賀樂平,劉 妥
?
一個非齊次核的半離散型Hilbert型不等式的改進(jìn)
賀樂平*,劉 妥
(吉首大學(xué) 數(shù)學(xué)與統(tǒng)計學(xué)院, 湖南 吉首, 416000)
式(1)稱為Hardy-Hilbert積分不等式, 它在分析學(xué)中有重要的應(yīng)用.
文獻(xiàn)[1]給出了如下一個新的較精確的半離散Hilbert不等式:
為了方便起見, 先介紹一些符號:
證明見文獻(xiàn)[2].
證明過程見文獻(xiàn)[2].
為方便起見, 再引入一些符號:
證明 由引理1和引理2, 有:
即(5)式得證.
,
注: 式(5)即為式(2)的改進(jìn)式.
[1] Yang Bicheng. A half-Discrete Hilbert-Type Inequality with a Non-Homogeneous kernel and two variables[J]. Mediterr J Math, 2012(12): 213—218.
[2] He Leping, Gao Mingzhe, Jia weijian. On a New Strengthened Hardy-Hilbert’sInequality[J]. Journal of Mathematical Research and Exposition, 2006, 26(2): 276—282.
[3] He Leping, Gao Mingzhe. A Hilbert Integral Inequality with Hurwitz Zeta Function[J]. Journal of Mathematical inequalities, 2013, 7(3): 377—387.
Improvement of half-discrete Hilbert-type inequality with non-homogeneous kernel
HE LePing, LIU Tuo
(College of Mathematics and Statistics, Jishou University, Jishou 416000, China)
Hilbert-type inequality are important in analysis and its applications. In this paper, a half-discrete Hilbert-type inequality is investigated. By using the way of weight functions and the techniuque of real analysis and a sharpening of H?lder’s inequality, some improvements of Hardy-Hilbert’s inequality are given, a few new inequalities are established.
O 178
1672-6146(2014)01-0001-03
10.3969/j.issn.1672-6146.2014.01.001
通訊作者email: jdlepinghe@163.com.
2014-01-08
國家自然科學(xué)基金資助項目(11261020)
(責(zé)任編校:劉曉霞)