徐云濱,李宏飛
(榆林學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,陜西 榆林 719000)
一類二階帶參數(shù)邊值問(wèn)題非負(fù)解的存在性
徐云濱,李宏飛
(榆林學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,陜西 榆林 719000)
對(duì)一類二階帶參數(shù)非線性邊值問(wèn)題進(jìn)行了研究,利用非線性二擇一不動(dòng)點(diǎn)定理給出了該問(wèn)題非負(fù)解存在的兩個(gè)存在性定理.
邊值問(wèn)題;非負(fù)解;存在性
二階微分方程邊值問(wèn)題因其在天文學(xué)、流體力學(xué)、工程數(shù)學(xué)等研究中有著廣泛的應(yīng)用背景而引起諸多學(xué)者的關(guān)注.文獻(xiàn)[1-2]利用上下解方法分別討論了一類二階三點(diǎn)和二點(diǎn)非線性奇異邊值問(wèn)題正解和兩個(gè)正解的存在性.文獻(xiàn)[3-4]利用錐上的不動(dòng)點(diǎn)指數(shù)定理討論了一類二階奇異邊值問(wèn)題正解的存在性.文獻(xiàn)[5]利用Adomian拆分解法討論了一類二階奇異邊值問(wèn)題的解析性.文獻(xiàn)[6]利用打靶法討論了二階奇異邊值問(wèn)題多個(gè)正解的存在性,文獻(xiàn)[7]利用Schauder不動(dòng)點(diǎn)定理對(duì)源于膨脹波邊界層理論中的一類二階奇異邊值問(wèn)題正解的存在性和唯一性進(jìn)行了研究,并利用打靶法求出了該問(wèn)題的數(shù)值解.文獻(xiàn)[8]利用錐上的不動(dòng)點(diǎn)定理討論了斯圖漠-劉維爾方程奇異邊值問(wèn)題正解的存在性.文獻(xiàn)[9]利用Krasnosel’skii不動(dòng)點(diǎn)定理討論了一類奇異邊值問(wèn)題多個(gè)正解的存在性.相關(guān)的文獻(xiàn)還可參見(jiàn)文獻(xiàn)[10-13].本文利用不同于以上文獻(xiàn)的方法,通過(guò)分析并利用非線性二擇一不動(dòng)點(diǎn)定理對(duì)更一般的一類二階帶參數(shù)非線性邊值問(wèn)題
(1)
非負(fù)解的存在性進(jìn)行討論.其中:μ是一個(gè)非負(fù)常數(shù),φp(y)=|y|p-2y,p≥2.
根據(jù)w(t)在[0,1]上有界和具有單調(diào)性的不同情況,分別給出了該問(wèn)題非負(fù)解存在的兩個(gè)存在性定理.
除非特別聲明,本文始終遵循如下約定:
(h1)f:[0,1]×[a,∞)→[0,∞)連續(xù);
(h2) 存在連續(xù)非減函數(shù)h:[a,∞)→[0,∞),使得當(dāng)u>a時(shí),h(u)>0,在(0,1)×(a,∞)上滿足f(t,u)≤h(u);
(h3)φ(t)為定義在區(qū)間[0,1]上的可微嚴(yán)格單調(diào)遞增函數(shù),φ′(t)在區(qū)間[0,1]上連續(xù),且滿足φ′(t)≤w(t)f(t,y).
定理1 如果w(t)∈C(0,1)是區(qū)間[0,1]上的非負(fù)有界函數(shù),在條件(h1)—(h3)下有下面關(guān)于邊值問(wèn)題(1)的一個(gè)非負(fù)解存在性原則:
令
(2)
其中
(3)
記
(ⅰ) 當(dāng)w(t)在(0,1)上單調(diào)非增時(shí)
令
(4)
函數(shù)H的定義同(3)式.記
(ⅱ) 當(dāng)w(t)在(0,1)上單調(diào)非減時(shí)
令
(5)
函數(shù)H的定義同(3)式.記
注 (2),(4),(5)式中的上確界可以為∞.
(b) 存在一點(diǎn)u∈?U和λ∈(0,1),使得u=Nλu.
考慮關(guān)于λ(0<λ<1)的一族問(wèn)題
(6)
這里f*:[0,1]×R→[0,∞)定義為
可證(6)式的任何解y(t)滿足
y(t)≥a,t∈[0,1].
(7)
如果(7)式不成立,假設(shè)y(t)-a在t0∈(0,1)有一個(gè)負(fù)的最小值,那么y′(t0)=0且y″(t0)≥0.
一方面,
(φp(y′(t0)))′=-[λμw(t0)f*(t0,y(t0))+φ′(t0)]=
-{λμw(t0)[f(t0,a)+a-y(t0)]+φ′(t0)}<0.
由于φp(y′)∈C1[0,1],我們知道存在t0的某鄰域N(t0,δ1),使得在此鄰域內(nèi)(φp(y′))′<0,對(duì)任意的t∈N(t0,δ1) .
另一方面,又存在t0的某鄰域(不妨設(shè)此鄰域就為N(t0,δ1)),使得當(dāng)t
從而有(φp(y′(ξ)))′≥0,這就出現(xiàn)了矛盾,所以(7)式成立.
2.1 定理1的證明
(8)
設(shè)y(t)在t0∈[0,1]有最大值,若t0=0或t0=1,可得y0≤b.下面考慮當(dāng)t0∈(0,1)且y0>b的情況,此時(shí)y′(t0)=0,并且在(0,t0)內(nèi)y′(t)≥0,在(t0,1)內(nèi)y′(t)≤0.
(ⅰ)當(dāng)t∈(0,t0)時(shí),
-y′(φp(y′))′=[λμw(t)f(t,y)+φ′(t)]y′.
先從t(t (9) 令φp(y′(s))=r,可得 結(jié)合(9)式可得 對(duì)上式再?gòu)?到t0積分,并令y(t)=u,有 (10) (ⅱ)當(dāng)t∈(t0,1)時(shí), y′(φp(y′))′=[λμw(t)f(t,y)+φ′(t)](-y′), 從t0到t積分 (11) 而 結(jié)合(11)式可得 即 再?gòu)膖0到1積分,并令y(t)=u,有 (12) 由(10)式和(12)式得 (13) 現(xiàn)把(6)式轉(zhuǎn)化為等價(jià)的積分方程 其中A滿足 (14) 解(6)式.當(dāng)λ=1時(shí),等價(jià)于找映射N1:C[0,1]→C[0,1]的一個(gè)不動(dòng)點(diǎn). 令 U={u∈C[0,1]:‖u‖ 其中 定義算子Nλ:C[0,1]→C[0,1]如下: 其中A滿足(14)式. 根據(jù)假設(shè)條件(h1)—(h3),易證Nλ:C[0,1]→C[0,1]是一族緊映射. (15) (16) 聯(lián)合(15)和(16)式得 故v∈U. 我們假設(shè)預(yù)備定理的結(jié)論(b)成立,即存在λ∈(0,1)和y∈?U滿足Nλy=y,所以y是(6)式的解,且滿足‖y(t)‖=M1,即y0=M1.由M1>b及(13)式推出 但這與(8)式的μ<η1相矛盾. 2.2 定理2的證明 (ⅰ) 因?yàn)閣(t)在(0,1)上單調(diào)非增,對(duì)固定的μ<μ2,存在M2>b滿足 (17) 設(shè)y(t)在t0∈(0,1)上取最大值,且y0>b,那么在這種情況下y′(t0)=0,而且當(dāng)t∈(0,t0)時(shí),y′(t)≥0,當(dāng)t∈(t,1)時(shí),y′(t)≤0. 當(dāng)t∈(0,t0)時(shí), -y′(φp(y′))′=[λμw(t)f(t,y)+φ′(t)]y′, 先從t(t 可得 即 再?gòu)?到t0積分,并令y(t)=u有 (18) 令 U={u∈C[0,1]:‖u‖ 然后與證明定理1類似,同理可得存在邊值問(wèn)題(1)的一個(gè)解y(t)滿足a≤y(t)≤M2,t∈[0,1]. (ⅱ) 因?yàn)閣(t)在(0,1)上單調(diào)非減,對(duì)固定的μ<μ3,存在M3>b滿足 (19) 設(shè)y(t)當(dāng)t0∈(0,1)時(shí)有最大值,并且y0>b,對(duì)(6)式中的微分方程乘以y′后兩次積分,即先從t0到t(t>t0),再?gòu)膖0到1積分可得 然后與證明情況(ⅰ)類似,可推出存在邊值問(wèn)題(1)的一個(gè)解y(t)滿足a≤y(t)≤M3,t∈[0,1]. [1] ZHONGXIN ZHANG,JUNYU WANG.The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems [J]. Journal of Computational and Applied Mathematics,2002(147):41-52. [2] IRENA RACHUNKOVA. Existence of two positive solutions of a singular nonlinear periodic boundary value problem [J]. Journal of Computational and Applied Mathematics,2000(113):27-34. [3] LISHAN LIU,XINGUANG ZHANG,YONGHONG WU. On existence of positive solutions of a two-point boundary value problem for a nonlinear singular semipositone system [J]. Applied Mathematics and Computation,2007(192):223-232. [4] LILI HU,LISHAN LIU,YONGHONG WU. Positive solutions of nonlinear singular two-point boundary value problems for second-order impulsive differential equ-ations[J]. Applied Mathematics and Computation,2008(196):550-562. [5] XINHUA ZHANG. A modification of the Adomian decomposition method for a class of nonlinear singular boundary value problems[J]. Journal of Computational and Applied Mathematics,2005(180):377-389. [6] JOHN V BAXLEY,KRISTEN E KOBYLUS. Existence of multiple positive solutions of singular nonlinear boundary value problems[J]. Journal of Computational and Applied Mathematics,2010(234):2699-2078. [7] XU YUNBIN,ZHENG LIANCUN. Singular nonlinear boundary value problem arising in the boundary layer behind expansion wave [J]. Journal of Mathematic Research & Exposition,2008,28(3):558-566. [8] JINGBAO YANG,ZHONGLI WEI. On existence of positive solutions of Sturm-Liouville boundary value problems for a nonlinear singular differential system [J]. Applied Mathematics and Computation,2011(217):6097-6104. [9] ZHONGXIN ZHANG,JUNYU WANG. On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second or-der differential equations[J].J Math Anal Appl,2003(281):99-107. [10] YUJUN CUI,YUMEI ZOU. Positive solutions of non-linear singular boundary value problems in abstractspaces [J]. Nonlinear Analysis,2008,69:287-294. [11] 陳健,沈娟,王其申. 一類非線性斯圖漠-劉維爾方程兩點(diǎn)邊值問(wèn)題解的存在性[J]. 應(yīng)用數(shù)學(xué)學(xué)報(bào),2013,36(2):298-305. [12] 孫艷梅,趙增勤. 一類二階奇異脈沖微分方程解的存在性[J]. 山東大學(xué)學(xué)報(bào):理學(xué)版,2013,48(6):91-95. [13] AGARWAL R P,REGAN D O,PATRICIA J Y W.Positive solutions of Differential,Difference and Integral equations[M]. Netherlands:Kluwer Academic,1999:28-34. [14] O’REGAN D. Some general existence principles and results for (Ψp(y′))′=q(t)f(t,y,y′),0 Abstract:A class of second order nonlinear boundary value problem with parameter is studied. Two theorems for the existence of nonnegative solutions are established by using the nonlinear alternative fixed-point theorem. Keywords:boundary value problem;nonnegative solution;existence (責(zé)任編輯:陶 理) On existence of nonnegative solutions of a class of second order boundary value problems with parameter XU Yun-bin, LI Hong-fei (School of Mathematics and Statistics,Yulin University,Yulin 719000,China) 1000-1832(2014)03-0047-06 10.11672/dbsdzk2014-03-010 2013-11-11 陜西省自然科學(xué)基金資助項(xiàng)目(2011JM1009);陜西省教育廳中青年科技人才基金資助項(xiàng)目(09JK842). 徐云濱(1979—),男,碩士研究生,講師,主要從事微分方程邊值問(wèn)題及其應(yīng)用研究;李宏飛(1967—),男,博士研究生,教授,主要從事非線性泛函分析及應(yīng)用研究. O 175 [學(xué)科代碼] 110·44 A