馮宏業(yè), 許英霞, 唐冬梅, 秦克章, 毛亞晶,3, 郭海兵, 三金柱
(1. 河北聯(lián)合大學(xué)礦業(yè)工程學(xué)院地質(zhì)系,河北唐山 063009;2. 中國科學(xué)院礦產(chǎn)資源研究重點實驗室,中國科學(xué)院地質(zhì)與地球物理研究所,北京 100029;3. 中國科學(xué)院新疆礦產(chǎn)資源研究中心,中國科學(xué)院新疆生態(tài)與地理研究所,新疆烏魯木齊 830011;4. 新疆有色地勘局七〇四隊,新疆哈密 839000)
東天山圪塔山口銅鎳礦區(qū)鎂鐵-超鎂鐵質(zhì)巖體橄欖石與尖晶石礦物學(xué)特征
馮宏業(yè)1,2, 許英霞1, 唐冬梅2, 秦克章2, 毛亞晶2,3, 郭海兵4, 三金柱4
(1. 河北聯(lián)合大學(xué)礦業(yè)工程學(xué)院地質(zhì)系,河北唐山 063009;2. 中國科學(xué)院礦產(chǎn)資源研究重點實驗室,中國科學(xué)院地質(zhì)與地球物理研究所,北京 100029;3. 中國科學(xué)院新疆礦產(chǎn)資源研究中心,中國科學(xué)院新疆生態(tài)與地理研究所,新疆烏魯木齊 830011;4. 新疆有色地勘局七〇四隊,新疆哈密 839000)
新近發(fā)現(xiàn)的圪塔山口含銅鎳礦化鎂鐵-超鎂鐵質(zhì)巖體位于新疆東天山黃山-鏡兒泉銅鎳礦帶東端,共有4個鎂鐵-超鎂鐵質(zhì)巖體,其中Ⅰ、Ⅱ、Ⅲ號巖體均見銅鎳硫化物礦化,研究表明其形成時代(282Ma)及巖漿來源與東天山地區(qū)其它銅鎳礦化鎂鐵-超鎂鐵質(zhì)巖體一致。本文對主要造巖礦物橄欖石及副礦物尖晶石進(jìn)行了顯微鏡下觀察及電子探針分析,結(jié)果表明橄欖石Fo值介于83.1~86.6之間,平均85.2,為貴橄欖石,其Ni含量變化于1273×10-6~2719×10-6,平均1918×10-6;尖晶石根據(jù)鋁含量的不同可以分為高鋁和低鋁兩種。圪塔山口巖漿為地幔源區(qū)發(fā)生15.8%~18.8%的部分熔融,并有過剩橄欖石加入的玄武質(zhì)巖漿經(jīng)結(jié)晶分異作用形成的派生巖漿。對橄欖石分離結(jié)晶和硫化物熔離的計算模擬表明橄欖石結(jié)晶前,巖漿已經(jīng)達(dá)到S飽和,結(jié)晶過程始終伴隨硫化物的熔離作用,雖然早期結(jié)晶的橄欖石與硫化物熔體間發(fā)生了Fe-Ni交換,但仍有很好的銅鎳成礦潛力。
東天山 圪塔山口鎂鐵-超鎂鐵質(zhì)巖體 橄欖石 尖晶石 銅鎳成礦潛力
Feng Hong-ye, Xu Ying-xia, Tang Dong-mei, Qin Ke-zhang, Mao Ya-jing, Guo Hai-bing, San Jin-zhu. Mineralogical characteristics of olivine and spinel from Getashankou Cu-Ni-bearing mafic-ultramafic intrusions in eastern Tianshan, NW China[J]. Geology and Exploration, 2014, 50(2):0346-0359.
新疆東部是我國重要的銅、鎳、金礦集區(qū),其中與銅鎳硫化物礦床相關(guān)的鎂鐵-超鎂鐵質(zhì)巖體聚集區(qū)—東天山地區(qū)康古爾-黃山韌性剪切帶一直被地質(zhì)學(xué)家和構(gòu)造學(xué)家所關(guān)注(倪志耀,1992;楊前進(jìn)等,1999;毛景文等,2002;秦克章等,2002,2003,2012;Qinetal., 2003,2011;Xuetal., 2003;王玉往等,2004,2009;孫赫等,2006,2008;三金柱,2007,2010;沈遠(yuǎn)超等,2007;唐冬梅等,2009;Tangetal., 2011,2012)。新疆有色地勘局704隊新近發(fā)現(xiàn)的圪塔山口含硫化物鎂鐵-超鎂鐵質(zhì)巖體位于圖拉爾根大型銅鎳鈷礦床正東約18km處,沿康古爾-黃山深大斷裂產(chǎn)出。研究表明圪塔山口成巖成礦時代為282Ma,與東天山其它巖體形成時代相近,其母巖漿來自虧損地幔的鈣堿性玄武質(zhì)巖漿,為東天山地區(qū)有利的成礦母巖漿(馮宏業(yè)等,已接收)。成礦元素Ni作為橄欖石與硫化物中的相容元素,可以利用Ni在二者中相容性的差異指示是否存在硫化物的熔離,因此橄欖石成分除用來探討巖漿結(jié)晶演化過程外,還可以提供豐富的成礦信息(Lietal., 2007;秦克章等,2007)。尖晶石作為鎂鐵-超鎂鐵質(zhì)巖中最早結(jié)晶的副礦物,其元素組成既可以指示其形成時的物理化學(xué)條件,也可以為研究巖石學(xué)與地球動力學(xué)提供有效的指示(Dicketal., 1984)。圪塔山口巖體尚未有系統(tǒng)的礦物學(xué)研究, 本文利用電子探針分析了圪塔山口鎂鐵-超鎂鐵質(zhì)巖體中橄欖石及尖晶石的化學(xué)成分,為判定圪塔山口地幔源區(qū)的部分熔融程度和金屬硫化物的深部熔離作用及其對成巖成礦的指示提供了礦物化學(xué)的依據(jù)。
圖1 圪塔山口Cu-Ni硫化物礦化巖體大地構(gòu)造位置與礦區(qū)地質(zhì)簡圖(a據(jù)秦克章等,2002,2007,b據(jù)①)Fig.1 Map showing location and simplified geology of Getashankou Cu-Ni bearing intrusion ((a) after Qin et al., 2002, 2007, (b) after ① ) 1-吐哈盆地;2-博格達(dá)-哈爾里克島??;3-覺羅塔格構(gòu)造帶;4-康古爾-黃山韌性剪切帶;5-中天山地塊;6-鎂鐵-超鎂鐵質(zhì)巖體;7-第四系;8-泥盆系大南湖組;9-花崗巖;10-閃長巖;11-輝長巖及編號;12-橄欖輝石巖+輝石橄欖巖;13-礦體;14-地質(zhì)界線1-Tu-Ha basin; 2-Bogeda-Haerlike belt; 3-Jueluotage belt; 4-Kangguer-Huangshan ductile shear zone; 5-middle-Tianshan massif; 6-mafic-ultramafic intrusion; 7-Quaternary; 8-Da’nanhu Formation of middle Dovonian; 9-granite; 10-diorite; 11-gabbro and number;12-olivine websterite and lherzolite; 13-ore body; 14-geological boundary
圪塔山口大地構(gòu)造位置上處于準(zhǔn)噶爾與塔里木兩大板塊拼接所形成的康古爾-黃山碰撞對接帶的東段,區(qū)域上屬東天山銅、鎳成礦帶東端(圖1a)??倒艩?黃山區(qū)域性深大斷裂及韌性剪切帶為鎂鐵-超鎂鐵質(zhì)巖漿的就位與成礦提供了有利的導(dǎo)礦和容礦空間。
區(qū)域地層主要為古生界的石炭系和泥盆系,其次為中上元古界和新生界。中上元古界主要分布于中天山和北山地區(qū),為一套變質(zhì)碳酸鹽巖-碎屑巖地層;泥盆系和石炭系大多分布于沙泉子斷裂帶以北,主要為一套海相火山噴發(fā)-沉積建造;新生界主要為陸相碎屑沉積物,廣泛分布于區(qū)內(nèi)低洼地帶。區(qū)內(nèi)巖漿巖發(fā)育,侵入巖以中酸性巖類為主,其次為基性、超基性巖類,多為華力西期產(chǎn)物。火山巖類以基性熔巖、中酸性熔巖及火山碎屑巖最為常見。
礦區(qū)出露地層主要為下泥盆統(tǒng)大南湖組和新生界(圖1b)。大南湖組(D1d)地層分布在康古爾塔格-黃山斷裂帶北部,呈北東東向大面積展布,為一套海相火山噴發(fā)-沉積建造、火山碎屑沉積建造。新生界地層主要分布于工作區(qū)中部大溝及北西部洼地內(nèi)。受區(qū)域性深大斷裂的控制,礦區(qū)內(nèi)斷裂破碎帶均沿北東東向分布,以強(qiáng)烈擠壓、走滑兼韌性剪切為特征。礦區(qū)華力西期巖漿巖發(fā)育,沿北東向分布有一系列閃長巖、安山玢巖、花崗巖及4個鎂鐵-超鎂鐵質(zhì)巖體(圖1b)。
Ⅰ號巖體:地表露頭長300m,寬100m,走向北東東、傾向南東,傾角65°~69°左右。地表出露巖性主要為石英閃長巖、閃長巖、角閃輝長巖、輝長巖、輝石橄欖巖,巖漿分異演化完全。地表球形風(fēng)化發(fā)育,局部見有星點狀孔雀石、和稀疏浸染狀磁黃鐵礦、黃銅礦。巖體與圍巖界線清楚,接觸帶內(nèi)局部可見細(xì)脈狀的石英脈。
Ⅱ號巖體:長400m,寬10~40m,巖體走向約60°,傾向南,傾角45°~69°。地表平面呈環(huán)帶狀巖相分帶:角閃輝長巖相-輝石橄欖巖相-橄欖輝石巖相-輝長巖相,相鄰巖相間為漸變過渡接觸,表現(xiàn)為分異演化完全。礦體位于巖體的中上部,主要賦存于輝石橄欖巖相及橄欖輝石巖相中。
Ⅲ號巖體:長約700m,寬5~36m,走向70°,傾向南東,傾角52°~67°,巖體上盤為輝長巖相,下盤為輝橄巖相,兩巖相呈漸變過渡關(guān)系,巖性主要有角閃輝長巖及含長輝橄巖。見有大量黃褐色鐵帽帶及浸染狀孔雀石,礦石大部分為星點狀、浸染狀-稠密浸染狀、海綿隕鐵結(jié)構(gòu)的礦石,局部見貫入式塊狀礦石。
Ⅳ號巖體:長約420m,寬約100m,主要為輝長巖與角閃輝長巖,巖相相對單一,礦化程度低。根據(jù)造巖礦物粒度和風(fēng)化程度,初步推測與其它巖體不是同一時期的產(chǎn)物。
圪塔山口巖體中的橄欖石主要存在于橄欖輝石巖相和輝石橄欖巖相中,根據(jù)這兩種巖相中角閃石和斜長石含量的不同,又可分為含長角閃橄輝巖、含長橄輝巖、角閃橄輝巖、含長角閃輝橄巖、含長輝橄巖及角閃輝橄巖等。
輝石橄欖巖為黑褐色自形-半自形粒狀結(jié)構(gòu),塊狀構(gòu)造。橄欖石約占50%~75%,自形晶粒狀-渾圓狀,粒徑0.1~4mm之間(圖2a),橄欖石呈堆晶狀(圖2b)產(chǎn)出,成被輝石、角閃石、斜長石或硫化物包裹產(chǎn)出(圖2c),堆晶狀橄欖石多為自形晶,晶間充填有少量他形的斜長石、輝石及金屬硫化物(圖2b、d),被包裹者多為渾圓狀。輝石約占15%~35%,角閃石與斜長石總和約占5%~15%不等,硫化物最多者可達(dá)3%~5%,此外尚有少量尖晶石、磷灰石等副礦物。
橄欖輝石巖為黑色半自形粒狀結(jié)構(gòu),塊狀構(gòu)造,所含礦物種類與輝石橄欖巖相基本一致,只是橄欖石和輝石的含量有所變化。橄欖石約占20%~40%,多為半自形-他形晶,粒徑0.1~2mm之間,多為包橄結(jié)構(gòu),被輝石、斜長石等礦物包裹產(chǎn)出(圖2e、f),局部可見堆晶結(jié)構(gòu)。輝石含量增加至50%~60%。角閃石、斜長石、硫化物及副礦物尖晶石和磷灰石等的含量與輝石橄欖巖相當(dāng)。
通過對Ⅱ號巖體不同巖相進(jìn)行觀察,發(fā)現(xiàn)有橄欖石包裹金屬硫化物現(xiàn)象(圖2g、h),各巖相蝕變較強(qiáng),多數(shù)橄欖石部分或全部蝕變?yōu)樯呒y石或石棉(圖2b、d、i),也可見少量新鮮的橄欖石(圖2c)。尖晶石作為鎂鐵-超鎂鐵質(zhì)巖中的副礦物主要存在于橄欖石內(nèi)部及橄欖石間隙(圖2i、j、k),少量存在于輝石顆粒內(nèi)部,顯微鏡下觀察發(fā)現(xiàn)尖晶石的形成至少可分為兩期。部分尖晶石被磁鐵礦包圍,先形成的尖晶石反射色較低,后期磁鐵礦圍繞尖晶石生長,包裹先前形成的尖晶石,反射色相對較高(圖2i、l)。
橄欖石和尖晶石的主量元素分析在中國科學(xué)院地質(zhì)與地球物理研究所巖石圈演化國家重點實驗室完成,實驗儀器為JXA8100電子探針分析儀,工作條件為:電壓15kV,電流20nA,束斑直徑3~5μm。
橄欖石分析結(jié)果見表1。由表1可知圪塔山口橄欖石的Fo值介于83.1~86.6之間,平均值85.2,為貴橄欖石。橄欖石中CaO含量介于0.12%~0.29%之間,平均0.18%。Ni含量變化于1273×10-6~2719×10-6之間,平均值為1918×10-6。圪塔山口巖體淺部各巖相的蝕變程度均較強(qiáng),其造巖礦物難以進(jìn)行電子探針分析,僅選取了深部新鮮的樣品進(jìn)行礦物成分分析。圖3表明隨著鉆孔ZK602(110~160m)深度的增加,橄欖石中SiO2、FeO、MgO、Fo與Ni含量呈現(xiàn)出復(fù)雜的變化:SiO2、Fo、Ni依次出現(xiàn)先增加后減少,再增加再減少的趨勢;FeO則出現(xiàn)先減少后增加、再減少再增加的趨勢;而MgO的變化情況則更為復(fù)雜。同時圖3還說明橄欖石中Ni含量的變化主要受橄欖石結(jié)晶的影響,先結(jié)晶的Fo值較高的橄欖石樣品,其Ni含量也較高。通常一次巖漿侵位過程中由于結(jié)晶分異作用會使橄欖石、輝石等先結(jié)晶的礦物結(jié)晶堆積在巖漿底部,從而使得深部的巖相更富MgO和FeO,貧SiO2,淺部巖相中結(jié)晶的橄欖石MgO含量變低,而Fo值也相應(yīng)有所降低。圪塔山口鉆孔ZK602的橄欖石成分變化明顯與一次巖漿侵位的特征不同,可能是同源巖漿多次脈動式上涌造成的。
尖晶石分析結(jié)果(表2)表明圪塔山口尖晶石中Cr2O3含量為22.51%~34.41%,平均值為29.90%;MgO含量在2.84%~13.16%之間,平均值為8.24%;TiO2含量為0.49%~8.46%,平均值為2.05%;FeOT含量介于27.41%~64.80%之間,平均值為39.87%;Cr#介于44.0~83.5之間,平均值為56.1;Mg#值介于14.6~58.4之間,平均值為38.4。Al2O3含量為2.98~25.29%,可分為高鋁和低鋁兩個系列,低鋁尖晶石的Al2O3值為2.98%~13.60%,具有明顯高鈦的特征,高鋁尖晶石Al2O3含量為16.23%~25.29%,具有明顯低的鈦含量。說明尖晶石的形成可分為兩期,這與顯微鏡下觀察的現(xiàn)象一致。橄欖石中的尖晶石較輝石和角閃石中的尖晶石具有明顯的富鋁、低鈦特征,可能是由于早期形成的尖晶石顆粒被巖漿攜帶到淺部巖漿房而多被結(jié)晶較晚的礦物包裹所致。
圖2 圪塔山口橄欖石和尖晶石的顯微照片與背散射圖像Fig.2 Microscopic photos and backscattered images of olivine and spinel from the Getashankou intrusions a-橄欖石(正交光);b-堆晶狀橄欖石間隙中充填硫化物(單偏光);c-輝石包裹橄欖石(正交光);d-橄欖石間隙的他形單斜輝石(正交光);e-輝石包裹橄欖石(背散射);f-長石包裹橄欖石(背散射);g-橄欖石包裹金屬硫化物(正交光);h-橄欖石包裹金屬硫化物(反射光);i-尖晶石被磁鐵礦包裹(背散射圖像);j-橄欖石邊部的尖晶石(背散射圖像);k-橄欖石內(nèi)部的尖晶石(背散射圖像);l-磁鐵礦包裹尖晶石(反射光);Ol-橄欖石;Opx-斜方輝石;Cpx-單斜輝石;Serp-蛇紋石;Sp-尖晶石;Sul-硫化物;Amp-角閃石;Pl-斜長石;Apa-磷灰石;Mt-磁鐵礦;Cp-黃銅礦;Po-磁黃鐵礦a-olivine(crossed polar); b-sulfide filled in the gap of cumulus olivine(Plainlight); c-olivine package in pyroxene(crossed polar); d-xenomorphic clinopyroxene filled in the gap of olivine(crossed polar); e-olivine package in pyroxene(back scatterd image); f-olivine package in plagioclase(Back scatterd image); g-sulfide package in olivine(crossed polar); h-sulfide package in olivine(reflecting microscope); i-magnetite around spinel (back scatterd image); j-spinel in the edge of olivine (back scatterd image); k-spinel inside of olivine (back scatterd image); l-magnetite around spinel(Reflecting microscope); Ol-olivine; Opx-orthopyroxene; Cpx-clinopyroxene; Serp-serpentine; Sp-spinel; Sul-sulfide; Amp-amphibole; Pl-plagioclase; Apa-apatite; Mt-magnetite; Cp-chalcopyrite; Po-pyrrhotite
圖3 圪塔山口ZK602孔超基性巖中橄欖石成分隨深度變化曲線Fig.3 Compositional variation with depth of olivine in the ultramafic rock from drill hole ZK602 at Getashankou intrusions
電子探針分析只給出了FeOT的含量,Ballhausetal.(1991)認(rèn)為電子探針數(shù)據(jù)計算的Fe3+含量是合理的,張煒斌等(2011)通過對比利用電子探針數(shù)據(jù)和電價平衡原理計算出的Fe3+含量和穆斯堡爾譜法測得的Fe3+含量基本一致。因此本文利用電價平衡原理計算反推的尖晶石中FeO含量應(yīng)為16.74%~31.55%,平均為23.33%;Fe2O3含量介于9.70%~41.90%之間,平均值為18.38%。鉻尖晶石分類圖表明圪塔山口巖體中尖晶石主要為高鐵鉻鐵礦、高鐵富鉻尖晶石及少量富鐵鋁鉻鐵礦和富鐵富鉻尖晶石(圖4)。
圖4 圪塔山口巖體鉻尖晶石分類圖(底圖據(jù)朱福湘等,1985)Fig.4 Classification of Cr-spinel from Getashankou intrusions (base plot after Zhu et al., 1985)
4.1 母巖漿性質(zhì)
地幔橄欖巖的Cr#值除了指示形成壓力外,還可以用來指示地幔源區(qū)的熔融程度(Dick,etal., 1984)。本文采用公式F=10×ln (Cr#/100)+24來計算地幔源區(qū)部分熔融程度(Hellebrand,etal., 2001),其中F用%表示,Cr#=100×Cr3+/(Cr3++Al3+),適用于Cr#=10~60。去除圪塔山口Cr#>60的尖晶石數(shù)據(jù)后,得到地幔源區(qū)熔融程度F介于15.8%~18.8%之間(表2),平均值為17.1%。
圖5 圪塔山口MgO-Fo-FeO圖解(底圖據(jù)張招崇等,2003)Fig. 5 Diagram of MgO-Fo-FeO of Getashankou intrusions (base plot after Zhang et al., 2003)
橄欖石中NiO含量也可以用來判斷結(jié)晶分異作用并確定是否為原始玄武巖漿(Ring wood, 1956; Simkin, 1970; Sato, 1977)。與地幔巖平衡的原始玄武質(zhì)巖漿結(jié)晶的橄欖石NiO含量為0.4%左右,伴隨結(jié)晶分異作用,橄欖石中NiO含量將迅速減少(倪志耀,1991)。圪塔山口橄欖石的NiO含量為0.16%~0.35%,平均為0.24%,也說明其母巖漿為原始玄武質(zhì)巖漿分異后導(dǎo)致NiO弱虧損的派生巖漿。
綜上可知,圪塔山口巖體母巖漿為地幔源區(qū)發(fā)生15.8%~18.8%的部分熔融,并有過剩橄欖石加入而形成的玄武質(zhì)巖漿經(jīng)結(jié)晶分異作用形成的派生巖漿,其原始巖漿中MgO含量為11.84%,F(xiàn)eO含量為10.88%。東天山地區(qū)圖拉爾根含銅鎳巖體來源于虧損地幔發(fā)生約13%的部分熔融后形成的巖漿,其MgO含量為12.5%,F(xiàn)eO含量為12%;葫蘆巖體來源于虧損地幔部分熔融形成的巖漿,其MgO含量為11%,F(xiàn)eO含量為10.5%(孫赫,2009)。黃山東巖體原始巖漿為玄武質(zhì)巖漿,其MgO含量為10.3%,F(xiàn)eO含量為12.47%(倪志耀,1991;劉艷榮等,2012)??梢娵偎娇趲r體具有與東天山地區(qū)其他鎂鐵-超鎂鐵質(zhì)巖體一致的母巖漿,均為地幔源區(qū)部分熔融形成的玄武質(zhì)巖漿,且其地幔部分熔融程度及原始巖漿中MgO和FeO含量相近。
4.2 橄欖石成因的意義
前人研究表明橄欖石的Fo值和Ni含量除受結(jié)晶分異作用的控制之外,還受到以下三個方面的影響:① 硫化物的熔離;② 橄欖石與硫化物熔體或晶間硅酸鹽巖漿反應(yīng);③ 母巖漿中FeO、MgO的比值及Ni含量的變化(Lietal., 2004)。Ni在橄欖石與硅酸鹽巖漿的分配系數(shù)為2.86~13.6(Takahashi,etal., 1978),一般取7(Lietal., 2004, 2007),Ni在硫化物與硅酸鹽巖漿的分配系數(shù)為300~1000,一般取500(Barnesetal., 1999)。
計算可得圪塔山口橄欖石與熔漿間Fe-Mg分配系數(shù)Kd為0.67~0.86之間,平均為0.77,遠(yuǎn)大于正常橄欖石與熔漿間Fe-Mg分配系數(shù)(0.3~0.34),表明在橄欖石開始結(jié)晶時熔漿已經(jīng)處于不平衡的狀態(tài),說明深部存在金屬硫化物的熔離作用。鏡下觀察發(fā)現(xiàn)圪塔山口巖體中有橄欖石包裹硫化物現(xiàn)象(圖2g、h),而橄欖石又是最先晶出的礦物,也說明在橄欖石結(jié)晶之前發(fā)生過金屬硫化物的熔離作用。因此本文橄欖石Fo-Ni相關(guān)性的模擬計算主要考慮以下兩種情況:(1) 橄欖石分離結(jié)晶過程中,巖漿始終保持S不飽和;(2) 橄欖石分離結(jié)晶之前,母巖漿已達(dá)到S飽和,結(jié)晶過程中伴隨有硫化物熔體從硅酸鹽巖漿中分離。
本文假設(shè)Ni在橄欖石與硅酸鹽巖漿的分配系數(shù)為7,Ni在硫化物與硅酸鹽巖漿的分配系數(shù)取500,則與Fo值86.6,Ni含量2459ppm的橄欖石平衡的巖漿(MgO含量11.84%,F(xiàn)eO含量10.88%)為圪塔山口巖體的母巖漿,其Ni含量為351ppm。通過計算模擬橄欖石分離結(jié)晶和硫化物熔離過程,得到如圖6所示結(jié)果。圖6中曲線AB為只有橄欖石結(jié)晶分異作用時,橄欖石中Ni含量隨Fo值變化的曲線;曲線AC為橄欖石與硫化物以50∶1的比例從巖漿中分離時,橄欖石中Ni含量隨Fo值變化的曲線。具體定量模擬計算的方法見李士彬等(2008)。
由圖6可知,含長輝橄巖、含長角閃輝橄巖和角閃橄輝巖均落在曲線AB及AC上,反映了這些巖相中的橄欖石是從S飽和的巖漿中結(jié)晶出來的。而含長角閃橄輝巖和含長橄輝巖中的橄欖石成分投影點并不完全在橄欖石結(jié)晶和硫化物熔離的模擬曲線上,有相當(dāng)數(shù)量的點位于只有橄欖石結(jié)晶的曲線AB上方,可能是已經(jīng)結(jié)晶的橄欖石與熔離出的硫化物之間發(fā)生了Fe-Ni交換所致。相關(guān)研究表明,橄欖石和硫化物間的Fe-Ni交換反應(yīng)在巖漿銅鎳硫化物礦床中普遍存在,如Voisey’s Bay、金川、黃山東、喀拉通克和黃山西等(Lietal.,1999;李士彬,2008;鄧宇峰等,2012;Gaoetal.,2012;毛亞晶等,已接收)。因此圪塔山口巖體具有形成銅鎳硫化物礦床的良好潛力。
圖6 圪塔山口巖體橄欖石中Fo-Ni的關(guān)系及其模擬計算結(jié)果Fig. 6 Model calculation of Ni content versus Fo content of olivine crystals from Getashankou intrusions
本文通過對圪塔山口鎂鐵-超鎂鐵質(zhì)巖體中橄欖石與尖晶石的化學(xué)成分的研究,探討了圪塔山口母巖漿的性質(zhì)、巖漿結(jié)晶時的物理化學(xué)條件及橄欖石的成因意義,得到了以下主要認(rèn)識:
(1) 圪塔山口橄欖石的Fo值介于83.1~86.6之間,平均85.2,為貴橄欖石,其Ni含量變化于1273×10-6~2719×10-6,平均為1918×10-6。鉆孔ZK602中橄欖石的成分變化反映了圪塔山口巖體具有巖漿脈動式上侵成巖特征。
(2) 圪塔山口巖體母巖漿為地幔源區(qū)發(fā)生15.8%~18.8%的部分熔融,并有過剩橄欖石加入而形成的玄武質(zhì)巖漿經(jīng)結(jié)晶分異作用形成的派生巖漿。
(3) 圪塔山口橄欖石結(jié)晶前,巖漿已經(jīng)達(dá)到S飽和,結(jié)晶過程始終伴隨硫化物的熔離作用,雖然早期結(jié)晶的橄欖石與硫化物熔體間發(fā)生了Fe-Ni交換,但仍有很好的銅鎳成礦潛力。
致謝 論文野外工作得到了新疆有色地勘局申茂德總工、704隊雷剛副總工、康峰高工,圪塔山口(頭蘇泉)項目部楊陽、席斌斌、馬新星、楊寶新等的支持與幫助,電子探針分析得到中國科學(xué)院地質(zhì)與地球物理研究所毛騫高工、馬玉光工程師的支持,在此一并致以衷心的感謝。
[注釋]
① 新疆維吾爾自治區(qū)有色地質(zhì)勘查局七○四隊. 2011. 新疆哈密市頭蘇泉地區(qū)銅鎳金礦普查年度總結(jié)報告(2011年度)[R].
Ballhaus C, Berry R F, Green D H. 1991. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle[J]. Contributions to Mineralogy and Petrology, 107: 27-40
Barnes S J, Maier W D. 1999. The fractionation of Ni, Cu and the nobel metals in silicate and sulfide liquids[A]. In R R Keays, C M Lesher and P C Lightfoot, (eds.). Dynamic processes in magmatic ore deposits and their application in mineral exploration[C]. Geological Association of Canada Short Course Notes, 13: 69-106
Deng Yu-feng, Song Xie-yan, Zhou Tao-fa, Yuan Feng, Chen Lie-meng, Zheng Wen-qin. 2012. Correlations between Fo number and Ni content of olivine of the Huangshandong intrusion, eastern Tianshan, Xinjiang, and the genetic significances[J]. Acta Petrologica Sinica, 28(7): 2224-2234(in Chinese with English abstract)
Dick H, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineralogy and Petrology, 86: 54-76
Feng Hong-ye, Xu Ying-xia, Qin Ke-zhang, Tang Dong-mei, San Jin-zhu, Guo Hai-bing, Mao Ya-jing. 2013. Geochemical characteristics and zircon U-Pb geochronology of Getashankou mafic-ultramafic intrusions, eastern Tianshan[J]. Acta Petrologica Sinica, (Accepted) (in Chinese with English abstract)
Gao Jian-feng, Zhou Mei-fu, Lightfoot P C, Wang Yan, Qi Liang. 2012. Origin of PGE-poor and Cu-rich magmatic sulfides from the Kalatongke deposit, Xinjiang, Northwest China[J]. Economic Geology, 107(3): 481-506
Hellebrand E, Snow J E, Dick H J, Hofmann A W. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites[J]. Nature, 410: 677-681
Li Chu-si, Naldrett A J. 1999. Geology and petrology of the Voisey's Bay intrusion: Reaction of olivine with sulfide and silicate liquids[J]. Lithos, 47(1-2): 1-31
Li Chu-si, Xu Zhang-hua, Waal S A, Ripley E M, Maier W D. 2004. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: Implications for ore genesis[J]. Mineralium Deposita, 39(2): 159-172
Li Chu-si, Naldrett A J, Ripley E M. 2007. Controls on the Fo and Ni contents of olivine in sulfide-bearing mafic-ultramafic intrusions: Principles, modeling and examples from Voisey’ Bay[J]. Earth Science Frontiers, 14(5): 177-183
Li Shi-bin, Hu Rui-zhong, Song Xie-yan, Chen Lie-meng, Shen Neng-ping. 2008. Sulfide separation control in Ni content of olivine in bearing-ore intrusion[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 27(2): 146-152(in Chinese with English abstract)
Liu Yan-rong, Lv Xin-biao, Mei Wei, Hui Wei-dong. 2012. Compositions of olivine from the mafic-ultramafic complexs in eastern Tianshan, Xinjiang and implications to petrogenesus: Examples from Huangshandong and Tulargen complexs[J]. Geochimica, 41(1): 78-88(in Chinese with English abstract)
Mao Jing-wen, Yang Jian-min, Han Chun-ming, Wang Zhi-liang. 2002. Metallogenic systems of polymetallic copper and gold deposits and related metallogenic geodynamic model in eastern Tianshan, Xinjiang[J]. Earth Science-Journal of China University of Geosciences, 27(4): 413-424(in Chinese with English abstract)
Mao Ya-jing, Qin Ke-zhang, Tang Dong-mei, Xue Sheng-chao, Tian Ye, Feng Hong-ye. 2013. Multiple phases of magma emplacement and mineralization of eastern Tianshan, Xinjiang: Examplified by Huangshan Ni-Cu deposit[J]. Acta Petrologica Sinica, (Accepted)(in Chinese with English abstract)
Ni Zhi-yao. 1991. Chemical composition and petrologic significance of olivines in Huangshandong mafic-ultramafic complex in Hami, Xinjiang, China[J]. Mineralogy and Petrology, 11(3): 40-47 (in Chinese with English abstract)
Ni Zhi-yao. 1992. Origin of mafic-ultramafic complex: around Huangshan in Hami, Xinjiang[J]. Northwestern Geology, 13(2): 9-17(in Chinese with English abstract)
Qin Ke-zhang, Fang Tong-hui, Wang Shu-lai, Zhu Bao-qing, Feng Yi-min, Yu Hai-feng, Xiu Qun-ye. 2002. Plate tectonics division, evolution and metallogenic settings in eastern Tianshan mountains, NW China[J]. Xinjiang Geology, 20: 302-308(in Chinese with English abstract)
Qin Ke-zhang, Peng Xiao-ming, San Jin-zhu, Xu Xing-wang, Fang Tong-hui, Wang Shu-lai, Yu Hai-feng. 2003. Types of major ore deposits, division of metallogenic belts in eastern Tianshan, and discrimination of potential prospects of Cu, Au, Ni mineralization[J]. Xinjiang Geology, 21(2): 143-150(in Chinese with English abstract)
Qin Ke-zhang, Zhang Lian-chang, Xiao Wen-jiao, Xu Xing-wang, Mao Jing-wen. 2003. Overview of major Au, Cu, Ni and Fe deposits and metalogenic evolution of the eastern Tianshan Mountains, Northwestern China[A]. in: J. W. Mao, R. J. Goldfarb , R. Seltmann, D. W. Wang, W. J. Xiao and C. Hart(eds.). Tectonic evolution and metallogeny of the Chinese Altay and Tianshan: London, natural history museum, International Symposium of the IGCP-473 project, IAGOD Guidebook Series 10[C]. Urumqi, Xinjiang, China, 227-249
Qin Ke-zhang, Ding Kui-shou, Xu Ying-xia, Sun He, Xu Xing-wang, Tang Dong-mei, Mao Qian. 2007. Ore prtential of protoliths and modes of Co-Ni occurrence in Tulargen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang[J]. Mineral Deposits, 26(1): 1-14(in Chinese with English abstract)
Qin Ke-zhang, Su Ben-xun, Sakyi PA, Tang Dong-mei, Li Xian-hua, Sun He, Xiao Qing-hua, Liu Ping-ping. 2011. SIMS Zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-Bearing mafic-ultramafic intrusions in Eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW China): Constraints on a CA. 280Ma mantle plume[J]. American Journal of Science, 311: 237-260
Qin Ke-zhang, Tang Dong-mei, Su Ben-xun, Mao Ya-jing, Xue Sheng-chao, Tian Ye, Sun He, San Jin-zhu, Xiao Qing-hua, Deng Gang. 2012. The Tectonic setting, style, basic feature, relative erosion deee, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni-bearing Permian mafic-ultramafic complexes, Northern Xinjiang[J]. Northwestern Geology, 45(4): 83-116(in Chinese with English abstract)
Ring wood A E. 1956. Melting relationship of Ni-Mg olivine and some geochemical implications[J]. Geochimica Cosmochimica Acta, (10): 297-303
Roeder P L, Emslie R F. 1970. Olivine-liquid equilibrium[J]. Contributions to Mineralogy and Petrology, 29: 275-289
San Jin-zhu, Hui Wei-dong, Qin Ke-zhang, Sun He, Xu Xing-wang, Liang Guang-he, Wei Jun-ying, Kang Feng, Xiao Qing-hua. 2007. Geological characteristics of Tulargen magmatic Cu-Ni-Co deposit in eastern Xinjiang and its exploration direction[J]. Mineral Deposit, 26(3): 307-316(in Chinese with English abstract)
San Jin-zhu, Qin Ke-zhang, Tang Zhong-li, Tang Dong-mei, Su Ben-xun, Sun He, Xiao Qing-hua, Liu Ping-ping. 2010. Precise zircon U-Pb age dating of two mafic-ultramafic complexes at Tulargen large Cu-Ni district and its geological implications[J]. Acta Petrologica Sinica, 26(10): 3027-3035(in Chinese with English abstract)
Sato H. 1977. Nickel content of basaltic magmas: identification of primary magma and a measure of the degree of olivine fractionation[J]. Lithos, (10): 113-120
Simkin T, Simth J V. 1970. Minor element distribution in olivine[J]. Journal of Geology, (78): 304-325
Shen Yuan-chao, Shen Ping, Liu Tie-bing, Li Guang-ming, Zou Wei-lei, Wan Ke-chu, Wu Yan-sheng. 2007. Geophsical prospecting and prognosis in the Jingerquan Cu-Ni deposit, Eastern Tianshan Mountains[J]. Geology and Prospecting, 43(2): 62-67(in Chinese with English abstract)
Sun He, Qin Ke-zhang, Li Jin-xiang, Xu Xing-wang, San Jin-zhu, Ding Kui-shou, Hui Wei-dong, Xu Ying-xia. 2006. Petrographic, petrogeochemical characteristics in the Tulargen Cu-Ni-Co sulfide deposit, Eastern Tianshan, and its tectonic background[J]. Geology in China, 33(3): 606-617(in Chinese with English abstract)
Sun He, Qin Ke-zhang, Li Jin-xiang, Tang Dong-mei, Fan Xin, Xiao Qing-hua. 2008. Constraint of mantle partial melting on PGE mineralization of mafic-ultramafic intrusions in eastern Tianshan: Case study on Tulargen and Xiangshan Cu-Ni deposits[J]. Acta Petrologica Sincia, 24(5): 1079-1086(in Chinese with English abstract)
Sun He. 2009. Ore-forming mechanism in conduit system and ore-bearing property evaluation for mafic-ultramafic complex in Eastern Tianshan, Xinjiang[D]. Beijing: Graduate University of Chinese Academy of Sciences: 1-262(in Chinese with English abstract)
Takahashi E. 1978. Partitioning of Ni2+, Co2+, Fe2+, Mn2+and Mg2+between olivine and silicate melts compositional dependence of partition coefficient[J]. Geochim. Cosmochim. Acta, 42(12): 1829-1844
Tang Dong-mei, Qin Ke-zhang, Sun He, Su Ben-xun, Xiao Qing-hua, Cheng Song-lin, Li Jun. 2009. Lithological chronological and geochemical characteristics of Tianyu Cu-Ni deposit, East Tianshan: Constraints on source and genesis of mafic-ultramafic intrusions in East Xinjiang[J]. Acta Petrologica Sinica, 25(4): 817-831(in Chinese with English abstract)
Tang Dong-mei, Qin Ke-zhang, Li Chu-si, Qi Liang, Su Ben-xun, Qun Wen-jun. 2011. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic-untramafic intrusion in the Central Asian Oregenic Belt, NW China[J]. Lithos, (1-2): 84-98
Tang Dong-mei, Qin Ke-zhang, Sun He, Su Ben-xun, Xiao Qing-hua. 2012. The role of crustal contamination in the formation of Ni-Cu sulfide deposits in Eastern Tianshan, Xinjiang, Northwestern China: Evidence from trace element geochemistry, Ro-Os, Sr-Nd, zircon Hf-O, and sulfur isotopes[J]. Journal of Asian Earth Science, 49: 145-160
Wang Yu-wang, Wang Jing-bin, Wang Li-juan. 2004. REE characteristics of Cu-Ni sulfide deposits in the Hami area, Xinjiang[J]. Acta Petrologica sinica, 20(4): 935-948(in Chinese with English abstract)
Wang Yu-wang, Wang Jing-bin, Wang Li-juan, Long Ling-li. 2009. Characteristics of two mafic-ultramafic rock series in the Xiangshan Cu-Ni-(V)Ti-Fe ore district, Xinjiang[J]. Acta petrologica sinica, 25(4): 888-900(in Chinese with English abstract)
Xu Xing-wang, Ma Tian-lin, Sun Li-qian, Cai Xin-ping. 2003. Characteristics and dynamic origin of the large-scale Jiaoluotage ductile compressional zone in the eastern Tianshan Mountains, China[J]. Journal of Structural Geology, 25: 1901-1915
Yang Qian-jin, Feng Cheng-you, Ji Jin-sheng. 1999. The typomorphic characteristic of pyrite from Kanggultage gold deposit and the significance to Au ore prosperting[J]. Geology and Prospecting, 35(3): 21-23(in Chinese with English abstract)
Zhang Wei-bin, Zhang Dong-yang, Zhang Zhao-chong, Huang He, Zhao Li. 2011. Mineralogy of chromites in Mandaleke ophiolite of South Tian-shan Mountains and its geological implications [J]. Acta Petrologica et Mineralogica, 30(2): 243-258
Zhang Zhao-chong, Wang Fu-sheng. 2003. A method for identifying primary magma—Examples from picrite and alkali basalts[J]. Journal of Jilin university (Earth science edition), 33(2): 130-134. (in Chinese with English abstract)
Zhu Fu-xiang, Li Bing-lun, Yuan Qi-lin (translated). 1985. Chromite Deposits in Ural[M]. Beijing: Geological Publishing House: 12 (in Chinese)
[附中文參考文獻(xiàn)]
鄧宇峰, 宋謝炎, 周濤發(fā), 袁 峰, 陳列錳, 鄭文勤. 2012. 新疆東天山黃山東巖體橄欖石成因意義探討[J]. 巖石學(xué)報, 28(7): 2224-2234
馮宏業(yè), 許英霞, 秦克章, 唐冬梅, 郭海兵, 三金柱, 毛亞晶. 2013. 東天山圪塔山口鎂鐵-超鎂鐵質(zhì)巖體地球化學(xué)及鋯石U-Pb年代學(xué)[J]. 巖石學(xué)報(已接收)
李士彬, 胡瑞忠, 宋謝炎, 陳列錳, 沈能平. 2008. 硫化物熔離對巖漿硫化物含礦巖體中橄欖石Ni含量的影響—以金川巖體為例[J]. 礦物巖石地球化學(xué)通報, 27(2): 146-152
劉艷榮, 呂新彪, 梅 薇, 惠衛(wèi)東. 2012. 新疆東天山鎂鐵-超鎂鐵巖體中橄欖石成分特征及其成因意義: 以黃山東和圖拉爾根為例[J]. 地球化學(xué), 41(1): 78-88
毛景文, 楊建民, 韓春明, 王志良. 2002. 東天山銅金多金屬礦床成礦系統(tǒng)和成礦地球動力學(xué)模型[J]. 地球科學(xué)-中國地質(zhì)大學(xué)學(xué)報,27(4): 413-424
毛亞晶, 秦克章, 唐冬梅, 薛勝超, 田 野, 馮宏業(yè). 2013. 新疆東天山巖漿銅鎳硫化物礦床的多期次巖漿侵位與成礦作用—以黃山西銅鎳礦為例[J]. 巖石學(xué)報(已接收)
倪志耀. 1991. 新疆哈密黃山東鎂鐵-超鎂鐵雜巖體中橄欖石的化學(xué)成分及其巖石學(xué)意義[J]. 礦物巖石, 11(3): 40-47
倪志耀. 1992. 新疆哈密黃山東鎂鐵-超鎂鐵雜巖體成因探討[J]. 西北地質(zhì), 13(2): 9-17
秦克章, 方同輝, 王書來, 朱寶清, 馮益民, 于海峰, 修群業(yè). 2002. 東天山板塊構(gòu)造分區(qū)演化與成礦地質(zhì)背景研究[J]. 新疆地質(zhì), 20(4): 302-308
秦克章, 彭曉明, 三金柱, 徐興旺, 方同輝, 王書來, 于海峰. 2003. 東天山主要礦床類型、成礦區(qū)帶劃分與成礦遠(yuǎn)景區(qū)優(yōu)選[J]. 新疆地質(zhì), 21(2): 143-150
秦克章, 丁奎首, 許英霞, 孫 赫, 徐興旺, 唐冬梅, 毛 騫. 2007. 東天山圖拉爾根、白石泉銅鎳鈷礦床鈷、鎳賦存狀態(tài)及原巖含礦性研究[J]. 礦床地質(zhì), 26(1): 1-14
秦克章, 唐冬梅, 蘇本勛, 毛亞晶, 薛勝超, 田 野, 孫 赫, 三金柱, 肖慶華, 鄧 剛. 2012. 北疆二疊紀(jì)鎂鐵-超鎂鐵巖銅、鎳礦床的構(gòu)造背景、巖體類型、基本特征、相對剝蝕程度、含礦性評價標(biāo)志及成礦潛力分析[J]. 西北地質(zhì), 45(4): 83-116
三金柱, 惠衛(wèi)東, 秦克章, 孫 赫, 徐興旺, 梁光河, 魏俊英,康 峰, 肖慶華. 2007. 新疆哈密圖拉爾根全巖礦化巖漿銅-鎳-鈷礦床地質(zhì)特征及找礦方向[J]. 礦床地質(zhì), 26(3): 307-316
三金柱, 秦克章, 湯中立, 唐冬梅, 蘇本勛, 孫 赫, 肖慶華, 劉平平. 2010. 東天山圖拉爾根大型銅鎳礦區(qū)兩個鎂鐵-超鎂鐵巖體的鋯石U-Pb定年及其地質(zhì)意義[J]. 巖石學(xué)報, 26(10): 3027-3035
沈遠(yuǎn)超, 申 萍, 劉鐵兵, 李光明, 鄒為雷, 萬克初, 吳艷生. 2007. 東天山鏡兒泉銅鎳礦床成礦預(yù)測及EH4地球物理測量依據(jù)[J]. 地質(zhì)與勘探, 43(2): 62-67
孫 赫, 秦克章, 李金祥, 徐興旺, 三金柱, 丁奎首, 惠衛(wèi)東, 許英霞. 2006. 東天山圖拉爾根銅鎳鈷硫化物礦床巖相、巖石地球化學(xué)特征及其形成的構(gòu)造背景[J]. 中國地質(zhì), 33(3): 606-617
孫 赫, 秦克章, 李金祥, 唐冬梅, 范 新, 肖慶華. 2008. 地幔部分熔融程度對東天山鎂鐵質(zhì)-超鎂鐵質(zhì)巖鉑族元素礦化的約束—以圖拉爾根和香山銅鎳礦為例[J]. 巖石學(xué)報, 24(5): 1079-1086
孫 赫. 2009. 東天山鎂鐵-超鎂鐵巖銅鎳硫化物礦床通道式成礦機(jī)制與巖體含礦性評價研究[D]. 北京:中國科學(xué)院研究生院: 1-262
唐冬梅, 秦克章, 孫 赫, 蘇本勛, 肖慶華, 程松林, 李 軍. 2009. 天宇銅鎳礦床的巖相學(xué)、年代學(xué)、地球化學(xué)特征: 對東疆鎂鐵-超鎂鐵質(zhì)巖體源區(qū)和成因的制約[J]. 巖石學(xué)報, 25(4): 817-831
王玉往, 王京彬, 王莉娟. 2004. 新疆哈密黃山地區(qū)銅鎳硫化物礦床的稀土元素特征及意義[J]. 巖石學(xué)報, 20(4): 935-948
王玉往, 王京彬, 王莉娟, 龍靈利. 2009. 新疆香山銅鎳鈦鐵礦區(qū)兩個鎂鐵-超鎂鐵巖系列及特征[J]. 巖石學(xué)報, 25(4): 888-900
楊前進(jìn), 豐成友, 姬金生. 1999. 東天山康古爾塔格金礦床黃鐵礦的標(biāo)型特征及找礦意義[J]. 地質(zhì)與勘探, 35(3): 21-23
張煒斌, 張東陽, 張招崇, 黃 河, 趙 莉. 2011. 南天山滿大勒克蛇綠巖鉻鐵礦礦物學(xué)特征及其意義[J]. 巖石礦物學(xué)雜志, 30(2): 243-258
張招崇, 王福生. 2003. 一種判別原始巖漿的方法—以苦橄巖和堿性玄武巖為例[J]. 吉林大學(xué)學(xué)報(地球科學(xué)版), 33(2): 130-134
朱福湘, 李秉倫, 袁啟林(譯). 1985. 烏拉爾鉻鐵礦[M]. 北京: 地質(zhì)出版社: 12
Mineralogical Characteristics of Olivine and Spinel for Getashankou Cu-Ni-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan, NW China
FENG Hong-ye1,2, XU Ying-xia1, TANG Dong-mei2, QIN Ke-zhang2, MAO Ya-jing2,3,GUO Hai-bing4, SAN Jin-zhu4
(1. Department of Geology, Hebei United University, Tangshan, Hebei 063009; 2. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029;3. Xinjiang Research Center for Mineral Resource,Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011; 4. No.704 Geological Party, Xinjiang Geology and Exploration Bureau for Nonferrous Metals, Hami, Xinjiang 839000)
The newly discovered Cu-Ni sulfide-bearing mafic-ultramafic intrusions at Getashankou are located in the eastern section of the Huangshan-Jingerquan Cu-Ni ore belt, eastern Tianshan, NW-China. There are four mafic-ultramafic intrusions, of which the intrusionⅠ, Ⅱ and Ⅲ contain Cu-Ni sulfide. Geochronology and geochemistry indicate that their formation age(282Ma) and the magma source are similar to the other early Permian Cu-Ni-bearing mafic-ultramafic intrusions in the eastern Tianshan. Microscopic examination and electron probe analysis of olivine and spinel suggest that the olivine is chrysolite and the forsterite (Fo) values of fresh olivine vary from 83.1 to 86.6, and its average component of nickel is 1918×10-6(ranges from 1273×10-6to 2719×10-6). According to the content of aluminum, the spinel can be divided into two kinds. The magma is derivative magma originated from the basaltic magma, which came into being through 15.8%~18.8% partial melting for the mantle source region, and the excess olivine in addition. The model calculation of the variation of nickel content and Fo of olivine crystals shows that before the olivine crystal, the magma has reached sulfur saturation. It also shows that the crystallization course was accompanied by the liquation of sulfide and the Fe-Ni exchange which happened between olivine and sulfide melt. It can be concluded that the intrusions have a good potential for Cu-Ni sulfide exploration.
Eastern Tianshan, Getashankou mafic-ultramafic intrusion, olivine, spinel, Cu-Ni mineralization potential
2013-08-08;
2013-12-30;[責(zé)任編輯]郝情情。
國家自然科學(xué)基金重點項目(編號:41030424)和新疆有色集團(tuán)東天山巖漿銅鎳硫化物礦床預(yù)測評價研究項目資助。
馮宏業(yè)(1987年—),男,2011年畢業(yè)于河北聯(lián)合大學(xué),獲學(xué)士學(xué)位,在讀研究生,研究方向為巖漿銅鎳礦床成礦作用。E-mail: fhy0205@163.com。
P597.3+P618.41+P618.63
A
0495-5331(2014)02-0346-14