国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一個楊樹GDSL基因組織表達的特性及其在擬南芥異源的表達

2014-07-16 05:13:12奈婕菲程玉祥
江蘇農(nóng)業(yè)科學 2014年3期
關(guān)鍵詞:擬南芥轉(zhuǎn)基因

奈婕菲+程玉祥

摘要:GDSL酯酶為脂肪水解酶家族的一個分支,參與植物生長發(fā)育和防御反應(yīng)等多種功能。半定量RT-PCR分析結(jié)果顯示,毛果楊GDSL酯酶基因Potri.002G253400在頂端莖組織中高豐度特異性表達;構(gòu)建Potri.002G253400-GFP融合的植物表達載體,轉(zhuǎn)化模式植物擬南芥并獲得其過量表達的轉(zhuǎn)基因株系7個;激光共聚焦顯微鏡檢測結(jié)果顯示,GFP熒光蛋白高豐度表達于轉(zhuǎn)基因植株根的細胞壁區(qū)域,說明Potri.002G253400蛋白可能定位于細胞壁。

關(guān)鍵詞:毛果楊;擬南芥;GDSL酯酶;載體構(gòu)建;轉(zhuǎn)基因

中圖分類號: S792.110.4 文獻標志碼: A 文章編號:1002-1302(2014)03-0016-03

GDSL酯酶是脂肪水解酶超家族的一個亞家族,它具有廣泛的底物特異性和專一性,能夠水解多種酯類物質(zhì)[1]。它因具有GDS(L)保守區(qū)域(pfam,PF00657)簡稱GDSL,其中G、D和S分別代表甘氨酸、天冬氨酸和絲氨酸等氨基酸殘基[2]。近年來,人們從水稻、向日葵、擬南芥和玉米等多種植物體內(nèi)分離出GDSL酯酶,并鑒定出它具有脂肪酰酯水解酶活性[3]。植物GDSL酯酶是一個多基因家族,在12個不同的植物物種內(nèi)發(fā)現(xiàn)GDSL酯酶成員超過1 100個,如苔蘚、葡萄、高粱、水稻、擬南芥和楊樹基因組各存在57、96、130、144、108、126個GDSL家族成員[4-5]。GDSL酯酶參與植物發(fā)育、形態(tài)發(fā)生、次級代謝合成及多種防御反應(yīng)[6-8]。最近,Dharmawardhana等報道了楊樹莖由初級到次級生長轉(zhuǎn)變中轉(zhuǎn)錄組變化模式[9],一個GDSL基因Potri.002G253400是逐漸降低轉(zhuǎn)錄組聚類成員之一,這一信息初步暗示它可能參與了楊樹莖的初級生長。本研究通過半定量RT-PCR手段鑒定Potri.002G253400在不同木質(zhì)化程度莖節(jié)中轉(zhuǎn)錄表達模式,構(gòu)建Potri.002G253400融合綠色熒光蛋白基因GFP的植物表達載體,在擬南芥中過量表達Potri.002G253400-GFP并分析該蛋白細胞內(nèi)的定位情況。這為今后解析GDSL酯酶在楊樹莖初級生長中的作用提供了理論基礎(chǔ)。

1 材料與方法

1.1 材料

1.1.1 植物材料 以溫室生長至3個月的毛果楊為試驗材料,從頂端向基部分別取其第1至第6莖節(jié)、第9莖節(jié)、成熟葉、老葉各組織,用于基因表達分析。用于外源基因遺傳轉(zhuǎn)化的植物材料為野生型擬南芥(col-0)。

1.1.2 載體、菌株和培養(yǎng)基 pENTR/SD/D-TOPO(Invitrogen公司)和pGWB5用于轉(zhuǎn)基因植物表達載體構(gòu)建,轉(zhuǎn)化菌株為大腸桿菌TOP10和DH5α,大腸桿菌和GV3101農(nóng)桿菌分別用LB和 YEP培養(yǎng)基培養(yǎng),轉(zhuǎn)基因擬南芥在含50 mg/L卡那霉素的1/2MS培養(yǎng)基上篩選。

1.1.3 試劑 NA提取試劑pBIOZOL Reagent購自Bioflux公司,DNA Marker、dNTP、PrimeScript RT reagent Kit with gDNA eraser 試劑盒購自TaKaRa公司,質(zhì)粒提取試劑盒購于Promega公司,LR Clonase購自Invitrogen公司,卡那霉素、慶大霉素等藥品購自Sigma公司。

1.2 方法

1.2.1 總RNA提取和cDNA的合成 材料經(jīng)過液氮速凍后研碎至粉末,用pBIOZOL懸浮粉末后裝入1.5 mL離心管中,0.1 g樣品加入0.5 mL的pBIOZOL,具體操作步驟參照pBIOZOL plant total RNA Extraction Reagent說明書。提取的RNA用不含核糖核酸酶的水溶解,測定其濃度和純度??俢DNA合成使用PrimeScript RT reagent Kit with gDNA eraser試劑盒,操作步驟參照其說明書。

1.2.2 Potri.002G253400基因引物 用Primer 5.0設(shè)計Potri.002G253400半定量PCR引物,序列為UP:5′-GATTATCCAACCCACAGACCAAC-3′和 DN:5′-GGCTAACTCCGCAGGAACACAAC-3′,片段擴增長度為333 bp。Potri.002G253400基因CDS全長片段擴增引物為cds-UP:5′-CACCATGTCAATTCCTAGGATTTTTC-3′和cds-DN:5′-GAGCTTGGCATCCAGGGCCA-3′,擴增片段長度為1 110 bp。

1.2.3 PCR擴增 以所用毛果楊樣品的cDNA為模板,半定量和全長CDS的PCR擴增體系均為20 μL,上下游引物各 0.5 μL,1.0 μL模板,1.0 μL Taq DNA聚合酶,2.0 μL dNTP,2.0 μL 10×Buffer,13 μL水。PCR反應(yīng)程序:95 ℃ 預變性 5 min,95 ℃變性30 s,62 ℃ 退火30 s,72 ℃延伸(半定量和CDS PCR延伸分別為30、90 s),半定量和全長CDS的PCR擴增循環(huán)分別為25、33次。

1.2.4 植物表達載體構(gòu)建 采用Gateway技術(shù)構(gòu)建載體,取25 ng pENTR/SD/D-TOPO載體和15~30 ng Potri.002G253400基因片段相連接,反應(yīng)體系為5 μL,反應(yīng)時間 2 h。取 1 μL 連接產(chǎn)物轉(zhuǎn)化TOPO10感受態(tài)細胞,操作參見說明書。用cds-UP和cds-DN基因引物PCR擴增鑒定含Potri.002G253400融合質(zhì)粒菌落,并進行DNA測序確認。取30 ng pENTR/SD/D-TOPO-Potri.002G253400和120 ng pGWB5載體進行LR反應(yīng),反應(yīng)體系2.5 μL、反應(yīng)時間8~12 h。取 1 μL 反應(yīng)產(chǎn)物轉(zhuǎn)化DH5α感受態(tài)細胞,PCR鑒定含 pGWB5-Potri.002G253400 菌落,重組質(zhì)粒轉(zhuǎn)化GV3101農(nóng)桿菌。

1.2.5 擬南芥遺傳轉(zhuǎn)化 擬南芥遺傳轉(zhuǎn)化沾染法參見文獻[10]。

1.2.6 基因組DNA提取 擬南芥基因組DNA提取方法參見文獻[11]。

1.2.7 綠色熒光蛋白GFP檢測 綠色熒光蛋白GFP的激光共聚焦觀察方法參見文獻[12]。

2 結(jié)果與分析

2.1 楊樹Potri.002G253400基因表達特性

以毛果楊第1至第6莖節(jié)、第9莖節(jié)各cDNA為模板,進行半定量RT-PCR,結(jié)果顯示,Potri.002G253400基因轉(zhuǎn)錄水平在第1莖節(jié)處最高,其次為第2、第3莖節(jié),第4至第6、第9莖節(jié)中觀察不到。此外,使用內(nèi)參基因Actin作為半定量 RT-PCR 內(nèi)標,Actin基因擴增數(shù)據(jù)顯示第1至第6、第9莖節(jié)各樣品cDNA模板濃度基本相等(圖1-A)。這個結(jié)果表明 Potri.002G253400 基因在頂端組織中大量轉(zhuǎn)錄表達。筆者進一步在幼莖、老莖、成熟葉和老葉中檢測Potri.002G253400基因轉(zhuǎn)錄表達水平,結(jié)果顯示,在成熟葉中該基因的轉(zhuǎn)錄表達水平很低(圖1-B)。說明Potri.002G253400基因高豐度表達在毛果楊的頂端分生組織。

2.2 融合Potri.002G253400-GFP植物表達載體構(gòu)建

以毛果楊幼莖cDNA為模板,用cds-UP和cds-DN引物RT-PCR擴增得到約1.1 kb的片段(圖2-A),該片段長度與Potri.002G253400基因理論長度基本吻合。將該DNA片段連接到pENTR/SD/D-TOPO載體上,融合質(zhì)粒pENTR/SD/D-TOPO-Potri.002G253400約為3.7 kb(圖2-A),初步表明目的DNA片段已連接到pENTR/SD/D-TOPO載體上。將該質(zhì)粒進行DNA測序,結(jié)果表明pENTR/SD/D-TOPO載體上DNA片段為Potri.002G253400全長cds片段。

通過LR反應(yīng)將pENTR/SD/D-TOPO載體上的Potri.002G253400片段同源重組到pGWB5植物表達載體上,融合質(zhì)粒pGWB5-Potri.002G253400電泳檢測結(jié)果如圖2所示。以該質(zhì)粒DNA為模板,用Potri.002G253400引物進行PCR擴增,得到的1.1 kb特異條帶與目標基因片段大小相符(圖2-B)。由于pGWB5載體上融合報告基因GFP,這樣構(gòu)建了C端融合GFP的Potri.002G253400-GFP基因。把 pGWB5-Potri.002G253400 質(zhì)粒轉(zhuǎn)化GV3101農(nóng)桿菌,用于 Potri.002G253400 基因遺傳轉(zhuǎn)化擬南芥試驗。

2.3 Potri.002G253400-GFP轉(zhuǎn)基因擬南芥分析

將上述農(nóng)桿菌轉(zhuǎn)化擬南芥,篩選獲得7株抗卡那霉素的抗性植株。提取各株系基因組DNA作為模板,用Potri.002G253400基因引物擴增,得到Potri.002G253400目的DNA片段(圖3),結(jié)果表明Potri.002G253400基因已轉(zhuǎn)入擬南芥基因組,然后筆者分析了擬南芥基因組轉(zhuǎn)入的Potri.002G253400基因轉(zhuǎn)錄表達。RT-PCR分析結(jié)果如圖3所示,未轉(zhuǎn)入Potri.002G253400基因的野生型擬南芥中沒有擴增出特異條帶,而轉(zhuǎn)基因植株中擴增出很亮的特異條帶,且大小與Potri.002G253400片段大小吻合。這表明轉(zhuǎn)入到擬南芥基因組的Potri.002G253400呈現(xiàn)出高豐度的轉(zhuǎn)錄表達。

由于轉(zhuǎn)入基因是Potri.002G253400-GFP,所以筆者通過激光共聚焦顯微鏡檢測轉(zhuǎn)基因擬南芥中GFP蛋白熒光信號,熒光信號集中在轉(zhuǎn)基因擬南芥根組織的細胞膜或細胞壁區(qū)域(圖4)。通過蛋白定位預測生物學軟件PSORT(http://psort.hgc.jp/form.html)分析可知,Potri.002G253400蛋白最可能定位于細胞壁(0.820)上。

3 結(jié)論與討論

GDSL酯酶基因家族成員廣泛存在于植物界,其功能為參與生長發(fā)育、形態(tài)發(fā)生和防御反應(yīng)等。例如,擬南芥GDSL酯酶GLIP1作為植物免疫力調(diào)節(jié)因子在植物抗病上起重要作用,GLIP2轉(zhuǎn)錄表達被水楊酸、茉莉酸和乙烯信號所誘導[3,13]。本研究結(jié)果表明,Potri.002G253400基因轉(zhuǎn)錄表達水平隨毛果楊莖從初級到次級生長轉(zhuǎn)變而逐漸降低,且在成熟葉中轉(zhuǎn)錄水平也很低,這種特異的組織表達模式暗示其功能可能與楊樹莖的初級生長相關(guān)。植物GDSL酯酶家族成員組織表達模式存在冗余性與特異性,如擬南芥EXL1只在花蕾中表達[14],油菜GDSL基因BnLIP2只在根中表達[15],而番茄GDSL1只在果皮表達強烈[16]。此外,筆者運用GFP熒光蛋白分子檢測技術(shù)發(fā)現(xiàn),Potri.002G253400蛋白很可能定位在楊樹的細胞壁上。細胞壁是由木聚糖、纖維素、半纖維素以及果膠構(gòu)成的復雜糖類物質(zhì),這些成分物質(zhì)中存在大量的酯鍵。盡管還沒有鑒定出Potri.002G253400 GDSL酯酶水解底物,然而可基于其細胞壁定位推測它很可能參與細胞壁合成或作用細胞壁成分物質(zhì)的水解修飾。筆者將利用Potri.002G253400過量表達遺傳材料進一步探討該GDSL酯酶在楊樹莖初級生長中的作用以及其作用與細胞壁的關(guān)系。

參考文獻:

[1]Akoh C C,Lee G C,Liaw Y C,et al. GDSL family of serine esterases/lipases[J]. Progress in Lipid Research,2004,43(6):534-552.

[2]Brick D J,Brumlik M J,Buckley J T,et al. A new family of lipolytic plant enzymes with members in rice,arabidopsis and maize[J]. FEBS Letters,1995,377(3):475-480.

[3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.

[4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.

[5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.

[6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.

[7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.

[8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.

[9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.

[10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.

[11]徐平麗,趙晉平,孟靜靜,等. 一種適宜擬南芥PCR檢測的DNA提取方法[J]. 農(nóng)業(yè)科學與技術(shù):英文版,2010,11(3):41-42,155.

[12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.

[13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.

[14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.

[15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.

[16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.

[3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.

[4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.

[5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.

[6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.

[7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.

[8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.

[9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.

[10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.

[11]徐平麗,趙晉平,孟靜靜,等. 一種適宜擬南芥PCR檢測的DNA提取方法[J]. 農(nóng)業(yè)科學與技術(shù):英文版,2010,11(3):41-42,155.

[12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.

[13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.

[14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.

[15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.

[16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.

[3]Lee D S,Kim B K,Kwon S J,et al. Arabidopsis GDSL lipase 2 plays a role in pathogen defense via negative regulation of auxin signaling[J]. Biochemical and Biophysical Research Communications,2009,379(4):1038-1042.

[4]Beisson F,Gardies A M,Teissere M,et al. An esterase neosynthesized in post-germinated sun flower seeds is related to a new family of lipolytic enzymes[J]. Plant Physiology and Biochemistry,1997,35(10):761-775.

[5]Ling H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana[J]. Pakistan Journal of Biological Sciences,2008,11(5):763-767.

[6]Volokita M,Rosilio-Brami T,Rivkin N,et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants[J]. Molecular Biology and Evolution,2011,28(1):551-565.

[7]Zhang Z Y,Ober J A,Kliebenstein D J. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis[J]. Plant Cell,2006,18(6):1524-1536.

[8]Agee A E,Surpin M,Sohn E J,et al. MODIFIED VACUOLE PHENOTYPE1 is an Arabidopsis myrosinase associated protein involved in endomembrane protein trafficking[J]. Plant Physiology,2010,152(1):120-132.

[9]Dharmawardhana P,Brunner A M,Strauss S H. Genome-wide transcriptome analysis of the transition from primary to secondary stem development in Populus trichocarpa[J]. BMC Genomics,2010,11:150.

[10]Clough S J,Bent A F.Floral Dip:a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana[J]. Plant Journal,1998,16(6):735-743.

[11]徐平麗,趙晉平,孟靜靜,等. 一種適宜擬南芥PCR檢測的DNA提取方法[J]. 農(nóng)業(yè)科學與技術(shù):英文版,2010,11(3):41-42,155.

[12]Endo S,Pesquet E,Yamaguchi M,et al. Identifying new components participating in the secondary cell wall formation of vessel elements in zinnia and Arabidopsis[J]. Plant Cell,2009,21(4):1155-1165.

[13]Kwon S J,Jin H C,Lee S,et al. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis[J]. Plant J,2009,58(2):235-245.

[14]Schrder F,Lisso J,Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis[J]. Plant Signaling & Behavior,2012,7(1):22-27.

[15]Ling H,Zhao J Y,Zuo K J,et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L.[J]. Journal of Biochemistry and Molecular Biology,2006,39(3):297-303.

[16]Girard A L,Mounet F,Lemaire-Chamley M,et al. Tomato GDSL1 is required for cutin deposition in the fruit cuticle[J]. Plant Cell,2012,24(7):3119-3134.

猜你喜歡
擬南芥轉(zhuǎn)基因
擬南芥:活得粗糙,才讓我有了上太空的資格
探秘轉(zhuǎn)基因
學與玩(2022年10期)2022-11-23 08:32:00
轉(zhuǎn)基因,你吃了嗎?
轉(zhuǎn)基因生物,你怎么看?
富天冬酰胺蛋白增強擬南芥輻射抗性的研究
尿黑酸對擬南芥酪氨酸降解缺陷突變體sscd1的影響
兩種LED光源作為擬南芥生長光源的應(yīng)用探究
擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機制探究
Avp-iCre轉(zhuǎn)基因小鼠的鑒定
天然的轉(zhuǎn)基因天然的轉(zhuǎn)基因“工程師”及其對轉(zhuǎn)基因食品的意蘊
元氏县| 衡南县| 仪陇县| 郴州市| 江油市| 临泉县| 错那县| 曲沃县| 乳山市| 尖扎县| 凌源市| 北安市| 慈利县| 德昌县| 河北区| 萍乡市| 宁波市| 武邑县| 藁城市| 乐亭县| 黄陵县| 遵义县| 波密县| 赣州市| 彭水| 洛隆县| 巧家县| 赤城县| 成武县| 察隅县| 淮北市| 房产| 贵阳市| 西宁市| 天长市| 琼结县| 双江| 于田县| 阳山县| 涡阳县| 赤城县|