王 丹,隋 倩*,呂樹光,趙文濤,邱兆富,余 剛(.華東理工大學,國家環(huán)境保護化工過程環(huán)境風險評價與控制重點實驗室,上海 007;.同濟大學環(huán)境科學與工程學院,污染控制與資源化研究國家重點實驗室,上海0009;.清華-威立雅先進環(huán)境技術(shù)聯(lián)合研究中心,北京 00084)
黃浦江流域典型藥物和個人護理品的含量及分布特征
王 丹1,隋 倩1*,呂樹光1,趙文濤2,邱兆富1,余 剛3(1.華東理工大學,國家環(huán)境保護化工過程環(huán)境風險評價與控制重點實驗室,上海 200237;2.同濟大學環(huán)境科學與工程學院,污染控制與資源化研究國家重點實驗室,上海200092;3.清華-威立雅先進環(huán)境技術(shù)聯(lián)合研究中心,北京 100084)
采用固相萃取-高效液相色譜/串聯(lián)質(zhì)譜法(SPE-HPLC-MS/MS)分析上海市黃浦江流域7種典型藥物和個人護理品(PPCPs)的含量水平.結(jié)果表明,所建立的分析方法具備良好的回收率(87%~107%)、相對標準偏差(<14%)及方法定量限(0.1~1.1ng/L),滿足水體中微量污染物的檢測要求.應(yīng)用該方法檢測得到,上海市黃浦江流域水體中目標 PPCPs的含量在 藥物和個人護理品;高效液相色譜/串聯(lián)質(zhì)譜法;黃浦江;濃度水平 藥物和個人護理品(PPCPs)因其在天然水環(huán)境中被頻繁檢出以及對水生生物的潛在危害,受到了廣泛關(guān)注.近年來,隨著分析檢測技術(shù)的提高,已有上百種PPCPs在河流[1-4]、湖泊[1-2,5]、海洋[6-7]及地下水[8]等天然水環(huán)境中被檢出.據(jù)報道,水環(huán)境中殘留的PPCPs會導致細菌產(chǎn)生耐藥性及抗生素抗性基因的傳遞和擴散,干擾天然細菌的生態(tài)系統(tǒng),從而威脅人類健康[9].另外,水體中的PPCPs還可能會導致人類致癌或過敏性反應(yīng),對水生生物和土壤微生物產(chǎn)生危害[10]. 目前,不少研究者考察了PPCPs在珠江、九龍江和南明河等河流中的存在水平和分布特點[3-4,11-16],然而,現(xiàn)有的針對上海市最重要的河流黃浦江開展的相關(guān)研究還不多,已有研究大多集中在抗生素類物質(zhì)上[17-19],且涉及的河流區(qū)域較有限[17-21].考慮到黃浦江同時兼具飲用水源、航運、灌溉、漁業(yè)和旅游等多種功能,且近年來受上海市工業(yè)和城市活動影響較大,因此在黃浦江流域開展更大范圍的針對多類別PPCPs殘留的監(jiān)測具有重要的意義. 本文采用固相萃取-高效液相色譜/串聯(lián)質(zhì)譜(SPE-HPLC-MS/MS)分析方法,研究了7種典型 PPCPs(苯扎貝特,卡馬西平,咖啡因,雙氯芬酸,吉非羅平,美托洛爾和甲氧芐啶)在黃浦江流域及部分支流中的含量水平和空間分布規(guī)律,以揭示黃浦江流域上述PPCPs的污染特征. 1.1 試劑與標準品 PPCPs標準品(表 1):苯扎貝特(BF),卡馬西平(CBZ),咖啡因(CF),雙氯芬酸(DF),吉非羅平(GF),美托洛爾(MTP)和甲氧芐啶(TP)分別購自Sigma-Aldrich公司(德國)和 Dr. Ehrenstorfer公司(德國). 表1 7種PPCPs的理化性質(zhì)、物質(zhì)結(jié)構(gòu)、保留時間及質(zhì)譜參數(shù)Table 1 Physicochemical property, chemical structure, retention time and corresponding IS for selected PPCPs 內(nèi)標(IS):非那西汀-13C(Phenacetin-13C, 99%),2-甲4-氯丙酸-3D(Mecoprop-3D)和吉非羅平-6D(GF-6D,98%),分別購自 Sigma-Aldrich和Dr. Ehrenstorfer公司. 其他試劑:甲醇、甲酸為色譜純,其余藥品或試劑均為分析純. 1.2 樣品采集 樣品于2012年5月在黃浦江干流及5條支流中采集,采樣點從淀山湖開始至黃浦江入長江口,包括上、中、下游共25個采樣點(圖1),每點水樣采集2份.受采樣設(shè)備的限制,采用瞬時采樣法,樣品置于 1L棕色玻璃瓶中,采集后迅速運至實驗室4℃保存,待處理. 圖1 黃浦江采樣點分布Fig.1 Sampling sites location in Huangpu River 1.3 樣品處理與分析 用 47mm的玻璃纖維濾紙(GF/F,Whatman)過濾水樣,取 400mL過濾后的水樣,加入 200μL內(nèi)標混合液,調(diào)節(jié)pH =7.0.固相萃取時,先用5mL甲醇、3×5mL高純水依次通過 SPE小柱(Oasis HLB,6mL/500mg,Waters)進行活化和平衡,而后將含有內(nèi)標的過濾液以5~10mL/min的流速通過SPE小柱.接著將5mL甲醇/水混合液(V/V=1:19)通過SPE小柱,以清洗小柱,并繼續(xù)抽真空30min,除去水份.再以1mL/min的流速用甲醇洗脫小柱,洗脫液收集于 10mL具塞玻璃刻度離心管中.最后以高純氮吹掃洗脫液(水浴溫度 35 )℃至剛好吹干,加入 0.4mL甲醇/水混合液(V/V=1:4),置于渦旋振蕩器混合均勻,移入自動進樣樣品瓶,待色譜分析. 采用高效液相色譜(HPLC, Ultimate3000, Dionex, USA)-串聯(lián)質(zhì)譜(ESI-MS/MS, API3200, AB Sciex, USA)對樣品進行測定.梯度洗脫,離子源為正(ESI+)、負(ESI-)兩種模式,通過多反應(yīng)監(jiān)測(MRM)模式對待測物進行定量分析. 1.4 方法回收率及質(zhì)量控制 實驗的準確性由回收率實驗和空白實驗保證.方法回收率實驗分別以高純水和地表水為介質(zhì),分別取400mL水樣,定量加入200μL濃度為400μg/L的PPCPs混標溶液和200μL內(nèi)標溶液,按照 1.3方法對樣品進行前處理和儀器分析,采用內(nèi)標法定量.對于地表水,需同時進行加標和不加標兩種樣品分析,對比兩種樣品測得濃度的差值與已知加標濃度,得到地表水中各PPCPs的相對回收率. 空白實驗的目的是識別并定量采樣、前處理及儀器分析等階段目標化合物的污染,包括現(xiàn)場空白和程序空白.采樣時,將 500mL高純水置于棕色玻璃采樣瓶中,攜帶至取樣現(xiàn)場,采樣時暴露于周圍環(huán)境,采樣結(jié)束后,與實際水樣一同運送至實驗室,測定其中目標PPCPs的濃度,該樣品為現(xiàn)場空白.實驗室分析前,再準備一定量的高純水,測定其中目標PPCPs的濃度,作為程序空白.實際樣品測試時,每批除實際水樣和1個程序空白外,還包括1個以高純水為介質(zhì)的加標樣品,以監(jiān)測該批樣品各PPCPs在前處理過程中的回收率情況.此外,每點水樣采集兩份,進行平行雙樣測定,以保證實驗測定的精密性. 2.1 方法性能評價 空白實驗結(jié)果表明,空白實驗組中全部目標PPCPs的值均小于方法定量限.檢測方法的線性關(guān)系、定量限和加標回收率的結(jié)果見表2. 各 PPCP標準曲線的濃度范圍為 2~400μg/L,根據(jù)目標化合物與對應(yīng)內(nèi)標物峰面積的比值建立標準曲線,各物質(zhì)線性相關(guān)性均大于0.99. 為考察方法的重現(xiàn)性,回收率實驗中,每種介質(zhì)均做4組平行樣.如表2所示,由于實際水樣中干擾組分過多導致了回收率下降,高純水中 7種PPCPs的回收率為 92%~107%,地表水中的回收率為 87%~103%.此外,平行實驗結(jié)果表明,兩種水樣中各PPCP的變異系數(shù)均小于14%,符合環(huán)境樣品分析方法的一般要求. 表2 7種PPCPs在高純水和河水中的相對回收率(RR)、儀器定量限(IQL)、定量限(LOQ)和線性關(guān)系Table 2 Relative recovery (RR), instrumental quantification limit (IQL), limit of quantification (LOQ) and linear equation for selected PPCPs in the river and ultrapure water 以目標化合物色譜峰信噪比(S/N)為10:1的濃度作為儀器定量限(IQL).方法定量限(LOQ)根據(jù)各目標化合物的儀器檢出限、回收率和濃縮倍數(shù)等確定,其計算公式如式(1)所示. 式中:R為目標化合物在對應(yīng)介質(zhì)中的回收率;C為樣品濃縮倍數(shù). 如表2所示,目標PPCPs的方法定量限較低,范圍為 0.1~1.1ng/L.通過比較,該分析方法的靈敏度優(yōu)于很多基于HPLC-MS/MS,UPLCTOF和HPLC-UV建立的檢測方法定量限的報 道[12,22-24]. 2.2 PPCPs在黃浦江流域的濃度水平 黃浦江流域中PPCPs的濃度與檢出頻率如圖2所示.進行統(tǒng)計分析時,低于方法定量限的濃度以方法定量限濃度的50%代替[25-26]. 7種PPCPs在所有水樣中均被檢出,其中CF和CBZ的檢出頻率為100%,BF僅在個別點以較低的濃度檢出.各物質(zhì)的濃度范圍為 總體上看,黃浦江中PPCPs的含量處于較低的水平(表3).以使用較為頻繁的CF為例,黃浦江中的濃度范圍為 17~824ng/L,遠低于對西班牙(最大值2130ng/L)[27]和北京(7051ng/L)[13]等地表水中的相關(guān)報道.又如,本研究中抗生素 TP的濃度在 圖2 7種PPCPs在黃浦江流域的濃度水平及檢出頻率Fig.2 7 PPCPs concentrations and frequencies of detection in Huangpu River 為初步評價黃浦江流域水環(huán)境中PPCPs的存在可能導致的環(huán)境風險,我們在其最大濃度條件下,采用公式(2)對其風險商值進行計算.式中:RQ為風險商值;MEC為實測環(huán)境濃度; PNEC為預測無影響濃度. 表3 目標PPCPs在其他國家和地區(qū)的存在水平與本研究比較Table 3 Comparison of target PPCPs concentrations between other countries/regions and this study 如果RQ值大于或等于1,即表示該污染物可能會對水環(huán)境產(chǎn)生負面影響[39].如表4所示,目標PPCPs的風險商值在最大濃度條件下均遠小于1,說明不會對環(huán)境造成明顯的不利影響.在挪威 [40]和珠江[15]等很多地表水環(huán)境中的 BF均表現(xiàn)出對生態(tài)環(huán)境具有潛在的風險,而黃浦江流域的BF風險商值僅為0.001.需要指出的是,生態(tài)風險商的計算僅針對單一物質(zhì),而多種物質(zhì)共同作用引起的環(huán)境風險可能大于單一物質(zhì)[41]. 表4 水環(huán)境中部分PPCPs的初步生態(tài)風險評價Table 4 The primary risk assessment for some PPCPs in aquatic environmental 2.3 空間分布 圖 3為黃浦江干流和支流上各采樣點PPCPs的含量分布.總體上看,干流和支流均呈現(xiàn)上游檢出的物質(zhì)種類少、含量低,下游檢出的物質(zhì)種類多、含量增加的趨勢.這是由于在黃浦江上游地區(qū),城市化和人類活動相對較少,而隨著河流流向中下游,城市化加劇,人口增多,藥物使用和排放也增多,所以PPCPs的含量水平呈現(xiàn)由上游到下游逐漸增高的趨勢. 此外,黃浦江屬潮汐河,下游地區(qū)是非正規(guī)半日潮,而下游采樣時正處黃浦江漲潮期,相對鹽度較高的河水可能破壞PPCPs在水-沉積物之間的吸附平衡[11,14],使吸附在沉積物中的PPCPs重新釋放至水相,從而導致下游地區(qū)PPCPs濃度偏高.很多研究也已經(jīng)表明,懸浮物和沉積物等顆粒物對微量有機污染物的吸附是不容忽視的[45-47]. 由圖3可以看出,黃浦江流域支流的污染程度較干流嚴重,這可能與采樣點位置的選取有關(guān).T1和T2、T7和T8、T10和T11分別位于污水廠附近,根據(jù)以前的報道,城市污水處理廠很可能是地表水污染的主要來源[21,48].河水的稀釋作用是影響河水中PPCPs含量的重要因素[21].例如支流T4、T6、T8和T11在匯入黃浦江后,在其下游100~500m處對應(yīng)的采樣點分別為S7、S9、S10和S14,物質(zhì)含量都有所降低. 圖3 黃浦江干流和支流各采樣點PPCPs的含量分布Fig.3 Total concentrations of selected PPCPs in streams and tributaries 3.1 采用固相萃取-高效液相色譜/串聯(lián)質(zhì)譜法檢測地表水中苯扎貝特、卡馬西平、咖啡因等7種 PPCPs,分析方法具備良好的回收率(87%~107%),相對標準偏差(<14%)和方法定量限(0.1~1.1ng/L),滿足環(huán)境分析的需要. 3.2 7種目標PPCPs在黃浦江流域均以不同程度被檢出,其中 CF檢出率達 100%,且濃度最高,最大濃度為824ng/L,CBZ濃度次之,而BF的污染水平較低.通過對比國內(nèi)外地表水中PPCPs的濃度可以發(fā)現(xiàn),黃浦江地表水中PPCPs的污染處于中等偏低水平,符合我國藥物消費特點. 3.3 從污染物的空間分布看,黃浦江流域目標PPCPs的下游污染比上游嚴重,支流污染大于干流. [1] Tixier C, Singer H P, Oellers S, et al. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen and naproxen in surface waters [J]. Environmental Science and Technology, 2003,37(6):1061-1068. [2] Glen R B, Helge R, Deborah A G, et al. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada [J]. Science of the Total Environment, 2003,311(1-3):135-139. [3] 歐丹云,陳 彬,陳燦祥,等.九龍江下游河口水域抗生素及抗性細菌的分布 [J]. 中國環(huán)境科學, 2013,33(12):2243-2250. [4] Zhang D D, Lin L F, Luo Z X, et al. Occurrence of selected antibiotics in Jiulongjiang River in various seasons, South China [J]. Journal of Environmental Monitor, 2011,13:1953-1960. [5] Buser H R, Theobald M D. Occurrence of the pharmaceutical drug clofibric acid and the herbicide mecoprop in various Swiss lakes and in the North Sea [J]. Environmental Science and Technology, 1998,32(1):188-192. [6] Weigel S, Kuhlmann J, Huhnerfuss H. Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea [J]. Science of the Total Environment, 2002,295(1-3):131-141. [7] 薛保銘,楊惟薇,王英輝,等.欽州灣水體中磺胺類抗生素污染特征與生態(tài)風險 [J]. 中國環(huán)境科學, 2013,33(9):1664-1669. [8] Barnes K K, Kolpin D W, Furlong E T, et al. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States-I Groundwater [J]. Science of the Total Environment, 2008,402(2/3):192-200. [9] 王路光,朱曉磊,王靖飛,等.環(huán)境水體中的殘留抗生素及其潛在風險 [J]. 工業(yè)水處理, 2009,29(5):10-14. [10] Gobel A, McArdell C S, Suter M J, et al. Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry [J]. Analytical Chemistry, 2004,76(16):4756-4764. [11] 徐維海,張 干,鄒世春,等.香港維多利亞港和珠江廣州河段水體中抗生素的含量特征及其季節(jié)變化 [J]. 環(huán)境科學, 2006, 27(12):2458-2462. [12] Peng X Z, Tan J H, Tang C M, et al. Multiresidue determination of fluoroquinolone, sulfonamide, trimethoprim and chloramphenicol antibiotics in ruban waters in China [J]. Environmental Toxicology and Chemistry, 2008,27(1):73-79. [13] Zhou H D, Huang X, Wang X L, et al. Behaviour of selected endocrine-disrupting chemicals in three sewage treatment plants of Beijing, China [J]. Environmental Monitor Assess, 2010,161(1-4):107-121. [14] Liu H, Zhang G P, Liu C Q, et al. The occurrence of chloramphenicol and tetracyclines in municipal sewage and the Nanming River, Guiyang City, China [J]. Journal of Environmental Monitor, 2009,11:1199-1205. [15] Zhao J L, Ying G G, Liu Y S, et al. Occurrence and a screening-level risk assessment of human pharmaceuticals in the Pearl River system, South China [J]. Environmental Toxicology Chemistry, 2010,29(6):1377-1384. [16] Zheng S L, Qiu X Y, Chen B, et al. Antibiotics pollution in Jiulong River estuary: Source, distribution and bacterial resistance [J]. Chemosphere, 2011,84(11):1677-1685. [17] Wang P H, Yuan T, Hu J Y, et al. Determination of cephalosporin antibiotics in water samples by optimised solid phase extraction and high performance liquid chromatography with ultraviolet detector [J]. Environmental Analytical Chemistry, 2011,91(13): 1267-1281. [18] Shi L, Zhou X F, Zhang Y L, et al. Development of an analytical method for eight fluoroquinolones using solid-phase extraction and liquid chromatography with fluorescence detection [J]. Environmetal Analytical Chemistry, 2010,90(14/15):1085-1098. [19] Jiang L, Hu X L, Yin D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China [J]. Chemosphere, 2011,82(6):822-828. [20] Duan Y P, Meng X Z, Wen Z H. Acidic pharmaceuticals in domestic wastewater and receiving water from hyperurbanization city of China (Shanghai): environmental release and ecological risk [J]. Environmental Science Pollution Research, 2013,20(1):108-116. [21] Zhou X F, Dai C M, Zhang Y L, et al. A preliminary study on the occurrence and behavior of carbamazepine (CBZ) in aquatic environment of Yangtze River Delta, China [J]. Environmental Monitor Assess, 2011,173(1-4):45-53. [22] Vieno N M, Tuhkanen T, Kronberg L. Analysis of neutral and basic pharmaceuticals in sewage treatment plants and in recipient rivers using solid phase extraction and liquid chromatographytandem mass spectrometry detection [J]. Journal of Chromatography A, 2006, 1134(1/2):101-111. [23] Lacey C, Mcmahon G, Bones J, et al. An LC-MS method for the determination of pharmaceutical compounds in wastewater treatment plant influent and effluent samples [J]. Talanta, 2008, 75:1089-1097. [24] Hernando M D, Heath E, Petrovic M, et al. Trace-level determination of pharmaceutical residues by LC-MS/MS in natural and treated waters: A pilot-survey study [J]. Analytical and Bioanalytical Chemistry, 2006,385(6):985-991. [25] Glelt A. Estimation for small normal data sets with detection limits [J]. Environmental Science and Technology, 1985,19(12): 1201-1208. [26] Reemtsma T, Weiss S, Mueller J, et al. Polar pollutants entry into the water cycle by municipal wastewater: A European perspective [J]. Environmental Science and Technology, 2006,40(17):5451-5458. [27] Dolores C M, Julia M, Juan L S, et al. Occurrence, temporal evolution and risk assessment of pharmaceutically active compounds in Do?ana Park [J]. Journal of Hazardous Materials, 2010,183(1-3):602-608. [28] Wu C X, Alison L S, Jason D W. Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry [J]. Chemosphere, 2008,73(4):511-518. [29] Paul H R, Kevin V T. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment [J]. Science of The Total Environment, 2006,356(1-3): 143-153. [30] Yeomin Y, Jaena R, Jeill O, et al. Occurrence of endocrine disrupting compounds, pharmaceuticals and personal care products in the Han River (Seoul, South Korea) [J]. Science of The Total Environment, 2010,408(3):636-643. [31] Sui Q, Huang J, Deng S B, et al. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China [J]. Water Research, 2010,44(2):417-426. [32] Ternes T A. Occurrence of drugs in German se wage treatment plants and rivers [J]. Water Research, 1998,32(11):3245-3260. [33] Lishman L, Smyth S A, Sarafin K, et al. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada [J]. Science of the Total Environment, 2006,367(2/3): 544-558. [34] Justin M C, Steven J S, Mark S S, et al. Spatial and temporal analysis of pharmaceutical concentrations in the upper Tennessee River basin [J]. Chemosphere, 2008,73(8):1178-1187. [35] Barbara K H, Richard M D, Alan J G. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK [J]. Water Research, 2008,42(13):3498-3518. [36] Bianca F S, Aleksandra J, Rebeca L S, et al. Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain [J]. Chemosphere, 2011,85(8):1331-1339. [37] Valcárcel Y, González A S, Rodríguez-Gil J L, et al. Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region and potential ecotoxicological risk [J].Chemosphere, 2011,84(10):1336-1348. [38] Allison M V, Melody J B. Temporal variation of pharmaceuticals in an urban and agriculturally influenced stream [J]. Science of The Total Environment, 2011,409(21):4553-4563. [39] Tauxe W A, Alencastro L F, Grandjean D, et al. Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment [J]. Water Research, 2005,39(9):1761-1772. [40] Grung M, Kallqvist T, Sakshaug S, et al. Environmental assessment of Norwegian priority pharmaceuticals based on the EMEA guide line [J]. Ecotoxicological and Environmetal Safety, 2008,71(2):328-340. [41] Flaherty C M , Dodson S I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction [J]. Chemosphere, 2005,61(2):200-207. [42] Lindqvist N, Tuhkanen T, Kronberg L. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters [J]. Water Research, 2005,39(11):2219-2228. [43] Santos J L, Aparicio I, Alonso E. Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain) [J]. Environment International, 2007,33(4):596-601. [44] Ferrari B, Paxeus N, Giudice R L, et al. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid and diclofenac [J]. Ecotoxicology and Environmental Safety, 2003,55(3):359-370. [45] Halling S B, Nielsen S N, Lanzky P F, et al. Occurrence, fate and effects of pharmaceutical substances in the environmental-a review [J]. Chemosphere, 1998,36:357-393. [46] L?ffler D, Ternes T A. Determination of acidic pharmaceuticals, antibiotics and ivermectin in river sediment using liquid chromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2003,1021:133-144. [47] Beausse J. Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances [J]. Trends in Analytical Chemistry, 2004,23: 753-761. [48] Xu W H, Zhang G, Zou S C, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China [J]. Water Environmental Research, 2009,81(3):248-254. Concentrations and distribution of selected pharmaceuticals and personal care products in Huangpu River. WANG Dan1, SUI Qian1*, LU Shu-guang1, ZHAO Wen-tao2, QIU Zhao-fu1& YU Gang3(1.State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China;2.State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University Shanghai 200092, China;3.THU-VEOLIA Joint Research Center for Advanced Environmental Technology, School of Environment, Tsinghua University, Beijing 100084, China). China Environmental Science, 2014,34(7):1897~1904 The concentrations of 7selected pharmaceuticals and personal care products (PPCPs) in the Huangpu River were determined by solid phase extraction and high liquid chromatography-electrospray tandem mass spectrometry (SPE-HPLC-MS/MS). The results showed that the developed analytical method obtained good recoveries (87~107%), relative standard deviation (<14%) and limit of quantification (0.1~1.1ng/L), satisfying the requirement to detect micropollutants in the surface water. By applying the method in Huangpu River, we found that compared to other reported studies, the contamination levels of target PPCPs were low in Huangpu River, with the concentrations varying from pharmaceuticals and personal care products;high liquid chromatography-electrospray tandem mass spectrometry method;Huangpu River;concentration X171 A 1000-6923(2014)07-1897-08 王 丹(1987-),女,江蘇徐州人,華東理工大學碩士研究生,主要從事水環(huán)境中藥物與個人護理品的調(diào)查與去除機理的研究. 關(guān)于《中國環(huán)境科學》網(wǎng)上投稿的通知 《中國環(huán)境科學》編輯部 2013-10-30 國家自然科學基金(51208199);中國博士后科學基金特別資助項目(2013T60429);國家環(huán)境保護環(huán)境微生物利用與安全控制重點實驗室開放基金(MARC2011D032;MARC2011D044);環(huán)境模擬與污染控制國家重點聯(lián)合實驗室開放基金(12K02ESPCT);中央高?;究蒲袠I(yè)務(wù)費專項資金 * 責任作者, 講師, suiqian@ecust.edu.cn 《中國環(huán)境科學》編輯部為提高稿件處理的網(wǎng)絡(luò)化水平和采編工作的效率,及時讓作者了解稿件的處理情況,自2008年3月1日起已開通網(wǎng)上投稿查稿系統(tǒng),請登陸網(wǎng)址: http://www.zghjkx.com.cn點擊“作者在線投稿”進行注冊后再按要求投稿,點擊“作者在線查稿”進行查詢.本刊不再接受紙件投稿和電子版稿件的E-mail投稿.特此通知.1 材料與方法
2 結(jié)果與討論
3 結(jié)論