李雄炎,秦瑞寶,劉春成
中海油研究總院,北京 東城 100027
巖電參數(shù)對(duì)儲(chǔ)層飽和度計(jì)算精度的影響分析*
李雄炎,秦瑞寶,劉春成
中海油研究總院,北京 東城 100027
基于Archie公式,分析了m,n變化時(shí)給飽和度造成的影響,推導(dǎo)了m,n所攜帶的誤差傳遞給飽和度的誤差公式;結(jié)合疏松砂巖、中等砂巖、致密砂巖、礫巖、凝灰?guī)r、角礫巖、玄武巖、安山巖、英安巖和流紋巖等10種巖性,闡述了m,n的分布區(qū)間、變化幅度及其對(duì)計(jì)算儲(chǔ)層含水飽和度的影響。從而得出在每種巖性內(nèi),m的分布范圍、變化幅度均大于n,m對(duì)飽和度的影響強(qiáng)于n;當(dāng)m的誤差為±0.2時(shí),儲(chǔ)層含水飽和度的計(jì)算誤差基本大于5%,最大值甚至能達(dá)到30%;而當(dāng)n的誤差為±0.2時(shí),儲(chǔ)層含水飽和度的計(jì)算誤差基本小于5%。明確了m,n對(duì)飽和度的影響程度及給飽和度傳遞誤差的大小,對(duì)復(fù)雜儲(chǔ)層飽和度的精確評(píng)價(jià)具有一定的理論和實(shí)踐意義。
儲(chǔ)層評(píng)價(jià);Archie公式;巖電參數(shù);飽和度;誤差分析
李雄炎,秦瑞寶,劉春成.巖電參數(shù)對(duì)儲(chǔ)層飽和度計(jì)算精度的影響分析[J].西南石油大學(xué)學(xué)報(bào):自然科學(xué)版,2014,36(3):68–74.
Li Xiongyan,Qin Ruibao,Liu Chuncheng.Analyzing the Effect of Rock Electrical Parameters on the Calculation of the Reservoir Saturation[J].Journal of Southwest Petroleum University:Science&Technology Edition,2014,36(3):68–74.
在利用電阻率測(cè)井資料評(píng)價(jià)儲(chǔ)層飽和度的系列公式中,Archie公式仍然是應(yīng)用最廣泛的公式之一。巖電參數(shù)a,b,m和n是Archie公式是否能準(zhǔn)確計(jì)算儲(chǔ)層飽和度的關(guān)鍵參數(shù),特別是碳酸鹽巖、火山巖等復(fù)雜孔隙結(jié)構(gòu)的儲(chǔ)層。一直以來(lái),巖電參數(shù)的物理含義、影響因素和計(jì)算方法被不同程度地探討[1-7],溫度、壓力、地層水礦化度等因素對(duì)巖電參數(shù)的影響及巖電參數(shù)的計(jì)算方法被不同角度地分析[8-12]。另外,從物理含義、影響程度和計(jì)算方法3個(gè)角度來(lái)衡量巖電參數(shù)a,b,m和n對(duì)儲(chǔ)層飽和度的影響,則m,n強(qiáng)于a,b,即m,n具備明確的物理含義、對(duì)儲(chǔ)層飽和度的影響更大和計(jì)算方法相對(duì)多樣化[13-33]。但m,n所攜帶的誤差究竟對(duì)儲(chǔ)層含水飽和度傳遞了多大的誤差?二者之間誰(shuí)對(duì)儲(chǔ)層飽和度的影響更大?這些問(wèn)題仍需進(jìn)一步地明確。因此,本文基于Archie公式,分析了m,n變化時(shí)給儲(chǔ)層飽和度造成的影響,推導(dǎo)了m,n所攜帶的誤差傳遞給飽和度的誤差公式;并結(jié)合疏松砂巖、中等砂巖、致密砂巖、礫巖、凝灰?guī)r、角礫巖、玄武巖、安山巖、英安巖和流紋巖等10種巖性,闡述了m,n的變化幅度及其對(duì)計(jì)算儲(chǔ)層飽和度的影響。定量地評(píng)價(jià)m,n對(duì)計(jì)算儲(chǔ)層飽和度的影響,有利于利用Archie公式精確地計(jì)算復(fù)雜孔隙結(jié)構(gòu)儲(chǔ)層的飽和度。
膠結(jié)指數(shù)m反映的是巖石的膠結(jié)程度,孔徑的曲折與級(jí)差能反映其值的高低。那么,m的誤差會(huì)給基于Archie公式計(jì)算的儲(chǔ)層含水飽和度傳遞了多大的誤差呢?
對(duì)式(1)兩邊取對(duì)數(shù),得
式中:a,b—與巖性有關(guān)的比例系數(shù),無(wú)因次;m—膠結(jié)指數(shù),無(wú)因次;n—飽和指數(shù),無(wú)因次;?—有效孔隙度,%;Rw—地層水電阻率,?·m;Rt—含油氣巖石電阻率,?·m;Sw—含水飽和度,%。
如果式(2)為準(zhǔn)確的儲(chǔ)層含水飽和度計(jì)算公式,那么當(dāng)m的誤差為±0.2時(shí)(大多數(shù)情況下,m的誤差在±0.2內(nèi)),計(jì)算的儲(chǔ)層含水飽和度則為
當(dāng)n約為2時(shí)(一般情況下,n取2),儲(chǔ)層含水飽和度的計(jì)算誤差如下式
當(dāng)有效孔隙度的取值范圍為5%~45%,含水飽和度的分布范圍為5%~95%時(shí),繪制儲(chǔ)層含水飽和度的計(jì)算誤差(ΔSw),見(jiàn)圖1。
按照儲(chǔ)量計(jì)算的標(biāo)準(zhǔn),不超過(guò)5.00%的飽和度誤差為可接受的范圍。由圖1可知,在不同類型儲(chǔ)層,計(jì)算的儲(chǔ)層含水飽和度誤差的分布范圍見(jiàn)表1。
由表1可知,當(dāng)m的誤差為±0.2時(shí),在有效孔隙度小于15%(低、特低、超低孔儲(chǔ)層),含水飽和度分布在20%~60%的儲(chǔ)層中,計(jì)算的儲(chǔ)層含水飽和度誤差的分布范圍為5.00%~15.00%;而在含水飽和度大于60%的儲(chǔ)層中,計(jì)算的儲(chǔ)層含水飽和度誤差的分布范圍為10.00%~35.00%;即在低、特低、超低孔儲(chǔ)層中,當(dāng)含水飽和度大于20%時(shí),含水飽和度的計(jì)算誤差較大,分布范圍為5.00%~35.00%。而在低阻儲(chǔ)層(一般情況下,低阻儲(chǔ)層計(jì)算的含水飽和度會(huì)偏大,含油氣飽和度會(huì)偏?。?,含水飽和度計(jì)算誤差的分布范圍則為5.00%~35.00%。因此,當(dāng)m的誤差為±0.2時(shí),儲(chǔ)層含水飽和度的計(jì)算誤差相對(duì)較大,特別是在低孔、低阻等復(fù)雜儲(chǔ)層中,即m對(duì)飽和度的影響相對(duì)較大。
飽和指數(shù)n反映的是巖石的潤(rùn)濕性,與m相比,影響n的因素相對(duì)較少,其值也相對(duì)穩(wěn)定,一般取其值為2。那么,n的誤差會(huì)給基于Archie公式計(jì)算的儲(chǔ)層含水飽和度傳遞多大的誤差呢?同理,當(dāng)n的誤差為±0.2時(shí),計(jì)算的儲(chǔ)層含水飽和度的誤差為
對(duì)式(5)進(jìn)行變換,得
式(6)聯(lián)立式(1),得
圖1 基于變化m計(jì)算儲(chǔ)層含水飽和度的誤差分布圖Fig.1 Error distribution in the calculation of the water saturation of reservoirs based on variable m
表1 基于變化m計(jì)算儲(chǔ)層含水飽和度的誤差分布范圍Tab.1 Error distribution in the calculation of the water saturation of reservoirs based on variable m
當(dāng)n分別取1.6,1.8,2.0和2.2,含水飽和度的分布范圍為5%~95%時(shí),繪制儲(chǔ)層含水飽和度的計(jì)算誤差,見(jiàn)圖2。
由圖2可知,當(dāng)n在1.6~2.2變化,且其誤差為±0.2時(shí),儲(chǔ)層含水飽和度的計(jì)算誤差基本小于5.00%;并且隨著n的逐漸變大,儲(chǔ)層含水飽和度的計(jì)算誤差逐漸變小。因此,與m相比,n對(duì)飽和度的影響相對(duì)較小。
表2給出了疏松砂巖、中等砂巖、致密砂巖、礫巖、凝灰?guī)r、角礫巖、玄武巖、安山巖、英安巖和流紋巖等10種巖性的孔隙度,m,n的最大值、最小值和平均值。
圖3、圖4分別是10種巖性m,n的最大值、最小值和平均值的分布圖,圖5是m,n的最大值與最小值之間差值的分布圖。由圖可知,在每種巖性內(nèi),m的分布區(qū)間、變化幅度均強(qiáng)于n。即巖石組分、孔隙結(jié)構(gòu)的變化對(duì)m的影響更大。
結(jié)合每類巖石所處的地層環(huán)境,確定相應(yīng)的地層水電阻率和地層真電阻率?;贏rchie公式,采用孔隙度的平均值、地層水電阻率和地層真電阻率,在n取平均值時(shí),分別計(jì)算m取最大值、最小值和平均值時(shí)的含水飽和度;同理,在m取平均值時(shí),分別計(jì)算n取最大值、最小值和平均值時(shí)的含水飽和度;并分別在m,n變化時(shí),分析各自所計(jì)算含水飽和度的平均誤差,見(jiàn)表3。
圖2 基于變化n計(jì)算儲(chǔ)層含水飽和度的誤差分布圖Fig.2 Error distribution in the calculation of the water saturation of reservoirs based on variable n
表2 10種巖性相關(guān)參數(shù)值的分布Tab.2 Parameters of ten kinds of lithologies
圖3 10種巖性m的分布范圍Fig.3 Distribution range of m in ten kinds of lithologies
圖4 10種巖性n的分布范圍Fig.4 Distribution range of n in ten kinds of lithologies
由表3可知,當(dāng)m變化時(shí),計(jì)算的儲(chǔ)層含水飽和度平均誤差均大于5.00%;而當(dāng)n變化時(shí),計(jì)算的儲(chǔ)層含水飽和度平均誤差基本小于5.00%。由于凝灰?guī)r的m、n變化幅度相對(duì)較大,m最大值與最小值之差為0.65,基于變化的m所計(jì)算的儲(chǔ)層含水飽和度的平均誤差為29.51%;n最大值與最小值之差為0.62,基于變化的n所計(jì)算儲(chǔ)層含水飽和度的平均誤差為7.23%;m,n變化時(shí),所計(jì)算的儲(chǔ)層含水飽和度平均誤差中的最大值,見(jiàn)圖6。
圖5 10種巖性m,n最大值與最小值之差Fig.5 Differences between the maximum and the minimum of m and n in ten kinds of lithologies
表3 10種巖性計(jì)算含水飽和度的平均誤差Tab.3 Average errors in the calculation of the water saturation in ten kinds of lithologies
圖6 10種巖性計(jì)算含水飽和度的平均誤差Fig.6 Average errors in the calculation of the water saturation in ten kinds of lithologies
(1)在每種巖性內(nèi),m的分布范圍、變化幅度均大于n,m對(duì)飽和度的影響強(qiáng)于n。
(2)當(dāng)m的誤差為 ±0.2時(shí),儲(chǔ)層含水飽和度的計(jì)算誤差基本大于 5.00%,其分布范圍為5.00%~35.00%,特別是在低孔、低阻等復(fù)雜儲(chǔ)層中,m對(duì)飽和度的影響相對(duì)較大。
(3)當(dāng)n的誤差為±0.2時(shí),儲(chǔ)層含水飽和度的計(jì)算誤差基本小于5.00%;當(dāng)n的誤差大于±0.2時(shí),儲(chǔ)層含水飽和度的計(jì)算誤差略大于5.00%。
[1]Archie G E.The electrical resistivity log as an aid in determining some reservoir characteristics[J].Petroleum Trans-actions,AIME,1942,146:54–62.
[2]Marc F,Kholoud A N,Doug B.Water saturation from NMR,resistivity and oil base core in a heterogeneous middle east carbonate reservoir[C].SPWLA46th Annual Logging Symposium,2005.
[3]張明祿,石玉江.復(fù)雜孔隙結(jié)構(gòu)砂巖儲(chǔ)層巖電參數(shù)研究[J].測(cè)井技術(shù),2005,29(5):446–448. Zhang Minglu,Shi Yujiang.On Archie’s electrical parameters of sandstone reservoir with complicated pore structures[J].Well Logging Technology,2005,29(5):446–448.
[4]王勇,章成廣,李進(jìn)福,等.巖電參數(shù)影響因素研究[J].石油天然氣學(xué)報(bào),2006,28(4):75–77. Wang Yong,Zhang Chengguang,Li Jinfu,et al.Study on influence factors of electrical parameters[J].Journal of Oil and Gas Technology,2006,28(4):75–77.
[5]趙發(fā)展,王贇,王界益,等.準(zhǔn)噶爾和塔里木盆地不同巖性巖電參數(shù)研究[J].地球物理學(xué)進(jìn)展,2006,21(4):1258–1265. Zhao Fazhan,Wang Yun,Wang Jieyi,et al.Rockelectricity parameters variant lithologic characters in Junggar and Tarim Basins[J].Progress in Geophysics,2006,21(4):1258–1265.
[6]羅娜.阿爾奇公式數(shù)值分析及其意義[J].石油學(xué)報(bào),2007,28(1):111–114. Luo Na.Numerical analysis of Archie formula and its meanings[J].Acta Petrolei Sinica,2007,28(1):111–114.
[7]劉向君,劉洪,楊超.碳酸鹽巖氣層巖電參數(shù)實(shí)驗(yàn)[J].石油學(xué)報(bào),2011,32(1):131–134. Liu Xiangjun,Liu Hong,Yang Chao.Experimental study on rock-electricity parameters of carbonate gas reservoirs[J].Acta Petrolei Sinica,2011,32(1):131–134.
[8]Jean R C.The cementation exponent in the formation factor porosity relation:The effect of permeability[C].SPWLA18th Annual Logging Symposium,1977.
[9]Michael G L,Henry F D,Mukul M S.Wettability and stress effects on saturation and cementation exponents[C]. SPWLA29th Annual Logging Symposium,1988.
[10]John C R.A summary of the effects of various pore geometrics and their wettabilities on measured and in-situ values of cementation and saturation exponents[J].The Log Analyst,1987,28(2):1–25.
[11]Deborah A R.Trends in cementation exponents(m)for carbonate pore systems[J].Petrophysics,2002,43(5):434–446.
[12]Stalheim S O,Eidesmo T.Is the saturation exponent N A constant?[C].SPWLA36th Annual Logging Symposium,1995.
[13]Rasmus J C.A variable cementation exponent M for fractured carbonates[J].The Log Analyst,1983,24(6):13–23.
[14]Orlando G R.A practical method for determining cementation exponents and some other parameters as an aid in well log analysis[J].The Log Analyst,1976,17(5):8–24.
[15]Michael M S.The determination of cementation exponents using high frequency dielectric measurements[J].The Log Analyst,1983,24(6):5–11.
[16]Focke J W,Munn D.Cementation exponents in middle eastern carbonate reservoirs[J].SPE Formation Evaluation,1987,2(2):155–167.
[17]Yuan H H.Advances in apex technology:Determination of cementation exponent and absolute permeability[J].The Log Analyst,1991,32(5):557–570.
[18]Hilmi S S.Derivation of the cementation factor(Archie′s exponent)and the Kozeny-Carman constant from well log data,and their dependence on lithology and other physical parameters[C].SPE 26309,1993.
[19]Al-Ghamdi A,Aguilera R,Clarkson C.Cementation exponent estimation for complex carbonate reservoirs using a triple porosity model[C].SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition,2011.
[20]Ali Al G,Bo Chen,Hamid B,et al.An improved tripleporosity model for evaluation of naturally fractured reservoirs[J].SPE Reservoir Evaluation&Engineering,2011,14(4):377–384.
[21]Knackstedt M A,Arns C H,Sheppard A P,et al.Archie′s exponents in complex lithologies derived from 3D digital core analysis[C].SPWLA48th Annual Logging Symposium,2007.
[22]Akbar M,Steckhan J,Tamimi M,et al.Estimating cementation factor(m)for carbonates using borehole images and logs[C].SPE 117786,2008.
[23]Tabibi M,Emadi M A.Variable cementation factor determination(Empirical Methods)[C].SPE 81485,2003.
[24]Kurniawan B,Bassiouni Z.Use of CEC-dependent cementation and saturation exponents in shaly sand resistivity models[C].SPWLA48th Annual Logging Symposium,2007.
[25]Boral A M.A new correlation for the cementation factor in low-porosity carbonates[J].SPE Formation Evaluation,1987,2(4):495–499.
[26]Unalmiser S,Bova J A.A new correlation developed between Archie′s parameters and continuous phase change saturation interval[C].SPE 25514,1993.
[27]Pairoys F,Al-Zoukani A,Nicot B,et al.Multi-physics approach for aging assessment of carbonate rocks[C].Al-Khobar,Saudi Arabia:SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition,2011.
[28]李軍,張超謨,唐文生,等.庫(kù)車地區(qū)致密砂礫巖膠結(jié)指數(shù)m和飽和度指數(shù)n的主要影響因素及其量化研究[J].石油天然氣學(xué)報(bào),2009,31(6):100–103. Li Jun,Zhang Chaomo,Tang Wensheng,et al.Major influential factor and quantitative study on m exponent and n exponent in Kuche Region[J].Journal of Oil and Gas Technology,2009,31(6):100–103.
[29]張龍海,周燦燦,劉國(guó)強(qiáng),等.孔隙結(jié)構(gòu)對(duì)低孔低滲儲(chǔ)集層電性及測(cè)井解釋評(píng)價(jià)的影響[J].石油勘探與開發(fā),2006,33(6):671–676. Zhang Longhai,Zhou Cancan,Liu Guoqiang,et al.Influence of pore structures on electric properties and well logging evaluation in low porosity and permeability reservoirs[J].Petroleum Exploration and Development,2006,33(6):671–676.
[30]劉興禮,張貴斌,吉云剛,等.塔中礁灘型碳酸鹽巖儲(chǔ)集層測(cè)井評(píng)價(jià)技術(shù)[J].新疆石油地質(zhì),2011,32(3):321–324. Liu Xingli,Zhang Guibin,Ji Yungang,et al.Well logging evaluation technique for reef-flat carbonate reservoir in Tazhong Area,Tarim Basin[J].Xinjiang Petroleum Geology,2011,32(3):321–324.
[31]Soto Becerra R,Perez O,Arteaga D.A new reservoir classification based on pore types improves characterization[C].Mexico City,Mexico:SPE Latin America and Caribbean Petroleum Engineering Conference,2012.
[32]Budebes S,Saif O,Al-Farisi O,et al.Carbonate Archie exponents correction model and variable determination[C].Abu Dhabi,UAE:SPE Reservoir Characterization and Simulation Conference and Exhibition,2011.
[33]Asquith G B,Drager L,Saha S.A new approach to estimating Swin carbonate reservoirs[J].The Log Analyst,1993,34(3):20–25.
編輯:杜增利
編輯部網(wǎng)址:http://zk.swpuxb.com
Analyzing the Effect of Rock Electrical Parameters on the Calculation of the Reservoir Saturation
Li Xiongyan,Qin Ruibao,Liu Chuncheng
CNOOC Research Institute,Dongcheng,Beijing 100027,China
Based on the Archie formula,the effect of variable m and n on the saturation is analyzed,and the error formula of calculating the water saturation of reservoirs caused by the error of m and n is derived.On the basis of the loose sandstone,medium sandstone,tight sandstone,conglomerate,tuff,breccia,basalt,andesite,dacite and rhyolite,this paper first analyzes the distribution range and change amplitude of m and n.Secondly,the impact of m and n on the calculation of the water saturation of reservoirs is discussed.With regard to each lithology,the distribution range and change amplitude of m is greater than those of n.Therefore,compared with n,the effect of m on the saturation is stronger.When the error of m is±0.2,the error in the calculation of the water saturation of reservoirs is almost all above 5%,and the maximum is even more than 30%. Meanwhile,when the error of n is±0.2,the error in the calculation of the water saturation of reservoirs is almost all below 5%. The influence of m and n on the saturation is determined,and the error in the calculation of the water saturation of reservoirs caused by the error of m and n are calculated.It is theoretically and practically significant to the precise calculation of saturation of complex reservoirs.
reservoir evaluation;Archie formula;rock electrical parameters;saturation;error analysis
http://www.cnki.net/kcms/doi/10.11885/j.issn.1674-5086.2012.10.11.01.html
李雄炎,1983年生,男,漢族,湖北天門人,博士,主要從事測(cè)井資料處理與解釋工作。E-mail:lixy7@cnooc.com.cn
秦瑞寶,1964年生,男,漢族,河北盧龍人,教授級(jí)高級(jí)工程師,主要從事測(cè)井資料處理與解釋工作。E-mail:qinrb@cnooc.com.cn
劉春成,1962年生,男,漢族,河北樂(lè)亭人,教授級(jí)高級(jí)工程師,主要從事地球物理技術(shù)研究與應(yīng)用工作。E-mail:liuchch@cnooc.com.cn
10.11885/j.issn.1674-5086.2012.10.11.01
1674-5086(2014)03-0068-07
TE122.2
A
2012–10–11 < class="emphasis_bold">網(wǎng)絡(luò)出版時(shí)間:
時(shí)間:2014–05–26
國(guó)家重大專項(xiàng)“海外大陸邊緣盆地勘探開發(fā)實(shí)用新技術(shù)研究”(2011ZX05030)。