国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

誘導(dǎo)性多潛能干細胞研究進展

2014-07-05 10:23程騰賀小英馬利兵
湖北農(nóng)業(yè)科學(xué) 2014年5期

程騰 賀小英 馬利兵

摘要:通過轉(zhuǎn)染特定的一個或多個基因?qū)⒁逊只捏w細胞誘導(dǎo)成為多潛能干細胞,這種干細胞稱為誘導(dǎo)性多潛能干細胞(Induced pluripotent stem cells,iPS cells)。近年來關(guān)于iPS細胞的研究取得了舉世矚目的成就,多種已分化的體細胞都可以誘導(dǎo)成為iPS細胞,而且可以進一步將iPS細胞誘導(dǎo)成具有特定功能的細胞,稱為誘導(dǎo)性細胞。這些研究極大地促進了細胞生物學(xué)、表觀遺傳學(xué)和發(fā)育生物學(xué)的研究,并且為人類再生醫(yī)學(xué)和特異的細胞治療帶來了更美好的希望。對iPS細胞和誘導(dǎo)性細胞的最新研究狀況進行了綜述。

關(guān)鍵詞:誘導(dǎo)性多潛能干細胞(iPS細胞);誘導(dǎo)性細胞;細胞治療

中圖分類號:Q813 文獻標識碼:A 文章編號:0439-8114(2014)05-0993-05

將已分化的體細胞重編程為類胚胎干細胞樣細胞的技術(shù)完成于2006年。Takahashi等[1]通過外源表達一組選擇性的轉(zhuǎn)錄因子導(dǎo)入成體小鼠成纖維細胞,最終確定最少有4種轉(zhuǎn)錄基因組合——Oct4(也稱Pou5f1、Oct3/4)、Sox2、Klf4和c-Myc可將成纖維細胞重編程為誘導(dǎo)性多潛能干細胞(iPS細胞)。從此iPS細胞的研究開始成為干細胞研究領(lǐng)域的熱門,并且iPS細胞的來源也越來越廣泛。利用iPS細胞誘導(dǎo)技術(shù)將終末分化細胞先誘導(dǎo)成iPS細胞,再進一步誘導(dǎo)成具有特定功能的細胞,如神經(jīng)細胞,心肌細胞等,稱為誘導(dǎo)性細胞。時至今日研究者已經(jīng)開始嘗將iPS細胞應(yīng)用于臨床治療。

1 誘導(dǎo)性多潛能干細胞的研究進展

從iPS細胞誕生之日起,iPS細胞的研究就成為細胞研究領(lǐng)域的熱門。起初,研究者誘導(dǎo)iPS細胞時,iPS細胞的誘導(dǎo)效率極低,而且他們用的是4個轉(zhuǎn)錄因子Oct4、Sox2、Klf4和c-Myc,其中c-Myc還具有一定的致癌作用。后來經(jīng)過科學(xué)家們的不斷嘗試,開始用小分子化合物、miRNA、mRNA或蛋白質(zhì)等導(dǎo)入細胞來誘導(dǎo)iPS細胞[1-6],轉(zhuǎn)錄因子的個數(shù)也從4個減少到1個,甚至只用小分子化合物等物質(zhì)來誘導(dǎo)iPS細胞[7-9]。近年來iPS細胞研究取得了突破性進展,如建立了人類疾病特異的iPS細胞,借助鋅指核酸酶和轉(zhuǎn)座子等介導(dǎo)的轉(zhuǎn)基因技術(shù)高效制備了無病毒的iPS細胞[10-13]。

從2007年Takahashi 等[2]和Yu等[3]先后將人的體細胞重編程為iPS細胞開始,多種人類成體干細胞被重編程為誘導(dǎo)性多潛能干細胞,但是直到2013年Trokovic等[14]才將人類骨骼成肌細胞重編程為iPS細胞,他們通過逆轉(zhuǎn)錄病毒載體(圖1)或仙臺病毒載體介導(dǎo)目的基因的異位表達,在無飼養(yǎng)層且含有適宜的培養(yǎng)基條件下,可以使人類骨骼成肌細胞達到和人類成纖維細胞一樣的重編程效率,再加入組蛋白脫乙酰酶抑制劑丙戊酸鈉(VPA)、丁酸鈉(NaB)和ALK4/5/7抑制劑SB431542(SB),能明顯提高人類骨骼成肌細胞重編程為iPS細胞的誘導(dǎo)效率。

到目前為止,除了人之外,小鼠、大鼠、猴子、綿羊、豬的iPS細胞系均已建立[15-19]。

iPS細胞研究的意義重大,它不僅為多潛能干細胞[20]的獲取提供了新的途徑,而且避免了傳統(tǒng)胚胎干細胞研究中存在的倫理問題,同時還解決了免疫排斥反應(yīng)問題,為細胞的體外培養(yǎng)和誘導(dǎo)提供了平臺(圖2),使人們在細胞和分子水平上研究人類多種疾病及其發(fā)病機理成為可能(圖3),也為相應(yīng)藥物的研發(fā)提供了便利。正是由于iPS細胞技術(shù)使得整個細胞生物學(xué)研究發(fā)生了質(zhì)的飛躍,所以Yamanaka榮獲了2012年的諾貝爾醫(yī)學(xué)獎。當(dāng)然,目前iPS細胞的發(fā)生機制還不是十分明確,還有待深入了解,iPS細胞的誘導(dǎo)效率仍然很低,整個誘導(dǎo)過程相對繁瑣,費用比較昂貴,達到商業(yè)化、大眾化應(yīng)用的地步還有些遙遠,這一切都有待進一步研究和開發(fā)。

2 誘導(dǎo)性細胞的研究進展

利用iPS細胞誘導(dǎo)技術(shù),通過導(dǎo)入特定的轉(zhuǎn)錄因子組合,再加入一些小分子化合物等物質(zhì),將終末分化細胞先誘導(dǎo)成iPS細胞,再進一步誘導(dǎo)成具有特定功能的細胞,如神經(jīng)細胞、心肌細胞等,稱為誘導(dǎo)性細胞或誘導(dǎo)性功能細胞。到目前為止,已經(jīng)在多種具有重要功能的細胞上誘導(dǎo)成功[21-23]。

2.1 誘導(dǎo)性造血和血管祖細胞

Park等[21]在改進的無飼養(yǎng)層的內(nèi)皮培養(yǎng)條件下,利用了一組重組生長因子[骨形態(tài)發(fā)生蛋白4(BMP4)、血管內(nèi)皮生長因子(VEGF)和纖維母細胞生長因子2(FGF2)]的最適組合,然后在成分明確的內(nèi)皮細胞生長培養(yǎng)基(EGM-2)中附著低密度培養(yǎng),用人類胚胎干細胞和人類誘導(dǎo)多潛能干細胞培育出大量的CD34+CD45+造血祖細胞(表1)。這些造血祖細胞出現(xiàn)在附著于內(nèi)皮或基質(zhì)的細胞層周圍,從某種意義上來說,這種方式與體內(nèi)胚胎生血內(nèi)皮的造血方式類似。雖然之前已經(jīng)證實由成纖維細胞衍生而來的hiPSC細胞系并不具備有效分化為造血內(nèi)皮的能力,但是這個培養(yǎng)體系能夠使hiPSC具有和hESC一樣分化為造血內(nèi)皮的能力。這個有效的分化體系可用于直接延時攝像和造血發(fā)生過程的時間進程研究等。

2.2 誘導(dǎo)性神經(jīng)細胞

Kuo等[22]在由海藻酸和多聚γ-谷氨酸(γ-PGA)以及表面神經(jīng)生長因子構(gòu)成的水凝膠中將iPS細胞誘導(dǎo)成神經(jīng)元。這種由海藻酸和多聚γ-谷氨酸(γ-PGA)以及表面神經(jīng)生長因子構(gòu)成的水凝膠在整個誘導(dǎo)過程中發(fā)揮著重要作用,而孔隙結(jié)構(gòu)、孔隙度和溶脹比也有一定的影響。在這種水凝膠中,iPS細胞分化的形態(tài)學(xué)圖像(圖4)展示出神經(jīng)元的特點。在誘導(dǎo)iPS細胞向神經(jīng)元分化的過程中,表面神經(jīng)生長因子可以增強β Ⅲ微管蛋白的表達強度而抑制SSEA-1的表達強度。iPS細胞在這種水凝膠中的分化可以通過SSEA-1和β Ⅲ微管蛋白的表面抗原免疫化學(xué)染色和掃描電子顯微鏡來觀察鑒定。

2.3 誘導(dǎo)性心肌細胞

Jiang等[23]使用從Oct4-GFP-C57小鼠身上獲得的心臟成纖維細胞(Cardiac fibroblasts,CFs)感染逆轉(zhuǎn)錄表達重組因子(Oct4、Sox2、Klf4和c-Myc)來誘導(dǎo)功能性心臟細胞(Cardiomyocytes,CMs)。以初代的小鼠胎兒成纖維細胞(MEFs)作為對照,試驗發(fā)現(xiàn)由CFs衍生而來的iPS細胞(CF-iPS)與胚胎干細胞(EBs)及MEF衍生而來的iPS細胞(MEF-iPS)具有同樣的生理學(xué)特性。他們使用經(jīng)典擬胚體的方法和Transwell CM共培養(yǎng)體系來模擬心肌旁分泌微環(huán)境,進而將CF-iPS向功能性心肌細胞誘導(dǎo)。在模擬的心肌旁分泌微環(huán)境中,CF-iPS自發(fā)地形成可以跳動的EBs。這些分化而來的能夠自發(fā)跳動的細胞可以表達心臟特有的組織特異性轉(zhuǎn)錄和結(jié)構(gòu)因素,而且顯示出典型的心肌形態(tài)學(xué)和電生理特征。

當(dāng)然,除了上述誘導(dǎo)性造血和血管細胞、誘導(dǎo)性神經(jīng)細胞和誘導(dǎo)性心肌細胞外,還有其他的誘導(dǎo)性功能細胞也已經(jīng)被人們所發(fā)現(xiàn)并認知。如Yamaguchi等[24]將小鼠的iPS細胞誘導(dǎo)成肥大細胞。

3 展望

iPS細胞自誕生之日起即受到人們的關(guān)注,iPS細胞的研究開創(chuàng)了細胞生物學(xué)的新篇章,也極大地促進了表觀遺傳學(xué)和胚胎生物學(xué)的發(fā)展,為人類再生醫(yī)學(xué)和特異的細胞治療帶來了更美好的希望。

如果供體細胞是來源于病人自身的體細胞,就可以避免免疫排斥反應(yīng)問題,將這些體細胞先誘導(dǎo)成iPS細胞,進而再誘導(dǎo)成具有特定功能的目的細胞,理論上就可以用于臨床醫(yī)學(xué)和再生醫(yī)學(xué),這樣就有望實現(xiàn)個性化治療。然而,到目前為止,誘導(dǎo)性功能細胞的種類有限,誘導(dǎo)效率也有待提高,并且細胞的功能仍需要大量動物模擬試驗驗證。

目前,如何獲取更多的從終末分化細胞誘導(dǎo)而來的iPS細胞,并進一步誘導(dǎo)成具有特定功能的細胞成為熱點,對多種體細胞衍生的iPS細胞和多種新的培養(yǎng)誘導(dǎo)方法[25-28]也已經(jīng)進行了嘗試。

盡管這種誘導(dǎo)的功能性體細胞在將來可能具有較高的應(yīng)用價值,但是其中的詳細機理仍需要探索明確。相信在胚胎干細胞研究、iPS細胞研究、現(xiàn)代基因組學(xué)和RNA組學(xué)以及蛋白質(zhì)組學(xué)的發(fā)展和帶動下,在不遠的將來,越來越多的誘導(dǎo)性功能細胞有望在臨床醫(yī)學(xué)和生物學(xué)基礎(chǔ)研究上發(fā)揮重要作用,從而加快再生醫(yī)學(xué)和動物組織工程的發(fā)展,同時,也能促進發(fā)育生物學(xué)、表觀遺傳學(xué)和細胞生物學(xué)等基礎(chǔ)研究的發(fā)展。

參考文獻:

[1] TAKAHASHI K, YAMANAKA S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663-676.

[2] TAKAHASHI K, TANABE K, OHNUKI M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007,131(5):861-872.

[3] YU J, VODYANIK M A, SMUGA-OTTO K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007,318(5858):1917-1920.

[4] ZHAO Y, YIN X L, QIN H, et al. Two supporting factors greatly improve the efficiency of human iPSC generation[J]. Cell Stem Cell, 2008,3(5):475-479.

[5] LI W, WEI W, ZHU S, et al. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors[J]. Cell Stem Cell, 2009,4(1):16-19.

[6] ANOKYE-DANSO F, TRIVEDI C M, JUHR D, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency[J]. Cell Stem Cell,2011,8(4):376-388.

[7] ZHOU H, WU S, JOO J Y, et al. Generation of induced pluripotent stem cells using recombinant proteins[J]. Cell Stem Cell, 2009,4(5):381-384.

[8] KIM D, KIM C H, MOON J I, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins[J]. Cell Stem Cell, 2009,4(6):472-476.

[9] WARREN L, MANOS P D, AHFELDT T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA[J]. Cell Stem Cell, 2010,7(5):618-630.

[10] HOCKEMEYER D, SOLDNER F, BEARD C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases[J]. Nat Biotechnol, 2009, 27(9):851-857.

[11] GIBSON S A, GAO G D, MCDONAGH K, et al. Progress on stem cell research towards the treatment of Parkinsons disease[J]. Stem Cell Res Ther, 2012,3(2):11.

[12] NAKAMURA M, OKANO H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells[J]. Cell Res, 2013, 23(1):70-80.

[13] KUES W A, HERRMANN D, BARG-KUES B, et al. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells[J]. Stem Cells Dev, 2013,22(1):124-135.

[14] TROKOVIC R, WELTNER J, MANNINEN T, et al. Small molecule inhibitors promote efficient generation of induced pluripotent stem cells from human skeletal myoblasts[J]. Stem Cells Dev, 2013,22(1):114-123.

[15] KIM J B, SEBASTIANO V, WU G, et al. Oct4-induced pluripotency in adult neural stem cells[J]. Cell, 2009,136(3):411-419.

[16] LIAO J, CUI C, CHEN S, et al. Generation of induced pluripotent stem cell lines from adult rat cells. [J]. Cell Stem Cell, 2009,4(1):11-15.

[17] LIU H, ZHU F, YONG J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell,2008,3(6):587-590.

[18] BAO L, HE L, CHEN J, et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors[J]. Cell Res, 2011,21(4):600-608.

[19] WU Z, CHEN J, REN J, et al. Generation of pig-induced pluripotent stem cells with a drug-inducible system[J]. J Mol Cell Biol, 2009,1(1):46-54.

[20] BELTR?魨O-BRAGA P C, PIGNATARI G C, RUSSO F B, et al. In-a-dish: induced pluripotent stem cells as a novel model for human diseases[J]. Cytometry A,2013,83(1):11-17.

[21] PARK T S, ZIMMERLIN L, ZAMBIDIS E T. Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells[J]. Cytometry A, 2013,83(1):114-126.

[22] KUO Y C,CHANG Y H.Differentiation of induced pluripotent stem cells toward neurons in hydrogel biomaterials[J]. Colloids Surf B Biointerfaces,2013,102:405-411.

[23] JIANG B,DONG H,LI Q,et al. Differentiation of reprogrammed mouse cardiac fibroblasts into functional cardiomyocytes[J]. Cell Biochem Biophys. 2013,66(2):309-318.

[24] YAMAGUCHI T, TASHIRO K, TANAKA S, et al. Two-step differentiation of mast cells from induced pluripotent stem cells[J]. Stem Cells Dev,2013,22(5):726-734.

[25] BARDY J, CHEN A K, LIM Y M, et al. Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells[J]. Tissue Eng Part C Methods,2013,19(2):166-180.

[26] SALEWSKI R P, BUTTIGIEG J, MITCHELL R A, et al. The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway[J]. Stem Cells Dev,2013,22(3):383-396.

[27] KUO Y C,CHEN C W. Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering[J]. Colloids Surf B Biointerfaces,2013,102:789-794.

[28] OLMER R,LANGE A,SELZER S,et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors[J]. Tissue Eng Part C Methods,2012,18(10):772-784.

[10] HOCKEMEYER D, SOLDNER F, BEARD C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases[J]. Nat Biotechnol, 2009, 27(9):851-857.

[11] GIBSON S A, GAO G D, MCDONAGH K, et al. Progress on stem cell research towards the treatment of Parkinsons disease[J]. Stem Cell Res Ther, 2012,3(2):11.

[12] NAKAMURA M, OKANO H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells[J]. Cell Res, 2013, 23(1):70-80.

[13] KUES W A, HERRMANN D, BARG-KUES B, et al. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells[J]. Stem Cells Dev, 2013,22(1):124-135.

[14] TROKOVIC R, WELTNER J, MANNINEN T, et al. Small molecule inhibitors promote efficient generation of induced pluripotent stem cells from human skeletal myoblasts[J]. Stem Cells Dev, 2013,22(1):114-123.

[15] KIM J B, SEBASTIANO V, WU G, et al. Oct4-induced pluripotency in adult neural stem cells[J]. Cell, 2009,136(3):411-419.

[16] LIAO J, CUI C, CHEN S, et al. Generation of induced pluripotent stem cell lines from adult rat cells. [J]. Cell Stem Cell, 2009,4(1):11-15.

[17] LIU H, ZHU F, YONG J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell,2008,3(6):587-590.

[18] BAO L, HE L, CHEN J, et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors[J]. Cell Res, 2011,21(4):600-608.

[19] WU Z, CHEN J, REN J, et al. Generation of pig-induced pluripotent stem cells with a drug-inducible system[J]. J Mol Cell Biol, 2009,1(1):46-54.

[20] BELTR?魨O-BRAGA P C, PIGNATARI G C, RUSSO F B, et al. In-a-dish: induced pluripotent stem cells as a novel model for human diseases[J]. Cytometry A,2013,83(1):11-17.

[21] PARK T S, ZIMMERLIN L, ZAMBIDIS E T. Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells[J]. Cytometry A, 2013,83(1):114-126.

[22] KUO Y C,CHANG Y H.Differentiation of induced pluripotent stem cells toward neurons in hydrogel biomaterials[J]. Colloids Surf B Biointerfaces,2013,102:405-411.

[23] JIANG B,DONG H,LI Q,et al. Differentiation of reprogrammed mouse cardiac fibroblasts into functional cardiomyocytes[J]. Cell Biochem Biophys. 2013,66(2):309-318.

[24] YAMAGUCHI T, TASHIRO K, TANAKA S, et al. Two-step differentiation of mast cells from induced pluripotent stem cells[J]. Stem Cells Dev,2013,22(5):726-734.

[25] BARDY J, CHEN A K, LIM Y M, et al. Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells[J]. Tissue Eng Part C Methods,2013,19(2):166-180.

[26] SALEWSKI R P, BUTTIGIEG J, MITCHELL R A, et al. The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway[J]. Stem Cells Dev,2013,22(3):383-396.

[27] KUO Y C,CHEN C W. Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering[J]. Colloids Surf B Biointerfaces,2013,102:789-794.

[28] OLMER R,LANGE A,SELZER S,et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors[J]. Tissue Eng Part C Methods,2012,18(10):772-784.

[10] HOCKEMEYER D, SOLDNER F, BEARD C, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases[J]. Nat Biotechnol, 2009, 27(9):851-857.

[11] GIBSON S A, GAO G D, MCDONAGH K, et al. Progress on stem cell research towards the treatment of Parkinsons disease[J]. Stem Cell Res Ther, 2012,3(2):11.

[12] NAKAMURA M, OKANO H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells[J]. Cell Res, 2013, 23(1):70-80.

[13] KUES W A, HERRMANN D, BARG-KUES B, et al. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells[J]. Stem Cells Dev, 2013,22(1):124-135.

[14] TROKOVIC R, WELTNER J, MANNINEN T, et al. Small molecule inhibitors promote efficient generation of induced pluripotent stem cells from human skeletal myoblasts[J]. Stem Cells Dev, 2013,22(1):114-123.

[15] KIM J B, SEBASTIANO V, WU G, et al. Oct4-induced pluripotency in adult neural stem cells[J]. Cell, 2009,136(3):411-419.

[16] LIAO J, CUI C, CHEN S, et al. Generation of induced pluripotent stem cell lines from adult rat cells. [J]. Cell Stem Cell, 2009,4(1):11-15.

[17] LIU H, ZHU F, YONG J, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts[J]. Cell Stem Cell,2008,3(6):587-590.

[18] BAO L, HE L, CHEN J, et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors[J]. Cell Res, 2011,21(4):600-608.

[19] WU Z, CHEN J, REN J, et al. Generation of pig-induced pluripotent stem cells with a drug-inducible system[J]. J Mol Cell Biol, 2009,1(1):46-54.

[20] BELTR?魨O-BRAGA P C, PIGNATARI G C, RUSSO F B, et al. In-a-dish: induced pluripotent stem cells as a novel model for human diseases[J]. Cytometry A,2013,83(1):11-17.

[21] PARK T S, ZIMMERLIN L, ZAMBIDIS E T. Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells[J]. Cytometry A, 2013,83(1):114-126.

[22] KUO Y C,CHANG Y H.Differentiation of induced pluripotent stem cells toward neurons in hydrogel biomaterials[J]. Colloids Surf B Biointerfaces,2013,102:405-411.

[23] JIANG B,DONG H,LI Q,et al. Differentiation of reprogrammed mouse cardiac fibroblasts into functional cardiomyocytes[J]. Cell Biochem Biophys. 2013,66(2):309-318.

[24] YAMAGUCHI T, TASHIRO K, TANAKA S, et al. Two-step differentiation of mast cells from induced pluripotent stem cells[J]. Stem Cells Dev,2013,22(5):726-734.

[25] BARDY J, CHEN A K, LIM Y M, et al. Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells[J]. Tissue Eng Part C Methods,2013,19(2):166-180.

[26] SALEWSKI R P, BUTTIGIEG J, MITCHELL R A, et al. The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway[J]. Stem Cells Dev,2013,22(3):383-396.

[27] KUO Y C,CHEN C W. Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering[J]. Colloids Surf B Biointerfaces,2013,102:789-794.

[28] OLMER R,LANGE A,SELZER S,et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors[J]. Tissue Eng Part C Methods,2012,18(10):772-784.