peng et al.(2010,2011)報道的土貴烏拉附近的徐武家出露~1930Ma輝長蘇長巖墻群也進一步佐證了這一觀點。

有關(guān)孔茲巖帶東段集寧地區(qū)的高級變質(zhì)巖變質(zhì)作用的研究已取得了大量的研究進展,早期研究者(Lu and Jin,1993)主要利用基于礦物端元反應(yīng)的傳統(tǒng)地質(zhì)溫壓計進行研究,然而該方法有較多的局限性,例如易受晚期降溫階段的影響(Kohn and Spear,2000;Cesare et al.,2008)。近年來,基于內(nèi)恰的熱力學(xué)數(shù)據(jù)庫的THERMOCALC程序被廣泛應(yīng)用于變質(zhì)作用的研究,該方法利用某一特定的全巖化學(xué)成分以計算出該種巖石可能出現(xiàn)的礦物組合及相應(yīng)的P-T條件(Powell and Holland,1988,2008;Powell et al.,1998;Holland and Powell,1998,2003),相平衡模擬手段較傳統(tǒng)地質(zhì)溫壓計而言可更精確的限定各變質(zhì)階段的溫壓條件且受到晚期降溫影響較小(Powell and Holland,2008;Rigby,2009)。Wang et al.(2011)針對集寧-卓資一帶的富鋁片麻巖計算P-T視剖面圖并建立了近等溫減壓型順時針P-T軌跡。Jiao et al.(2013a)對東段卓資小什字地區(qū)的石榴石巖進行了詳細(xì)的變質(zhì)作用研究,利用相平衡模擬及金紅石-Zr溫度計方法也得到近等溫減壓的順時針P-T軌跡?;谏鲜銮叭说难芯?,本文選取孔茲巖帶東段集寧三岔口地區(qū)出露的典型變沉積巖,即夕線堇青石榴二長片麻巖,該巖石保留多種退變質(zhì)反應(yīng)結(jié)構(gòu),是良好的變質(zhì)演化研究對象。本文通過詳細(xì)的野外地質(zhì)觀察,結(jié)合室內(nèi)巖相學(xué)、成因礦物學(xué)、變質(zhì)反應(yīng)結(jié)構(gòu)、傳統(tǒng)地質(zhì)溫壓計和相平衡模擬以及鋯石U-Pb年代學(xué)等綜合研究,建立該類巖石的P-T軌跡及其變質(zhì)時代,為進一步揭示孔茲巖帶東段集寧地區(qū)的變質(zhì)演化和變質(zhì)時代提供重要基礎(chǔ)資料,并為建立華北克拉通西部孔茲巖帶形成演化的動力學(xué)模式提供科學(xué)依據(jù)。

2 地質(zhì)背景

華北克拉通西北緣孔茲巖帶是西部陸塊內(nèi)的一條古元古代碰撞構(gòu)造帶,由北部的陰山陸塊和南部的鄂爾多斯陸塊于 ~1950Ma碰撞形成,西部陸塊與東部陸塊在~1850Ma碰撞形成中部造山帶(Zhao et al.,1999,2003,2005;Zhai et al.,2000)。孔茲巖帶由西向東沿千里山-賀蘭山,大青山-烏拉山和集寧-卓資-豐鎮(zhèn)一帶展布,其北鄰陰山陸塊,南側(cè)與鄂爾多斯陸塊相接(圖1a,b),東側(cè)與中部造山帶緊鄰??灼潕r帶西段主要出露千里山變質(zhì)雜巖和賀蘭山變質(zhì)雜巖,中段主要是烏拉山-大青山變質(zhì)雜巖,東段主要出露集寧變質(zhì)雜巖。

研究區(qū)位于孔茲巖帶東段集寧地區(qū),出露的巖石類型主要為古元古代集寧巖群變質(zhì)表殼巖系(孔茲巖系),少量古元古代(石榴)基性麻粒巖和斜長角閃巖(盧良兆等,1992,1996;Lu and Jin,1993;Zhao et al.,1999),TTG 質(zhì)片麻巖和紫蘇花崗巖。其中孔茲巖系在區(qū)內(nèi)出露廣泛,主要分布于卓資縣大榆樹鄉(xiāng)羊圈灣村、梨花鎮(zhèn)大什字村、小什字村,集寧三岔口鄉(xiāng),涼城縣東十號鄉(xiāng)大羊報溝、永興鎮(zhèn)、新店子鄉(xiāng),以及和林格爾縣老黑窯鄉(xiāng)一帶,巖石類型主要包括(石榴)黑云二長/斜長片麻巖、夕線石榴堇青黑云二長/斜長片麻巖和長英質(zhì)粒狀巖石,多以互層狀產(chǎn)出,還出露大量鉀質(zhì)花崗質(zhì)片麻巖、石榴黑云母花崗巖和少量(石墨)大理巖等。少量古元古代(石榴)基性麻粒巖零星分布于卓資縣梨花鎮(zhèn)里毫塹村、大什字村,集寧三岔口鄉(xiāng),豐鎮(zhèn)市渾源窯鄉(xiāng)一帶,其巖石類型主要由角閃二輝麻粒巖、含榴角閃二輝麻粒巖、斜長角閃巖等組成,多成寬數(shù)十厘米到數(shù)米的似層狀或團塊狀賦存于變質(zhì)表殼巖系或(紫蘇)花崗質(zhì)片麻巖中。

圖1 孔茲巖帶在華北克拉通的分布和構(gòu)造位置圖(a,b,據(jù)Zhao et al.,2005)和集寧地區(qū)的地質(zhì)簡圖及采樣位置(c,據(jù)郭敬輝等,2001)Fig.1 Distribution of the Khondalite Belt in the North China Craton(a,b,after Zhao et al.,2005)and geological map of Jining area(c,after Guo et al.,2001)

圖2 集寧三岔口地區(qū)變泥質(zhì)巖野外露頭照片(a)-石榴黑云二長片麻巖與夕線堇青石榴二長片麻巖(BH53-1);(b)-石榴黑云二長片麻巖;(c)-石榴黑云二長片麻巖與夕線堇青石榴二長片麻巖(BH53-1);(d)-夕線堇青石榴二長片麻巖(BH53-1)的礦物組合Spl+Sil+Crd+GrtFig.2 Outcrops of Sanchakou paragneisses in the Jining area(a)-Grt-Bt paragneiss and Sil-Crd-Grt paragneiss(BH53-1);(b)-Grt-Bt paragneiss;(c)-Grt-Bt paragneiss and Sil-Crd-Grt paragneiss(BH53-1);(d)-Sil-Crd-Grt paragneiss(BH53-1)with mineral assemblage of Spl+Sil+Crd+Grt

3 樣品采集與分析方法

樣品采樣點位于內(nèi)蒙古孔茲巖帶東段集寧以西的三岔口鄉(xiāng)白石頭村(圖1c)。該地區(qū)出露有典型的變泥質(zhì)巖夕線堇青石榴二長片麻巖(BH53-1),呈透鏡狀或夾層狀產(chǎn)出于石榴黑云二長片麻巖中(圖2)。夕線堇青石榴二長片麻巖中可見堇青石圍繞石榴石邊部形成特征的“黑眼圈”結(jié)構(gòu)(圖2d)。

礦物化學(xué)成分分析和顯微結(jié)構(gòu)特征的觀察在中國地質(zhì)科學(xué)院大陸動力學(xué)國家重點實驗室進行。采用JSM-5610LV型掃描電鏡(SEM)(日本電子公司JEOL生產(chǎn))觀察樣品的顯微結(jié)構(gòu)特征,掃描電鏡實驗條件為:電子束的電壓為20kV,焦距20mm,束斑大小為41nm。采用英國牛津公司生產(chǎn)的能譜儀(EDS)對樣品中礦物化學(xué)成分進行半定量測試,同時運用英國牛津公司的INCA軟件包進行數(shù)據(jù)處理(版本4.4)。在北京大學(xué)造山帶與地殼演化教育部重點實驗室采用JXA-8100型電子探針儀對上述樣品內(nèi)各礦物的化學(xué)成分進行定量分析,儀器測試條件為:加速電壓15kV,束流10nA,電子束斑為1μm,修正方法為PRZ,標(biāo)樣為美國SPI公司的53種標(biāo)準(zhǔn)礦物。主要礦物化學(xué)成分測試結(jié)果列入表1、表2、表3、表4。本文所有礦物代號均采用Whitney and Evans(2010)的資料。

全巖的主量和微量元素測試分析在國家地質(zhì)實驗測試中心3080E型熒光光譜儀XRF以及等離子質(zhì)譜儀(ICP-MS)上完成,具體測試條件和步驟可參閱靳新娣和朱和平(2000)的論述。樣品破碎與鋯石的分選在河北省區(qū)域地質(zhì)調(diào)查所礦物分選實驗室完成。首先,將樣品(約5kg)進行破碎至適當(dāng)粒級,經(jīng)清洗、烘干和篩選后,采用磁選和重液分選出不同粒級的鋯石晶體,然后在雙目鏡下挑選出顆粒相對完整的鋯石晶體約200粒,制成符合陰極發(fā)光測試和LA-ICP-MS U-Pb定年的標(biāo)準(zhǔn)鋯石靶。鋯石的LA-ICP-MS U-Pb定年測試在天津地質(zhì)礦產(chǎn)研究所同位素實驗室Neptune型LA-ICP-MS上進行,該實驗測試條件詳見耿建珍等(2012)的論述。

4 巖相學(xué)特征及變質(zhì)反應(yīng)結(jié)構(gòu)

夕線堇青石榴二長片麻巖(BH53-1)的主要組成礦物有石榴石(13% ~15%)、長石(27% ~40%)、石英(28% ~30%)、堇青石 (8% ~10%)、黑云母 (6% ~8%)和夕線石(3% ~6%)等,并含少量尖晶石(1% ~2%)、磁鐵礦和鈦鐵礦(1% ~2%)。石榴石變斑晶多為渾圓粒狀,粒徑約0.5~1.5mm,核-幔部內(nèi)包裹大量細(xì)長針狀夕線石,偶見細(xì)粒黑云母、長石和石英等礦物包體(圖3a),粒徑5~45μm不等?;|(zhì)中夕線石呈針-柱狀集合體,黑云母沿其粒間分布(圖3b)。石榴石的邊部出現(xiàn)含堇青石的退變反應(yīng)邊結(jié)構(gòu)(圖3a,c-f、圖4a,b),堇青石內(nèi)常包含夕線石(圖3a,d-f、圖4a)、黑云母、石英(圖3c、圖4b)、細(xì)粒尖晶石(圖3e,f、圖 4a,b)和鈦

鐵礦-磁鐵礦等。其中尖晶石粒徑約10~70μm,可圍繞殘留的夕線石周圍分布,亦可見局部尖晶石-鈦鐵礦-磁鐵礦顯微結(jié)構(gòu),顆粒間接觸面平直,其中鈦鐵礦中含有近定向出溶的金紅石(圖3b,e,f、圖4b)。石榴石邊部分解形成細(xì)粒鱗片狀黑云母和斜長石(圖4c)。黑云母的產(chǎn)出包括:呈細(xì)小鱗片狀包裹在石榴石內(nèi);位于基質(zhì)中,與夕線石、長石和石英等礦物共同產(chǎn)出,粒徑相對較大,近定向排列;晚期降溫冷卻階段由石榴石分解形成,呈細(xì)長鱗片狀分布在石榴石的邊部(圖4c),其形態(tài)明顯不同于基質(zhì)中的黑云母。淺色礦物包括斜長石、鉀長石和石英,其中基質(zhì)條紋長石內(nèi)出溶的斜長石呈液滴狀近定向排列(圖4d)。

表1 夕線堇青石榴二長片麻巖中石榴石的化學(xué)成分(wt%)Table 1 Representative compositions of garnets in the Sil-Crd-Grt paragneiss(wt%)

表2 夕線堇青石榴二長片麻巖中長石的化學(xué)成分(wt%)Table 2 Representative compositions of feldspars in the Sil-Crd-Grt paragneiss(wt%)

表3 夕線堇青石榴二長片麻巖中黑云母的化學(xué)成分(wt%)Table 3 Representative compositions of biotites in the Sil-Crd-Grt paragneiss(wt%)

表4 夕線堇青石榴二長片麻巖中堇青石和尖晶石的化學(xué)成分(wt%)Table 4 Representative compositions of cordierites and spinels in the Sil-Crd-Grt paragneiss(wt%)

圖3 集寧三岔口夕線堇青石榴二長片麻巖顯微照片和背散射電子圖像(a)-石榴石變斑晶內(nèi)包裹針狀夕線石,細(xì)粒黑云母和斜長石,石榴石邊部圍繞堇青石退變邊(PL圖像);(b)-柱狀夕線石集合體的粒間分布黑云母、尖晶石和Fe-Ti氧化物(PL圖像);(c)-石榴石變斑晶邊部出現(xiàn)堇青石反應(yīng)邊,堇青石中含有殘留的石英、黑云母和Fe-Ti氧化物(SEM圖像);(d)-石榴石內(nèi)部包裹細(xì)粒黑云母和細(xì)長針-柱狀夕線石,石榴石邊部分解成的堇青石內(nèi)含有黑云母和殘留夕線石(CPL圖像);(e)-石榴石邊部堇青石退變邊內(nèi)含夕線石、鈦鐵礦-磁鐵礦、細(xì)粒尖晶石(PL圖像);圖框為圖3f的區(qū)域;(f)-圖3e中圍繞夕線石和Fe-Ti氧化物周圍分布的細(xì)粒尖晶石的放大照片(SEM圖像)Fig.3 Representative photomicrographs and back-scattered electron(BSE)images of the Sil-Crd-Grt paragneiss from Sanchakou,Jining area(a)-fibrolitic sillimanite,minute biotite and plagioclase preserved within a garnet porphyroblast which is surrounded by a corona of cordierite(PL);(b)-intergranular biotite,spinel,and Fe-Ti oxides in contact with coarse-grained sillimanite(PL);(c)-garnet rimmed by cordierite corona with inclusions of vermicular quartz,biotite,and Fe-Ti oxides(SEM);(d)-fine-grained biotite and fibrolitic sillimanite included in garnet porphyroblast and the cordierite corona rimmed garnet containing biotite and relicts of sillimanite(CPL);(e)-relicts of sillimanite,F(xiàn)e-Ti oxides,and fine-grained spinel in cordierite(PL).Box shows the area imaged in Fig.3f;(f)-higher magnification image of the rectangle shown in Fig.3e.Minute spinel surrounded sillimanite and ilmenite-magnetite composite grains within cordierite(SEM)

圖4 集寧三岔口夕線堇青石榴二長片麻巖(BH53-1)背散射電子圖像(a)-石榴石內(nèi)退變的堇青石中含有細(xì)粒尖晶石、磁鐵礦、鈦鐵礦和殘留的夕線石(SEM圖像);(b)-石榴石邊部微域可見尖晶石-磁鐵礦-鈦鐵礦顯微結(jié)構(gòu)及粗粒夕線石(SEM圖像);(c)-石榴石邊部分解形成細(xì)粒斜長石和鱗片狀黑云母(SEM圖像);(d)-正條紋長石中的鉀長石主晶和斜長石客晶(SEM圖像)Fig.4 Back-scattered electron(BSE)images of the Sil-Crd-Grt paragneiss from Sanchakou,Jining area(a)-fine-grained spinel,magnetite,ilmenite,and sillimanite relicts in cordierite that partially replaced garnet(SEM);(b)-spinel-ilmenite-magnetite composite grains and coarse-grained sillimanite rimmed garnet(SEM);(c)-garnet fringed by biotite-plagioclase intergrowths(SEM);(d)-perthite in the matrix with K-feldspar host and plagioclase lamellae(SEM)

針柱狀夕線石集合體和鱗片-片狀黑云母分布在石榴石變斑晶周圍(圖3d),可能發(fā)生如下變質(zhì)反應(yīng):

石榴石邊部可出現(xiàn)堇青石的退變反應(yīng)邊結(jié)構(gòu),堇青石內(nèi)含有殘留的夕線石和蠕蟲狀石英、黑云母和不規(guī)則狀的Fe-Ti氧化物(圖3c,d),反映峰后減壓的退變反應(yīng)結(jié)構(gòu),可能的變質(zhì)反應(yīng)為:

在局部貧硅微域,石榴石邊部的堇青石反應(yīng)邊內(nèi)殘留的不規(guī)則狀夕線石周圍可見細(xì)粒(<3μm)液滴狀的暗綠色尖晶石(圖3e,f、圖4a,b),這是由于Al和Si元素的遷移能力較低(Sarkar et al.,2003;Tajcˇmanová et al.,2007),可能發(fā)生如下反應(yīng)(Harris,1981):

部分石榴石邊部亦被細(xì)小鱗片狀黑云母和粒狀斜長石和石英等環(huán)繞(圖4c),可能的退變質(zhì)反應(yīng)為(Vielzeuf and Montel,1994):

局部微域亦可見尖晶石-鈦鐵礦-磁鐵礦顯微結(jié)構(gòu)(圖3b、圖4b),尖晶石與鈦鐵礦、磁鐵礦平直接觸,可能是早期的鈦尖晶石(ulv?spinel)組分在晚期降溫過程中分解形成鈦鐵礦的出溶體,并殘留富鎂的尖晶石(Gnos and Kurz,1994;Bose et al.,2009),發(fā)生的反應(yīng)為:

圖5 集寧三岔口夕線堇青石榴二長片麻巖中石榴石的Prp-(Alm+Sps)-Grs圖解Fig.5 Prp-(Alm+Sps)-Grs diagram of garnet from Sil-Crd-Grt paragneiss from Sanchakou,Jining area

5 礦物化學(xué)

5.1 石榴石

樣品中石榴石變斑晶的化學(xué)成分測試結(jié)果如表1,所有石榴石均以富含F(xiàn)eO為特征,其中鐵鋁榴石端元組分變化于0.565~0.661之間,鎂鋁榴石端元組分為0.295~0.395,鈣鋁榴石端元組分為0.027~0.034,而錳鋁榴石端元組分含量很低(<0.012)。石榴石的 XMg(Mg2+/(Fe+Mg2+))值在0.309~0.411。石榴石的核-邊成分略有變化,核部相對富鎂(0.372<XMg<0.411),而邊部相對富鐵(0.309<XMg<0.369)(圖5)。

5.2 長石

斜長石屬于奧長石-中長石組分(An端元含量為28~33;表2),其中石榴石邊部分解而成的斜長石比基質(zhì)斜長石更接近An端元,且Al2O3含量略高,說明石榴石邊部分解過程中,鈣從石榴石邊部遷移進入后成合晶中的斜長石內(nèi)?;|(zhì)條紋長石中的鉀長石主晶接近純Or端元組分(Or為0.876)。

5.3 黑云母

黑云母的XMg值變化于0.682~0.769之間,而TiO2含量均較高,在4.49% ~5.52%(表3)。包裹于石榴石核部的黑云母較基質(zhì)黑云母和位于石榴石邊部黑云母的XMg值和TiO2含量高,而FeOT含量則較低。包裹在堇青石中的黑云母較基質(zhì)黑云母的XMg值和Al2O3含量高,而FeOT和TiO2含量略低?;|(zhì)黑云母則較石榴石邊部黑云母的XMg值、TiO2和Al2O3含量略低,而FeOT含量較高。此外,F(xiàn)e-Mg圖解(圖略)顯示黑云母內(nèi)Fe和Mg之間呈線性負(fù)相關(guān)關(guān)系,表明黑云母內(nèi)發(fā)生了Mg-Fe間的相互替代(Aydin et al.,2003)。

5.4 堇青石

樣品中的堇青石僅出現(xiàn)于石榴石邊部,其 XMg值為0.792 ~0.848(表4),而 MnO、ZnO、Cr2O3、CaO、NaO 和 K2O等總含量很低(<0.3%),這與孔茲巖帶中段的大青山-烏拉山地區(qū)典型變泥質(zhì)巖中堇青石的成分特征(XMg值在0.806~0.829之間)相近(蔡佳等,2013a)。石榴石邊部的堇青石內(nèi)偶見細(xì)粒尖晶石,與尖晶石相接觸的堇青石具有較低的FeOT含量(表4)。

5.5 尖晶石

樣品中的尖晶石多出現(xiàn)在石榴石邊部的堇青石內(nèi),化學(xué)成分總體變化不大(表4)。尖晶石主要是鐵尖晶石和鎂尖晶石的固溶體(0.315<XMg<0.370),ZnO的含量均較高(4.52% ~5.08%),并含少量 Cr2O3(<1.22%),而 TiO2和MnO等含量均很低。Fe3+/(Fe3++Fe2+)比值在0.057~0.112之間。與鈦鐵礦-磁鐵礦固溶體相接觸的尖晶石的XMg值和Cr2O3含量相對較高。

6 相平衡模擬

P-T視剖面圖可以展示特定全巖成分下的變質(zhì)礦物相平衡、模擬礦物成分和摩爾分?jǐn)?shù)等值線(魏春景和周喜文,2003),可以采用該方法進行礦物相轉(zhuǎn)變與變質(zhì)反應(yīng)關(guān)系、PT條件的系統(tǒng)研究。因此本文利用程序THERMOCALC 3.33(Powell and Holland,1988;2009年更新)及內(nèi)部一致熱力學(xué)數(shù)據(jù)庫(tcds55,Holland and Powell,1998)對樣品 BH53-1進行P-T視剖面圖的計算。由于孔茲巖帶經(jīng)歷了麻粒巖相變質(zhì)(盧良兆等,1992)并伴隨部分熔融,應(yīng)考慮多種主量元素對平衡礦物組合的影響,故選擇最接近實際巖石化學(xué)組分及礦物組合的體系Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2OTiO2-Fe2O3(NCKFMASHTO),其中有關(guān)礦物固溶體的活度-成分關(guān)系引用的參考文獻(xiàn)包括:石榴石(White et al.,2007),鉀長石和斜長石(Holland and Powell,2003),黑云母和熔體(White et al.,2007),尖晶石-磁鐵礦(White et al.,2002),石英和鋁硅酸鹽為純端元組分。巖石中MnO含量很低(<0.1%),故在相平衡計算中未予考慮。

利用X熒光光譜儀(XRF)測得的樣品全巖主量氧化物百分含量(%)分別為:SiO2=62.71,Al2O3=18.53,CaO=1.14,F(xiàn)e2O3=1.00,F(xiàn)eO=6.65,K2O=3.65,MgO=2.80,MnO=0.1,Na2O=1.46,P2O5=0.08,TiO2=0.8 和 H2O=0.8。然而由于巖石的成分分布不均,尤其在高級變質(zhì)巖中常出現(xiàn)變質(zhì)反應(yīng)微域,該全巖成分可能并非有效的全巖成分(Stüwe,1997;White et al.,2002;White and Powell,2002;Kelsey et al.,2003;Wei et al.,2007),可通過下列步驟獲得巖石的有效全巖百分含量:首先選取樣品的典型薄片中均勻且未蝕變的部分,然后估算礦物體積百分含量為:石榴石(14.6%)、鉀 長 石 (17.2%)、斜 長 石 (13.7%)、石 英(29.52%)、堇青石 (8.8%)、黑云母 (7.6%)、夕線石(5.22%)、尖晶石(2.05%)、鈦鐵礦(0.73%)和磁鐵礦(0.58%),最后將這些礦物的電子探針數(shù)據(jù)加權(quán)平均而得到其摩爾百分含量(mol%)為:H2O=3.66,SiO2=66.64,Al2O3=11.80,CaO=1.28,MgO=5.62,F(xiàn)eO=6.02,K2O=2.41,Na2O=1.52,TiO2=0.65,O=0.40。(如圖6 所示)。全巖中H2O含量是通過給定礦物組合在~5kbar條件下的含H2O量確定的。

圖6 三岔口夕線堇青石榴二長片麻巖(BH53-1)的相圖計算(a)-P-T 視剖面圖,全巖摩爾百分含量(mol%)為:H2O=3.66,SiO2=66.64,Al2O3=11.80,CaO=1.28,MgO=5.62,F(xiàn)eO=6.02,K2O=2.41,Na2O=1.52,TiO2=0.65,O=0.40;(b)-根據(jù)石榴石z(grt)(Ca/(Mg+Ca+Fe2+))和黑云母x(bt)(Fe/(Fe+Mg))成分等值線和石榴石摩爾分?jǐn)?shù)等值線限定峰期(M1)階段溫壓條件;根據(jù)堇青石x(crd)(Fe/(Fe+Mg))和石榴石x(grt)(Fe/(Fe+Mg))成分等值線,黑云母和磁鐵礦摩爾分?jǐn)?shù)等值線限定峰后減壓階段(M2-1和M2-2)的溫壓條件,各階段均用實線框表示,得到近等溫減壓型順時針P-T軌跡.所有圖中黑色實線為藍(lán)晶石-夕線石相變線Fig.6 Phase equilibria modeling for Sanchakou Sil-Crd-Grt paragneiss(BH53-1)(a)-P-T pseudosection with bulk composition in mol%of H2O=3.66,SiO2=66.64,Al2O3=11.80,CaO=1.28,MgO=5.62,F(xiàn)eO=6.02,K2O=2.41,Na2O=1.52,TiO2=0.65,O=0.40;(b)-z(grt)(=Ca/(Ca+Mg+Fe)isopleths for garnet,x(bt)(=Fe/(Fe+Mg))for biotite,and calculated garnet modal proportions are contoured in the predicted peak(M1)field,x(crd)(=Fe/(Fe+Mg))isopleths for cordierite,x(grt)(=Fe/(Fe+Mg))isopleths for garnet,and calculated biotite and magnetite modal proportions are contoured in the predicted post-peak(M2-1和M2-2)field.Thick solid lines delineate P-T conditions of predicted peak and post-peak assemblage,and a clockwise P-T path with near-isothermal decompression stage is inferred for the sample.The black bar corresponds to kyanite-sillimanite equilibria line

P-T視剖面圖(圖6)表明,固相線在6kbar以上出現(xiàn)在~800℃。石榴石的消失線整體近平行于T(溫度)軸,表明石榴石的分解受壓力影響較大,在>800℃的條件下石榴石的穩(wěn)定域略向低壓方向擴大。黑云母的消失線在>8kbar時出現(xiàn)在~910℃,且近平行于P(壓力)軸,而<8kbar時黑云母的穩(wěn)定域向低溫方向縮小。鉀長石在~870℃以上消失,而斜長石在整個P-T范圍內(nèi)穩(wěn)定。斜方輝石可在>790℃和<7.3kbar的條件下出現(xiàn),而巖相學(xué)觀察中并未見斜方輝石。堇青石的穩(wěn)定域隨溫度的升高向高壓方向擴展,壓力最高~8kbar。夕線石消失線的變化趨勢與堇青石相似。鈦鐵礦在5.8~6.4kbar和793~812℃的狹窄域內(nèi)消失。尖晶石則出現(xiàn)在>950℃和6~7kbar的窄域內(nèi)。前人(Brown,2002;White et al.,2004;Wei and Wang,2007)認(rèn)為高級變質(zhì)條件下巖石產(chǎn)生熔體主要有三個階段,包括~650℃水飽和條件下的部分熔融,700~750℃時白云母的脫水熔融和~800℃時黑云母的脫水熔融,由于該樣品發(fā)生大量熔體遷移(丟失)使得麻粒巖相礦物組合得以保留(White and Powell,2002;White et al.,2004,2007)。

圖7 三岔口夕線堇青石榴二長片麻巖(BH53-1)中變質(zhì)鋯石的陰極發(fā)光圖像和LA-ICP-MS定年結(jié)果(a、b)-鋯石具有相對均勻的弱發(fā)光效應(yīng)(灰黑色);(c-f)-鋯石具有相對均勻的強發(fā)光效應(yīng)(灰色-灰白色);(g、h)-鋯石具有核-邊結(jié)構(gòu),核部呈灰黑色,邊部具相對均勻的中等發(fā)光效應(yīng)(灰色);(i)-鋯石具有相對均勻的中等發(fā)光效應(yīng)(灰色)Fig.7 Cathodoluminescent(CL)images and LA-ICP-MS U-Pb ages of metamorphic zircons from the Sil-Crd-Grt paragneiss(BH53-1)from Sanchakou,Jining area(a,b)-the zircon grain showing homogeneous low-luminescence(greyish black);(c-f)-the zircon grains showing homogeneous high-luminescence(grey-greyish white);(g,h)-the zircon grains showing low-luminescent(greyish black)core,middle-luminescent(grey)rim relationship;(i)-the zircon grain showing homogeneous middle-luminescence(grey)

7 鋯石U-Pb年代學(xué)

7.1 鋯石特征

夕線堇青石榴二長片麻巖(BH53-1)的鋯石為暗紫紅色,不透明-半透明,以不規(guī)則粒狀和短柱狀為主,少數(shù)為渾圓狀。長寬比多為1∶1~1∶2。鋯石顆粒較小,一般長軸為50~150μm,短軸為30~100μm。少數(shù)鋯石含有包體。陰極發(fā)光(CL)圖像表明該樣品中多數(shù)鋯石具有相對均勻的強發(fā)光效應(yīng)(多呈灰色-灰白色),少數(shù)呈灰黑色-黑色,內(nèi)部無分帶特征,少數(shù)發(fā)育冷杉葉結(jié)構(gòu),顯示變質(zhì)鋯石成因(圖7)。部分鋯石具有核-邊結(jié)構(gòu),核部與邊部之間的邊界截然,核部多發(fā)育巖漿結(jié)晶環(huán)帶,而部分鋯石核部由于受到麻粒巖相變質(zhì)作用的影響導(dǎo)致早期韻律環(huán)帶被強烈改造而呈均勻的黑色,邊部多呈灰色-灰白色,無分帶特征,部分邊部較窄。

對該樣品的38顆鋯石進行了系統(tǒng)的定年研究(表5),共計進行了38個點分析,多位于結(jié)構(gòu)均勻的鋯石和具核-邊結(jié)構(gòu)鋯石的邊部,其Th含量變化為10×10-6~250×10-6,U含量變化為122×10-6~1203×10-6,Th/U比值為0.02~1.66,其中,具有相對弱發(fā)光效應(yīng)(灰黑色)的鋯石微區(qū)與相對強發(fā)光效應(yīng)的(灰色-灰白色)鋯石相比,前者U含量高,而Th含量和Th/U比值普遍較低。

表5 集寧三岔口夕線堇青石榴二長片麻巖(樣品BH53-1)鋯石LA-ICP-MS定年結(jié)果Table 5 LA-ICP-MS analyses of zircon from the Sil-Crd-Grt paragneiss(sample BH53-1)from Sanchakou,Jining area

7.2 定年結(jié)果

對研究區(qū)樣品的鋯石系統(tǒng)的U-Pb定年結(jié)果列入表5中,如相應(yīng)的207Pb/235U-206Pb/238U關(guān)系圖解(圖8)所示,該樣品38個變質(zhì)鋯石微區(qū)的測試點均位于諧和線上,顯示了比較集中的207Pb/206Pb表面年齡,變化于1944~1870Ma之間,其中兩個鋯石年齡分別為1944±19Ma和1943±13Ma(圖8中的灰色橢圓),其CL圖像(如圖7a,b)表明該年齡可能是繼承性的碎屑鋯石受到變質(zhì)熱事件改造產(chǎn)生的混合年齡。其余的鋯石年齡的加權(quán)平均年齡為1912±11Ma(MSWD=0.94,n=36;圖8),它們代表了寄主巖石夕線堇青石榴二長片麻巖的原巖所經(jīng)歷的中-高壓麻粒巖相變質(zhì)的時限。此鋯石年齡紀(jì)錄表明集寧三岔口地區(qū)變泥質(zhì)巖在古元古代發(fā)生了一次大規(guī)模的變質(zhì)事件。

圖8 集寧三岔口夕線堇青石榴二長片麻巖中鋯石207Pb/235U-206Pb/238U年齡關(guān)系圖Fig.8 207Pb/235U-206Pb/238U diagram showing U-Pb analyses for zircons of the Sil-Crd-Grt paragneiss from Sanchakou,Jining area

8 討論

考慮到該巖石經(jīng)歷了麻粒巖相變質(zhì),能用于揭示早期進變質(zhì)階段信息的石榴石的生長環(huán)帶已被均一化,因此對于石榴石核部包裹的黑云母、長石和石英等細(xì)粒包裹體,由于寄主礦物石榴石缺乏進變質(zhì)生長環(huán)帶,故難以確定上述礦物包體為進變質(zhì)階段產(chǎn)生的。此外,即使黑云母和長石等包體是在進變質(zhì)階段形成,在峰后及晚期冷卻變質(zhì)階段會與寄主石榴石之間發(fā)生Fe-Mg或Ca的交換,導(dǎo)致這些包體礦物的成分遭受改造而不能反映早期進變質(zhì)階段的成分特征。此外,相平衡模擬結(jié)果表明(圖6)樣品經(jīng)歷了大量的熔體遷移和丟失,使得峰期麻粒巖相礦物組合得以保留,故該P-T視剖面圖僅能用于討論熔體丟失后麻粒巖相礦物組合的演化,而不能反映熔體丟失前的進變質(zhì)礦物組合相關(guān)信息(White and Powell,2002;White et al.,2004,2007)。綜合以上考慮,本文將著重討論該巖石峰期和峰后兩個變質(zhì)階段的溫壓條件。

8.1 峰期變質(zhì)階段(M1)溫壓條件

樣品BH53-1的P-T視剖面圖(圖6a)結(jié)果表明峰期(M1)礦物組合為Grt+Sil+Bt+Qz+Pl+Kfs+Ilm+Liq,穩(wěn)定存在于800~900℃較窄的溫度區(qū)間和較寬壓力范圍(6~12kbar),其中堇青石的消失線可作為其壓力下限~7kbar,而壓力的上限由藍(lán)晶石和夕線石間的相變線限定,熔體的出現(xiàn)線為溫度的下限~800℃,黑云母的消失線作為溫度的上限~900℃。然而上述峰期礦物組合穩(wěn)定域的溫壓范圍總體較大,需通過主要礦物的成分等值線和摩爾分?jǐn)?shù)等值線來進一步精確限定峰期的溫壓條件。本文利用石榴石z(grt)值(z(grt)=Ca/(Mg+Ca+Fe2+))和黑云母x(bt)(x(bt)=Fe/(Fe+Mg))的化學(xué)成分等值線以及石榴石的摩爾分?jǐn)?shù)等值線(圖6b),根據(jù)樣品中石榴石核-幔部z(grt)值為0.030~0.034,基質(zhì)黑云母的x(bt)值在0.31~0.32和石榴石摩爾百分含量為0.146,限定峰期礦物組合穩(wěn)定的溫壓條件為T=852~862℃和P=9.3~10.2kbar,位于夕線石域。此外,石榴石的z(grt)值等值線變化趨勢表明其內(nèi)的Ca含量隨壓力的降低而減少。

利用傳統(tǒng)地質(zhì)溫度計和壓力計估算(采用Reche and Martinez(1996)的“GPT”Excel表格)各變質(zhì)階段溫壓條件,代表性結(jié)果如表6和表7。選擇石榴石幔部、與基質(zhì)夕線石共生的黑云母和斜長石的成分估算峰期變質(zhì)階段溫壓條件,利用石榴石-黑云母(GB)溫度計(Thompson,1976;Holdaway and Lee,1977;Perchuk et al.,1985;Holdaway,2000)和石榴石-夕線石-石英-斜長石(GASP)壓力計(Newton and Haselton,1981;Ganguly and Saxena,1984;Holdaway,2001)計算得到峰期P-T條件為660~855℃和6.32~7.23kbar(表6、表7)。以上估算的溫壓條件明顯較低,可能由于用于計算的礦物化學(xué)成分受到晚期降溫冷卻階段的改造,而相平衡模擬手段不受礦物端元反應(yīng)的限制(Powell and Holland,1988,2008),故后者可反映巖石實際經(jīng)歷的峰期溫壓條件,即 T=852~862℃和 P=9.3~10.2kbar。

8.2 峰后減壓變質(zhì)階段(M2)溫壓條件

峰后近等溫減壓階段以石榴石邊部轉(zhuǎn)變?yōu)楹狼嗍暮蟪珊暇?圖3c-f、圖4a,b)為特征,局部貧硅微域出現(xiàn)少量尖晶石,相平衡模擬得到峰后近等溫減壓階段礦物組合為Grt+Crd+Pl+Kfs+Qz+Liq+Ilm ±Bt±Sil±Mag,其中斜方輝石的出現(xiàn)線可作為該礦物組合壓力的下限~6kbar,而壓力的上限為堇青石的消失線~8kbar,石榴石出現(xiàn)線為溫度的下限 ~800℃,而鉀長石的消失線作為溫度的上限~940℃。如前所述,可利用堇青石的x(crd)值(x(crd)=Fe/(Fe+Mg)),石榴石 x(grt)值(x(grt)=Fe/(Fe+Mg))化學(xué)成分等值線和黑云母、磁鐵礦的摩爾分?jǐn)?shù)等值線(圖6b)進一步精確限定峰后減壓階段的溫壓條件。其中M2-1階段的礦物組合為Grt+Crd+Sil+Qz+Pl+Kfs+Ilm+Liq,根據(jù)樣品中堇青石的x(crd)值為0.15~0.21和石榴石的x(grt)值在0.59~0.69得到其溫壓條件為854~880℃,7.0~7.4kbar;M2-2階段的礦物組合為Grt+Crd+Bt+Qz+Pl+Kfs+Ilm+Mag+Liq,根據(jù)石榴石的 x(grt)值在0.59~0.69,黑云母和磁鐵礦的摩爾百分含量分別為0.076和0.0058,得到其溫壓條件為820~848℃,5.3~6.4kbar。此外,P-T視剖面圖顯示含尖晶石的礦物組合出現(xiàn)在>950℃ (圖6),這可能是由于體系中未考慮ZnO組分,而ZnO可將尖晶石的穩(wěn)定域向低溫和/或高壓方向移動(Clarke et al.,1989;Sack and Ghiorso,1991;Nichols et al.,1992;Hand et al.,1994;Korhonen et al.,2011;Jiao et al.,2013a)。

表6 夕線堇青石榴二長片麻巖(樣品BH53-1)的溫度條件計算Table 6 Geothermometry of the Sil-Crd-Grt paragneiss(sample BH53-1)

針對石榴石邊部堇青石的反應(yīng)邊結(jié)構(gòu),采用石榴石-堇青石(GC)溫度計(Thompson,1976;Holdaway and Lee,1977;Perchuk et al.,1985;Bhattacharya et al.,1988)和石榴石-堇青石-夕線石-石英(GCAQ)壓力計(Thompson,1976;Wells and Richardson,1979;Perchuk et al.,1985),選擇樣品中石榴石邊部和相鄰堇青石的成分,估算峰后減壓階段的溫壓條件為579~731℃和5.9~7.87kbar(表6、表7)。對于局部貧硅微域,即堇青石包含新生成的細(xì)粒尖晶石和殘留的夕線石等,采用堇青石-尖晶石溫度計(Vielzeuf,1983)和石榴石-尖晶石-堇青石-夕線石(GSCA)壓力計(Perchuk,1991),利用堇青石和相鄰尖晶石的成分計算得到T=610~667℃,P=7.01~7.05kbar(表6、表7)。此外,對于部分石榴石邊部退變形成細(xì)小鱗片狀黑云母和細(xì)粒斜長石、石英的局部晶域,采用石榴石-黑云母(GB)溫度計(Thompson,1976;Holdaway and Lee,1977;Perchuk et al.,1985;Holdaway,2000)和石榴石-黑云母-斜長石-石英(GBPQ)壓力計(Wu et al.,2004)計算得到T=626~712℃和P=4.1~4.7kbar。同樣,上述石榴石-堇青石、堇青石-尖晶石礦物對可能受到晚期降溫冷卻階段的影響而發(fā)生Fe-Mg離子間的再交換反應(yīng),會導(dǎo)致估算的溫度較實際溫度偏低,而估算的壓力值變化不大且與相平衡模擬結(jié)果相近。而利用上述石榴石-黑云母-斜長石-石英(GBPQ)壓力計估算的壓力值明顯較低,可能由于在晚期降溫階段石榴石-黑云母間的Fe-Mg離子的再平衡更為完全。因此,綜合得到峰后減壓的M2-1階段的溫壓條件為854~880℃和7.0~7.4kbar;M2-2階段的溫壓條件為820~848℃和5.3 ~6.4kbar。

表7 夕線堇青石榴二長片麻巖(樣品BH53-1)的壓力條件計算Table 7 Geobarometry of the Sil-Crd-Grt paragneiss(sample BH53-1)

8.3 變質(zhì)演化P-T軌跡和變質(zhì)時代

相平衡模擬結(jié)合傳統(tǒng)地質(zhì)溫壓計結(jié)果表明夕線堇青石榴二長片麻巖樣品在峰期麻粒巖相變質(zhì)(M1,T=852~862℃和P=9.3~10.2kbar)之后又經(jīng)歷了峰期后近等溫減壓變質(zhì)階段(M2-1,854~880℃和 7.0~7.4kbar;M2-2,820~848℃和5.3~6.4kbar),得到了近等溫減壓型的順時針P-T軌跡(圖6b)。年代學(xué)研究表明該巖石的鋯石年齡在1944~1870Ma之間,其變質(zhì)時代為1912±11Ma。同樣,前人(Lu and Jin 1993;Liu et al.,1993;周喜文等,2010;Yin,2010;Jiao et al.,2013a;蔡佳等,2013a;Cai et al.,2014)對內(nèi)蒙孔茲巖帶變泥質(zhì)巖的變質(zhì)作用研究也普遍得到順時針的P-T演化軌跡(圖9)。此外,大量的鋯石或獨居石的年代學(xué)研究表明孔茲巖帶的變泥質(zhì)巖和變基性巖中的變質(zhì)鋯石記錄了變化于1950~1850Ma的變質(zhì)年齡(Wan et al.,2006)。其中,對于孔茲巖帶西段賀蘭山-千里山地區(qū),周喜文等(2010)和Yin(2010)在高壓泥質(zhì)麻粒巖中發(fā)現(xiàn)了Ky+Kfs礦物組合,并認(rèn)為早期經(jīng)歷了高壓變質(zhì)作用,利用相平衡模擬得到了近等溫減壓的順時針P-T軌跡,峰期變質(zhì)溫壓條件為792~805℃和10.2~11.2kbar。鋯石U-Pb年代學(xué)研究顯示該地區(qū)變泥質(zhì)巖的變質(zhì)時代為~1950Ma(周喜文和耿元生,2009;Yin et al.,2009,2011)。在中段大青山-烏拉山地區(qū),Liu et al.(1993)提出該區(qū)變泥質(zhì)巖也經(jīng)歷了近等溫減壓的變質(zhì)階段,峰期溫度達(dá)~800℃,壓力最高達(dá)~8kbar,也得出順時針P-T軌跡。另外,Cai et al.(2014)研究得到大青山富鋁片麻巖經(jīng)歷了四個變質(zhì)演化階段,也顯示近等溫減壓的順時針P-T軌跡,通過P-T視剖面圖限定出峰期變質(zhì)溫壓條件為840~880℃和9~11kbar。鋯石U-Pb年代學(xué)研究表明該地區(qū)變沉積巖記錄的變質(zhì)年齡為1840~1800Ma(Xia et al.,2006b),而變基性巖則記錄了1933~1834Ma的變質(zhì)年齡(劉平華等,2013)。值得注意的是,Wan et al.(2013a)提出大青山-烏拉山變基性巖記錄了1970~1920Ma的巖漿年齡,反映古元古代陸內(nèi)伸展事件,相反,部分研究者(趙國春,2009;周喜文和耿元生,2009;Yin et al.,2009,2011;Zhao et al.,2010;Dong et al.,2013)則認(rèn)為孔茲巖帶泥質(zhì)麻粒巖的變質(zhì)鋯石記錄的~1950Ma代表孔茲巖帶碰撞拼合的時代,而~1920Ma為碰撞后的伸展事件。此外,對于東段集寧-卓資-涼城一帶,盧良兆等(1992)指出集寧富鋁片麻巖經(jīng)歷了兩期變質(zhì)作用,第一期變質(zhì)作用的峰期溫度條件為~850℃。劉福來等(2002)亦報道了涼城地區(qū)富鋁片麻巖中的鋯石含有代表進變質(zhì)階段的礦物組合的包裹體Ky+Grt+Kfs+Qz,并提出該區(qū)在早期經(jīng)歷了較高的變質(zhì)壓力條件。Wang et al.(2011)對集寧-卓資一帶的富鋁片麻巖利用相平衡模擬手段刻畫出了近等溫減壓型的順時針P-T軌跡,其中峰期溫壓條件可達(dá)825℃和13kbar。Jiao et al.(2013a)對小什字石榴花崗巖進行了詳細(xì)的變質(zhì)作用研究后進一步劃分出M1,M2和M3三個變質(zhì)階段,金紅石Zr溫度計和P-T視剖面手段綜合限定各變質(zhì)階段的溫壓條件分別為820~850℃(最高可達(dá)950℃)和8.5~9.5kbar,850 ~865℃和 7.4~7.6kbar,710~720℃和6.4~6.6kbar,同樣得到了典型的近等溫減壓型的順時針P-T軌跡。鋯石U-Pb年代學(xué)研究表明集寧地區(qū)富鋁片麻巖的變質(zhì)年齡為1840~1870Ma(Wan et al.,2006),集寧-卓資的富鋁片麻巖也記錄了1810Ma的變質(zhì)年齡(Xia et al.,2006a)。Jiao et al.(2013b)進一步研究獲得了集寧小什字石榴石巖的變質(zhì)年齡為~1890Ma,并認(rèn)為是孔茲巖帶開始折返的時代。對于孔茲巖帶與中部造山帶交界的地區(qū)如黃土窯-四方墩一帶,劉福來和沈其韓(1999)研究認(rèn)為該地富鋁片麻巖也經(jīng)歷了近等溫減壓的順時針P-T軌跡,峰期溫度達(dá)750~850℃。此外,近年來,一些研究者在孔茲巖帶中段大青山-烏拉山的東坡和東段土貴烏拉、和林格爾、土貴山等地區(qū)還報道了超高溫變質(zhì)巖的出露,超高溫的標(biāo)志性礦物組合包括假藍(lán)寶石+石英,低Zn和Cr尖晶石+石英,斜方輝石+夕線石+石英等(Harley,2008;Kelsey,2008)。前人圍繞這些超高溫變質(zhì)巖的變質(zhì)演化和成因等進行了系統(tǒng)的研究,然而,對于該種巖石所經(jīng)歷的P-T軌跡樣式仍有爭議,其中Santosh et al.(2009)提出土貴烏拉超高溫變質(zhì)巖經(jīng)歷了逆時針的P-T軌跡(峰期變質(zhì)溫度 >950℃),Guo et al.(2012)則得出東坡超高溫變質(zhì)巖記錄了順時針的P-T軌跡(峰期溫度為910~980℃),而二者的P-T軌跡均顯示近等溫減壓的變質(zhì)階段(圖9),并認(rèn)為1930~1920Ma是超高溫變質(zhì)的時代。趙國春(2009)認(rèn)為~1920Ma的超高溫變質(zhì)事件發(fā)生在陰山和鄂爾多斯陸塊碰撞拼合之后,與碰撞后的伸展環(huán)境下的地幔巖漿底侵有關(guān)。

圖9 孔茲巖帶變泥質(zhì)巖的P-T演化軌跡(1)集寧變質(zhì)雜巖(第一期變質(zhì)事件;盧良兆等,1992);(2)集寧變質(zhì)雜巖(第二期變質(zhì)事件;盧良兆等,1992);(3)集寧富鋁片麻巖(Wang et al.,2011)(4)集寧小什字石榴石巖(Jiao et al.,2013a);(5)土貴烏拉超高溫變質(zhì)巖(Santosh et al.,2009);(6)東坡地區(qū)超高溫變質(zhì)巖(Guo et al.,2012);(7)大青山-烏拉山變質(zhì)雜巖(Liu et al.,1993);(8)大青山地區(qū)富鋁片麻巖(Cai et al.,2014);(9)賀蘭山高壓泥質(zhì)麻粒巖(Yin,2010);(10)集寧三岔口夕線堇青石榴二長片麻巖(本文)Fig.9 Metamorphic P-T paths of the metapelites in the Khondalite Belt(1)Jining Complex(first metamorphic event;Lu et al.,1992);(2)Jining Complex(second metamorphic event;Lu et al.,1992);(3)Al-rich gneisses in Jining(Wang et al.,2011);(4)Xiaoshizi garnetite in Jining terrane(Jiao et al.,2013a);(5)ultrahightemperature granulites in Tuguiwula(Santosh et al.,2009);(6)ultrahigh-temperature granulites in Dongpo(Guo et al.,2012);(7)Daqingshan-Wulashan Complex(Liu et al.,1993);(8)pelitic granulites in Daqingshan area(Cai et al.,2014);(9)highpressure pelitic granulites in Helanshan(Yin,2010);(10)Sil-Crd-Grt paragneiss from Sanchakou,Jining area(this study)

本文通過對三岔口夕線堇青石榴二長片麻巖的變質(zhì)作用和鋯石年代學(xué)研究得到近等溫減壓型順時針P-T演化軌跡和變質(zhì)時代均與上述前人研究結(jié)果一致,表明該巖石在古元古代(1912±11Ma)經(jīng)歷了麻粒巖相變質(zhì)(峰期溫壓條件為852~862℃和9.3~10.2kbar),順時針P-T軌跡可能與地殼擠壓增厚有關(guān),反映碰撞造山過程中,地殼擠壓增厚并隨后折返至地表的動力學(xué)過程(England and Thompson,1984;Thompson and England,1984;Condie,1992;Brown,1993),進一步支持了孔茲巖帶的碰撞拼合模式(Zhao et al.,2005),表明華北克拉通西部的陰山陸塊和鄂爾多斯陸塊間的俯沖-碰撞作用造成陸殼加厚,加厚的陸殼物質(zhì)經(jīng)歷了麻粒巖相變質(zhì)作用,變質(zhì)壓力先達(dá)到最大值,在重力均衡效應(yīng)的作用下,變質(zhì)地殼發(fā)生快速折返導(dǎo)致變質(zhì)壓力迅速降低,而溫度降低較慢,即經(jīng)歷了近等溫減壓的退變質(zhì)過程,巖相學(xué)上表現(xiàn)為石榴石變斑晶邊部產(chǎn)生含堇青石的退變邊,指示該巖石形成于大陸碰撞的構(gòu)造環(huán)境。

9 結(jié)論

對集寧三岔口夕線堇青石榴二長片麻巖的巖相學(xué)、變質(zhì)反應(yīng)結(jié)構(gòu)、礦物化學(xué)、相平衡模擬以及鋯石U-Pb年代學(xué)等方面的綜合分析研究,得出以下幾點認(rèn)識:

(1)三岔口夕線堇青石榴二長片麻巖保留了典型的減壓反應(yīng)結(jié)構(gòu),研究結(jié)果表明該巖石明確記錄了兩個階段變質(zhì)作用的礦物組合:峰期變質(zhì)階段M1的礦物組合為Grt+Sil+Bt+Qz+Pl+Kfs+Ilm±Mag;峰后減壓變質(zhì)階段的M2-1階段礦物組合為Grt+Crd+Sil+Qz+Pl+Kfs+Ilm ±Spl,M2-2階段的礦物組合為Grt+Crd+Bt+Qz+Pl+Kfs+Ilm+Mag±Spl。

(2)結(jié)合相平衡模擬和傳統(tǒng)地質(zhì)溫壓計獲得研究區(qū)樣品的峰期變質(zhì)階段M1的溫壓條件為T=852~862℃,P=9.3~10.2kbar;峰期后近等溫減壓的M2-1階段的溫壓條件為854~880℃和7.0~7.4kbar,M2-2階段的溫壓條件為820 ~848℃和5.3~6.4kbar。

(3)三岔口夕線堇青石榴二長片麻巖經(jīng)歷的變質(zhì)年齡在1912 ±11Ma。

(4)與孔茲巖帶出露的其他變泥質(zhì)巖類似,三岔口夕線堇青石榴二長片麻巖記錄了典型的近等溫減壓型的順時針P-T軌跡,具造山帶變質(zhì)作用特點。

(5)三岔口夕線堇青石榴二長片麻巖可能卷入了華北克拉通西部古老陸塊之間的碰撞造山作用,并經(jīng)歷了麻粒巖相變質(zhì)作用后折返至地表。

致謝北京大學(xué)造山帶與地殼演化教育部重點實驗室電子探針室舒桂明老師在礦物成分測試過程中給予了指導(dǎo)和幫助;大陸動力學(xué)國家重點實驗室掃描電鏡和能譜實驗室陳方遠(yuǎn)老師在實驗中給予建議和指導(dǎo);中國地質(zhì)科學(xué)院地質(zhì)研究所劉超輝博士和肖玲玲博士在野外提供了很大的幫助;北京大學(xué)魏春景教授對本文提出寶貴的修改意見和建議;兩名匿名審稿人對本文提出建設(shè)性的評審意見;在此一并表示衷心感謝。

Aydin F,Karsli O and Sadiklar MB.2003.Mineralogy and chemistry of biotites from Eastern Pontide granitoid rocks,NE-Turkey:Some petrological implications for granitoid magmas.Chemie der Erde-Geochemistry,63(2):163-182

Bhattacharya A,Mazumdar AC and Sen SK.1988.Fe-Mg mixing in cordierite:Constraintsfrom naturaldata and implicationsfor cordierite-garnet geothermometry in granulites. American Mineralogist,73(3-4):338-344

Bose S,Das K,Ohnishi I,Torimoto J,Karmakar S,Shinoda K and Dasgupta S.2009.Characterization of oxide assemblages of a suite of granulites from Eastern Ghats Belt,India:Implication to the evolution of C-O-H-F fluids during retrogression.Lithos,113(3-4):483-497

Brown M.1993.P-T-t evolution of orogenic belts and the causes of regional metamorphism.Journal of the Geological Society of London,150:227-241

Brown M.2002.Retrograde processes in migmatites and granulites revisited.Journal of Metamorphic Geology,20(1):25-40

Cai J,Liu PH,Liu FL,Liu JH,Wang F and Shi JR.2013a.Genetic mineralogy and metamorphic evolution of Al-rich gneisses in the Shiguai area,Daqingshan-Wulashan metamorphic complex belt.Acta Petrologica Sinica,29(2):437-461(in Chinese with English abstract)

Cai J,Liu FL,Liu PH,Shi JR and Liu JH.2013b.Petrogenesis and metamorphic P-T conditions of garnet-spinel-biotite-bearing paragneiss in Danangou area,Daqingshan-Wulashan metamorphic complex belt.Acta Petrologica Sinica,29(7):2313-2328(in Chinese with English abstract)

Cai J,Liu FL,Liu PH,Liu CH,Wang F and Shi JR.2014.Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan complex,North China Craton.Precambrian Research,241:161-184

Cesare B,Satish-Kumar M,Cruciani G,Pocker S and Nodari L.2008.Mineral chemistry of Ti-rich biotite from pegmatite and metapelitic granulites of the Kerala Khondalite Belt(Southeast India):Petrology and further insight into titanium substitutions. American Mineralogist,93(2-3):327-338

Clarke GL,Powell R and Guiraud M.1989.Low-pressure granulite facies metapelitic assemblages and corona textures from MacRobertson Land,East Antarctica:The importance of Fe2O3and TiO2in accounting for spinel-bearing assemblages. Journal of Metamorphic Geology,7(3):323-335

Condie KC,Boryta MD,Liu JZ and Qian XL.1992.The origin of khondalites:Geochemical evidence from the Archean to Early Proterozoic granulite belt in the North China Craton.Precambrian Research,59(3-4):207-223

Dan W,Li XH,Guo JH,Liu Y and Wang XC.2012.Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton:Juvenile crustal materials deposited in active or passive continental margin?Precambrian Research,222-223:143-158

Dong CY,Liu DY,Li JJ,Wan YS,Zhou HY,Li CD,Yang YH and Xie LW.2007.Palaeoproterozoic Khondalite Belt in the western North China Craton:New evidence from SHRIMP dating and Hf isotope composition of zircons from metamorphic rocks in the Bayan Ul-Helan Mountains area.Chinese Science Bulletin,52(21):2984-2994

Dong CY,Wan YS,Xu ZY,Liu DY,Yang ZS,Ma MZ and Xie HQ.2013.SHRIMP zircon U-Pb dating ofLate Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton.Science China(Earth Sciences),56(1):115-125

England PC and Thompson AB.1984.Pressure-temperature-time paths of regional metamorphism I.Heat transfer during the evolution of regions of thickened continental crust.Journal of Petrology,25(4):894-928

Ganguly J and Saxena SK.1984.Mixing properties of aluminosilicate garnets:Constraints from natural and experimentaldata,and applications to geothermo-barometry.American Mineralogist,69(1-2):88-97

Geng JZ,Zhang J,Li HK,Li HM,Zhang YQ and Hao S.2012.Tenmicron-sized zircon U-Pb datingusingLA-MC-ICP-MS. Acta Geoscientia Sinica,33(6):877-884(in Chinese with English abstract)

Gnos E and Kurz D.1994.Sapphirine-quartz and sapphirine-corundum assemblages in metamorphicrocks associated with theSemail Ophiolite(United Arab Emirates).Contributions to Mineralogy and Petrology,116(4):398-410

Guo JH,Wang SS,Sang HQ and Zhai MG.2001.40Ar-39Ar age spectra of garnet porphyroblast:Implications for metamorphic age of highpressure granulite in the North China Craton.Acta Petrologica Sinica,17(3):436-442(in Chinese with English abstract)

Guo JH,Peng P,Chen Y,Jiao SJ and Windley BF.2012.UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions:Implications for tectonic evolution of the northern margin of the North China Craton.Precambrian Research,222-223:124-142

Hand M,Scrimgeour I,Powell R,Stüwe K and Wilson CJL.1994.Metapeliticgranulites from Jetty Peninsula,EastAntarctica:Formation during a single event or by polymetamorphism?Journal of Metamorphic Geology,12(4):557-573

Harley SL. 2008. Refining the P-T records of UHT crustal metamorphism.Journal of Metamorphic Geology,26(2):125-154

Harris N.1981.The application of spinel-bearing metapelites to P/T determinations:An example from South India.Contributions to Mineralogy and Petrology,76(2):229-233

Holdaway MJ and Lee SM.1977.Fe-Mg cordierite stability in high-grade pelitic rocksbased on experimental, theoretical, and natural observations.Contributions to Mineralogy and Petrology,63(2):175-198

Holdaway MJ.2000.Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist,85(7-8):881-892

Holdaway MJ.2001.Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer.American Mineralogist,86:1117-1129

Holland TJB and Powell R.1998.An internally consistent thermodynamic dataset for phases of petrological interest.Journal of Metamorphic Geology,16(3):309-343

Holland TJB and Powell R.2003.Activity-composition relations for phases in petrological calculations:An asymmetric multicomponent formulation.Contributions to Mineralogy and Petrology,145(4):492-501

Hu JM,Liu XS,Li ZH,Zhao Y,Zhang SH,Liu XC,Qu HJ and Chen H.2013.SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance.Chinese Science Bulletin,58(1):118-127

Jiao SJ and Guo JH. 2011. Application of the two-feldspar geothermometer to ultrahigh-temperature(UHT)rocks inthe Khondalite belt,North China craton and its implications.American Mineralogist,96(2-3):250-260

Jiao SJ,Guo JH,Harley SL and Windley BF.2013a.New constraints from garnetite on the P-T path of the Khondalite Belt:Implications for the tectonic evolution of the North China Craton.Journal of Petrology,54:1725-1758

Jiao SJ,Guo JH,Harley SL and Peng P.2013b.Geochronology and trace element geochemistry of zircon,monazite and garnet from the garnetite and/or associated other high-grade rocks:Implications for Palaeoproterozoic tectonothermal evolution of the Khondalite Belt,North China Craton.Precambrian Research,237:78-100

Jin XD and Zhu HP.2000.Determination of 43 trace elements in rock samples by double focusing high resolution inductively coupled plasma-mass spectrometry.Chinese Journal of Analytical Chemistry,28(5):563-567(in Chinese with English abstract)

Kelsey DE,White RW,Powell R,Wilson CJL and Quinn CD.2003.New constraints on metamorphism in the Rauer Group,Prydz Bay,East Antarctica.Journal of Metamorphic Geology,21(8):739-759

Kelsey DE.2008.On ultrahigh-temperature crustal metamorphism.Gondwana Research,13(1):1-29

Kohn MJ and Spear FS.2000.Retrograde net transfer reaction insurance for pressure-temperature estimates.Geology,28(12):1127-1130

Korhonen FJ,Saw AK,Clark C,Brown M and Bhattacharya S.2011.New constraints on UHT metamorphism in the Eastern Ghats Province through the application of phase equilibria modelling and in situ geochronology.Gondwana Research,20(4):764-781

Liu FL,Shen QH,Geng YS,Xu XC and Ma R.1998.Genetic relationship ofmetamorphic reaction and dehydration-melting:Example from Al-rich gneiss of khondalite series on the border of Jin(Shanxi Province)-Inner Mongolia.Science in China(Series D),41(1):49-56

Liu FL and Shen QH.1999.Retrogressive textures and metamorphic reaction features of Al-rich gneisses in the granulite facies belt from northwestern Hebei Province.Acta Petrologica Sinica,15(4):505-517(in Chinese with English abstract)

Liu FL,Shen QH and Zhao ZR.2002.Evolution of mineral assemblages of khondalite series in the process of prograde metamorphism,southeastern Inner Mongolia:Evidence from mineral inclusions in zircons.Geological Bulletin of China,21(2):75-78(in Chinese with English abstract)

Liu PH,Liu FL,Cai J,Liu JH,Shi JR and Wang F.2013.Geochronological and geochemicalstudy ofthe Lijiazimafic granulites from the Daqingshan-Wulashan metamorphic complex,the central Khondalite Belt in the North China Craton.Acta Petrologica Sinica,29(2):462-484(in Chinese with English abstract)

Liu SJ,Tsunogae T,Li WS,Shimizu H,Santosh M,Wan YS and Li JH.2012.Paleoproterozoic granulites from Heling’er:Implications for regional ultrahigh-temperature metamorphism in the North China Craton.Lithos,148:54-70

Liu XS,Jin W,Li SX and Xu XC.1993.Two types of Precambrian high-grade metamorphism, InnerMongolia, China. Journalof Metamorphic Geology,11(4):499-510

Lu LZ,Jin SQ,Xu XC and Liu FL.1992.The Petrogenesis and Orebearing Potential of Precambrian Khondalite Series in Southeast Inner Mongolia.Changchun:Jilin Science and Technology Press,4-121(in Chinese)

Lu LZ and Jin SQ.1993.P-T-t paths and tectonic history of an Early Precambrian granulite facies terrane,Jining district,south-east Inner Mongolia,China.Journal of Metamorphic Geology,11(4):483-498

Lu LZ,Xu XC and Liu FL.1996.The Early Precambrian Khondalite Series in the North China.Changchun:Changchun Publishing House,16-118(in Chinese)

Ma MZ,Wan YS,Santosh M,Xu ZY,Xie HQ,Dong CY,Liu DY and Guo CL.2012.Decoding multiple tectonothermal events in zircons from single rock samples:SHRIMP zircon U-Pb data from the Late Neoarchean rocks of Daqingshan,North China Craton.Gondwana Research,22(3-4):810-827

Newton RC and Haselton HT.1981.Thermodynamics of the garnetplagioclase-Al2SiO5-quartz geobarometer. In: Newton RC,Navrotsky A and Wood BJ(eds.).Thermodynamics of Minerals and Melts.New York:Springer-Verlag,131-147

Nichols GT,Berry RF and Green DH.1992.Internally consistent gahnitic spinel-cordierite-garnet equilibria in the FMASHZn system:Geothermobarometry and applications.Contributions to Mineralogy and Petrology,111(3):362-377

Peng P,Guo JH,Zhai MG and Bleeker W.2010.Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton:Evidence of crust-mantle interaction.Precambrian Research,183(3):635-659

Peng P,Guo JH,Windley BF and Li XH.2011.Halaqin volcanosedimentary succession in the central-northern margin of the North China Craton:Products of Late Paleoproterozoic ridge subduction.Precambrian Research,187(1-2):165-180

Perchuk LL,Aranovich LY,Podlesskii KK,Lavrant’eva IV,Gerasimov VY,F(xiàn)ed’kin VV,Kitsul VI,Karsakov LP and Berdnikov NV.1985.Precambrian granulites of the Aldan shield,eastern Sibéria,USSR.Journal of Metamorphic Geology,3(3):265-310

Perchuk LL.1991.Derivation of a thermodynamically consistent set of geothermometers and geobarometers for metamorphic and magmatic rocks.In:Perchuk LL(ed.).Progress in Metamorphic and Magmatic Petrology:A Memorial Volume in Honor of D.S.Korzinskiy.London:Cambridge Univ.Press,93-111

Powell R and Holland TJB.1988.An internally consistent dataset with uncertainties and correlations:3.Applications to geobarometry,worked examples and a computer program.Journal of Metamorphic Geology,6(2):173-204

Powell R,Holland TJB and Worley B.1998.Calculating phase diagrams involving solid solutions via non-linear equations,with examples using THERMOCALC.Journal of Metamorphic Geology,16(4):577-588

Powell R and Holland TJB.2008.On thermobarometry.Journal of Metamorphic Geology,26(2):155-179

Reche J and Martinez FJ.1996.GPT:An excel spreadsheet for thermobarometric calculations in metapelitic rocks.Computers&Geosciences,22(7):775-784

Rigby MJ.2009.Conflicting P-T paths within the Central Zone of the Limpopo Belt:A consequence ofdifferentthermobarometric methods?Journal of African Earth Sciences,54(5):111-126

Sack RO and Ghiorso MS.1991.An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels.Contributions to Mineralogy and Petrology,106(4):474-505

Santosh M,Sajeev K and Li JH.2006.Extreme crustal metamorphism during Columbia supercontinent assembly:Evidence from North China Craton.Gondwana Research,10(3-4):256-266

Santosh M,Tsunogae T,Li JH and Liu SJ.2007a.Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton:Implications for Paleoproterozoic ultrahigh temperature metamorphism.Gondwana Research,11(3):263-285

Santosh M,Wilde SA and Li JH.2007b.Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton:Evidence from SHRIMP U-Pb zircon geochronology.Precambrian Research,159(3-4):178-196

SantoshM, Sajeev K, LiJH, Liu SJ and Itaya T. 2009.Counterclockwise exhumation of a hot orogen:The Paleoproterozoic ultrahigh-temperature granulites in the North China Craton.Lithos,110(1-4):140-152

Sarkar S,Dasgupta S and Fukuoka M.2003.Petrological evolution of a suite of spinel granulites from Vizianagram,Eastern Ghats Belt,India,and genesis of sapphirine-bearing assemblages.Journal of Metamorphic Geology,21(9):899-913

Stüwe K.1997.Effective bulk composition changes due to cooling:A model predicting complexities in retrograde reaction textures.Contributions to Mineralogy and Petrology,129(1):43-52

Taj cˇmanová L,Konopásek J and Connolly JAD.2007.Diffusioncontrolled development of silica-undersaturated domains in felsic granulites of the Bohemian Massif(Variscan belt of Central Europe).Contributions to Mineralogy and Petrology,153(2):237-250

Thompson AB.1976.Mineral reactions in pelitic rocks II.Calculation of some P-T-X(Fe-Mg)phase relations.American Journal of Science,276(4):425-454

Thompson AB and England PC.1984.Pressure-temperature-time paths of regional metamorphism II.Their inference and interpretation using mineral assemblages in metamorphic rocks.Journal of Petrology,25(4):929-955

Vielzeuf D.1983.The spinel and quartz associations in high-grade xenoliths from Tallante(S.E.Spain)and their potential use in geothermometry and barometry.Contributions to Mineralogy and Petrology,82(4):301-311

Vielzeuf D and Montel JM.1994.Partial melting of metagreywackes Part I.Fluid-absent experiments and phase relationships.Contributions to Mineralogy and Petrology,117(4):375-393

Wan YS,Song B,Liu DY,Wilde SA,Wu JS,Shi YR,Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event.Precambrian Research,149(3-4):249-271

Wan YS,Liu DY,Dong CY,Xu ZY,Wang ZJ,Wilde SA,Yang YH,Liu ZH and Zhou HY.2009.The Precambrian khondalite belt in the Daqingshan area,North China Craton:Evidence for multiple metamorphic events in the Palaeoproterozoic era.Geological Society,London,Special Publications,323(1):73-97

Wan YS,Xu ZY,Dong CY,Nutman A,Ma MZ,Xie HQ,Liu SJ,Liu DY,Wang HC and Cu H.2013a.Episodic Paleoproterozoic(~2.45,~1.95 and ~1.85Ga)mafic magmatism and associated high temperature metamorphism in the Daqingshan area,North China Craton:SHRIMP zircon U-Pb dating and whole-rock geochemistry.Precambrian Research,224:71-93

Wan YS,Xie HQ,Yang H,Wang ZJ,Liu DY,Kr?ner A,Wilde SA,Geng YS,Sun LY,Ma MZ,Liu SJ,Dong CY and Du LL.2013b.Is the Ordos Block Archean or Paleoproterozoic in age?Implications for the Precambrian evolution of the North China Craton.American Journal of Science,313(7):683-711

Wang F, LiXP, ChuH andZhaoGC.2011.Petrologyand metamorphism of khondalites from the Jining complex,North China Craton.International Geology Review,53(2):212-229

Wei CJ and Zhou XW.2003.Progress in the study of metamorphic phase equilibrium.Geoscience Frontiers,10(4):341-351(in Chinese with English abstract)

Wei CJ and Wang W.2007.Phase equilibria in the process of anatexis in high-grade metapelites.Earth Science Frontiers,14(1):125-134

Wei CJ,Clarke G,Tian W and Qiu L.2007.Transition of metamorphic series from the kyanite-to andalusite-types in the Altai orogen,Xinjiang,China:Evidence from petrography and calculated KMnFMASH and KFMASH phase relations.Lithos,96(3-4):353-374

Wells PRA and Richardson SW.1979.Thermal evolution of metamorphic rocks in the Central Highlands of Scotland.Geological Society,London,Special Publications,8(1):339-344

White RW and Powell R.2002.Melt loss and the preservation of granulite faciesmineralassemblages. JournalofMetamorphic Geology,20(7):621-632

White RW,Powell R and Clarke GL.2002.The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block,central Australia:Constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3.Journal of Metamorphic Geology,20(1):41-55

White RW,Powell R and Halpin JA.2004.Spatially-focussed melt formation in aluminous metapelites from Broken Hill,Australia.Journal of Metamorphic Geology,22(9):825-845

White RW,Powell R and Holland TJB.2007.Progress relating to calculation of partial melting equilibria for metapelites.Journal of Metamorphic Geology,25(5):511-527

Whitney DL and Evans BW.2010.Abbreviations for names of rockforming minerals,American Mineralogist,95(1):185-187

Wu CM,Zhang J and Ren LD.2004.Empirical Garnet-Biotite-Plagioclase-Quartz(GBPQ)geobarometry in medium-to high-grade metapelites.Journal of Petrology,45(9):1907-1921

Xia XP,Sun M,Zhao GC and Luo Y.2006a.LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex,North China Craton and its tectonic significance.Precambrian Research,144:199-212

Xia XP,Sun M,Zhao GC,Wu FY,Xu P,Zhang JH and Luo Y.2006b.U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites:Constraints on the evolution of the Ordos Terrane,Western Block of the North China Craton.Earth and Planetary Science Letters,241(3-4):581-593

Yin CQ,Zhao GC,Sun M,Xia XP,Wei CJ,Zhou XW and Leung WH.2009.LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton.Precambrian Research,174(1-2):78-94

Yin CQ.2010.Metamorphism of the Helanshan-Qianlishan Complex and its implications for tectonic evolution of the khondalite belt in the western block,North China Craton.Ph.D.Dissertation.Hong Kong:The University of Hong Kong

Yin CQ,Zhao GC,Guo JH,Sun M,Xia XP,Zhou XW and Liu CH.2011.U-Pb and Hf isotopic study of zircons of the Helanshan Complex:Constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton.Lithos,122(1-2):25-38

Zhai MG,Bian AG and Zhao TP.2000.The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during Late Palaeoproterozoic and Meso-Proterozoic.Science in China(Series D),43(Suppl.):219-232

Zhao GC,Wilde SA,Cawood PA and Lu LZ.1999.Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications.Tectonophysics,310(1-4):37-53

Zhao GC,Sun M and Wilde SA.2003.Major tectonic units of the North China Craton and their Paleoproterozoic assembly.Science in China(Series D),46(1):23-38

Zhao GC,Sun M,Wilde SA and Li SZ.2005.Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited.Precambrian Research,136(2):177-202

Zhao GC.2009.Metamorphic evolution of major tectonic units in the basement of the North China Craton:Key issues and discussion.Acta Petrologica Sinica,25(8):1772-1792(in Chinese with English abstract)

Zhao GC,Wilde SA,Guo JH,Cawood PA,Sun M and Li XP.2010.Single zircon grains record two Paleoproterozoic collisional events in the North China Craton.Precambrian Research,177(3-4):266-276

Zhao GC,Cawood PA,Li SZ,Wilde SA,Sun M,Zhang J,He YH and Yin CQ.2012.Amalgamation of the North China Craton:Key issues and discussion.Precambrian Research,222-223:55-76

Zhou XW and Geng YS.2009.Metamorphic age of the khondalite series in the Helanshan region:Constraints on the evolution of the western block in the North China Craton.Acta Petrologica Sinica,25(8):1843-1852(in Chinese with English abstract)

Zhou XW,Zhao GC and Geng YS.2010.Helanshan high pressure pelitic granulite:Petrologic evidence for collision event in the western block of the North China Craton.Acta Petrologica Sinica,26(7):2113-2121(in Chinese with English abstract)

附中文參考文獻(xiàn)

蔡佳,劉平華,劉福來,劉建輝,王舫,施建榮.2013a.大青山-烏拉山變質(zhì)雜巖帶石拐地區(qū)富鋁片麻巖成因礦物學(xué)與變質(zhì)演化.巖石學(xué)報,29(2):437-461

蔡佳,劉福來,劉平華,施建榮,劉建輝.2013b.大青山-烏拉山變質(zhì)雜巖帶大南溝地區(qū)含榴尖晶黑云鉀長片麻巖成因及其形成的P-T條件.巖石學(xué)報,29(7):2313-2328

耿建珍,張健,李懷坤,李惠民,張永清,郝爽.2012.10μm尺度鋯石U-Pb年齡的LA-MC-ICP-MS測定.地球?qū)W報,33(6):877-884

郭敬輝,王松山,桑海清,翟明國.2001.變斑晶石榴石40Ar-39Ar年齡譜的含義與華北高壓麻粒巖變質(zhì)時代.巖石學(xué)報,17(3):436-442

靳新娣,朱和平.2000.巖石樣品中43種元素的高分辨等離子質(zhì)譜測定.分析化學(xué),28(5):563-567

劉福來,沈其韓.1999.冀西北麻粒巖相帶富鋁片麻巖的退變結(jié)構(gòu)及其變質(zhì)反應(yīng)性質(zhì).巖石學(xué)報,15(4):505-517

劉福來,沈其韓,趙子然.2002.內(nèi)蒙古東南部孔茲巖系進變質(zhì)過程礦物組合演化——來自鋯石中礦物包裹體的證據(jù).地質(zhì)通報.21(2):75-78

劉平華,劉福來,蔡佳,劉建輝,施建榮,王舫.2013.華北克拉通孔茲巖帶中段大青山-烏拉山變質(zhì)雜巖立甲子基性麻粒巖年代學(xué)及地球化學(xué)研究.巖石學(xué)報,29(2):462-484

盧良兆,靳是琴,徐學(xué)純,劉福來.1992.內(nèi)蒙古東南部早前寒武紀(jì)孔茲巖系成因及其含礦性.長春:吉林科學(xué)技術(shù)出版社,4-121

盧良兆,徐學(xué)純,劉福來.1996.中國北方早前寒武紀(jì)孔茲巖系.長春:長春出版社,16-118

魏春景,周喜文.2003.變質(zhì)相平衡的研究進展.地學(xué)前緣,10(4):341-351

趙國春.2009.華北克拉通基底主要構(gòu)造單元變質(zhì)作用演化及其若干問題討論.巖石學(xué)報,25(8):1772-1792

周喜文,耿元生.2009.賀蘭山孔茲巖系的變質(zhì)時代及其對華北克拉通西部陸塊演化的制約.巖石學(xué)報,25(8):1843-1852

周喜文,趙國春,耿元生.2010.賀蘭山高壓泥質(zhì)麻粒巖——華北克拉通西部陸塊拼合的巖石學(xué)證據(jù).巖石學(xué)報,26(7):2113-2121

猜你喜歡
石榴石片麻巖尖晶石
HISMELT SRV環(huán)境下剛玉尖晶石材料抗侵蝕性能研究
山東冶金(2022年4期)2022-09-14 08:58:10
鎂鋁尖晶石種類對尖晶石-方鎂石復(fù)相材料燒結(jié)性能的影響
耐火材料(2022年4期)2022-08-28 03:01:10
遼寧紅透山銅鋅礦床含礦巖系地球化學(xué)特征及找礦指示
尖晶石的資源與商貿(mào)現(xiàn)狀
中國寶玉石(2022年2期)2022-04-25 06:37:16
Sn摻雜石榴石型Li7La3Zr2O12固態(tài)電解質(zhì)的制備
空位缺陷對釔鋁石榴石在高壓下光學(xué)性質(zhì)的影響
密懷隆起
二次鋁灰燒結(jié)制備鈣鋁黃長石/鎂鋁尖晶石復(fù)相材料
石榴石
中國寶玉石(2016年2期)2016-10-14 07:58:30
如何正確的鑒別石榴石
榆林市| 南漳县| 朔州市| 信丰县| 华坪县| 武威市| 白河县| 老河口市| 新河县| 洪湖市| 丹巴县| 台中市| 台前县| 小金县| 内江市| 岚皋县| 搜索| 五寨县| 绥棱县| 临猗县| 连江县| 泗阳县| 博野县| 苗栗县| 大悟县| 宁河县| 株洲市| 文安县| 佛山市| 正蓝旗| 大竹县| 社会| 漳州市| 屏东市| 丹东市| 靖安县| 广东省| 习水县| 漾濞| 定日县| 当雄县|