張登曉, 周惠民, 潘根興, 李戀卿, 鄭金偉
(南京農(nóng)業(yè)大學(xué)農(nóng)業(yè)資源與生態(tài)環(huán)境研究所, 江蘇南京 210095)
蔬菜是日常攝取的主要食物。2008年我國蔬菜種植面積達(dá)到17.88百萬公頃,已占我國耕地面積的11.4%[1]。2012年,我國溫室大棚蔬菜的種植面積迅速增加,達(dá)到20.35百萬公頃,成為世界上最大的溫室蔬菜生產(chǎn)國[1-3]。與傳統(tǒng)露天栽培方式相比,溫室蔬菜產(chǎn)量得到大幅提高,但同時(shí)氮肥投入量大幅增加[4]。據(jù)統(tǒng)計(jì),山東省溫室大棚系統(tǒng)中氮肥的使用量高達(dá)N 4000 kg/hm2,而過量施肥一方面導(dǎo)致肥料利用率降低[4-5],部分地區(qū)氮肥利用率甚至不足10%[6-8];另一方面導(dǎo)致蔬菜硝酸鹽積累[9]和土壤硝態(tài)氮積累[8,10],進(jìn)而導(dǎo)致地表水和地下水的富營養(yǎng)化[11]并誘發(fā)土壤鹽漬化[12]。研究顯示,蔬菜中具有高硝酸鹽含量[13],尤其葉菜類蔬菜具有更高的硝酸鹽積累[14-15]。硝酸鹽在人體內(nèi)可轉(zhuǎn)化為具有致癌作用的亞硝酸鹽,而人體攝入的大部分硝酸鹽來自蔬菜[16]。因此,控制蔬菜硝酸鹽積累,提高氮素利用率是溫室蔬菜種植中需要關(guān)注的問題。生物質(zhì)炭由于具有很強(qiáng)的吸附性能,能夠減少肥料的滲漏損失,提高肥料利用率[17-19],并且對作物產(chǎn)量具有促進(jìn)作用[20]。以往研究大多采用秸稈生物質(zhì)炭,并且以農(nóng)田施用為主,在溫室蔬菜生產(chǎn)中的應(yīng)用研究較少。城市園林廢棄物生物質(zhì)炭對溫室蔬菜產(chǎn)量和品質(zhì)的影響以及對設(shè)施農(nóng)業(yè)氮素利用率的影響還沒有清楚認(rèn)識(shí)。為此,本研究以溫室小白菜為研究對象,采用盆栽試驗(yàn)方法,研究土壤添加生物質(zhì)炭對溫室蔬菜產(chǎn)量和品質(zhì),以及養(yǎng)分的保持效應(yīng)的影響,以求探索一種綠色環(huán)保的現(xiàn)代農(nóng)業(yè)模式。
表1 土壤和生物質(zhì)炭的基本理化性狀
本試驗(yàn)采用單因素(生物質(zhì)炭)試驗(yàn)設(shè)計(jì),5個(gè)用量水平,即不施生物質(zhì)炭(對照)和施用生物質(zhì)炭(烘干重)20、 40、 60及80 g/kg的處理,分別標(biāo)為C0,C1,C2,C3及 C4。盆栽土壤每盆2 kg(干重計(jì)),施肥為N 150 mg/kg和P2O533 mg/kg,分別施入尿素和過磷酸鈣基肥,不施追肥。因生物質(zhì)炭含有較高的鉀素含量,施肥中不考慮鉀肥。
本試驗(yàn)在南京農(nóng)業(yè)大學(xué)資環(huán)學(xué)院溫室大棚中進(jìn)行,于2012年4月7日播種。每個(gè)處理設(shè)三次重復(fù),隨機(jī)排列放置,且每天補(bǔ)水后隨機(jī)調(diào)整擺放位置。
小白菜生物量測定:收獲時(shí)沿盆內(nèi)土壤表面剪下地上部,用自來水沖洗粘附土粒,繼之用蒸餾水沖洗,吸干水分后稱取鮮重。將盆內(nèi)根系取出,并用水沖洗土粒,繼之用蒸餾水洗凈。
植物樣品置于烘箱,105℃下殺青半小時(shí)后,65℃烘干到恒重。分別得到地上部和地下部干重。
土壤性質(zhì)測定:按鮑士旦(2000)推薦方法[22],其中pH采用土水比(w ∶w)為1 ∶2.5,生物質(zhì)炭 ∶水(w ∶w)為1 ∶10;采用半微量開氏法測定土壤全氮;取盆栽鮮土過2 mm篩,采用2 mol/L KCl浸提,其中銨態(tài)氮采用靛酚藍(lán)比色法測定,而硝態(tài)氮采用雙波長比色法測定[23]。
計(jì)算了如下幾個(gè)指標(biāo):1)收獲指數(shù)(Harvest index)為每盆地上部干重(g)除以地上部和地下部干重總和(g)得到;2)氮素?fù)p失率(N loss rate)為作物種植后土壤氮素?fù)p失量占種植前土壤全氮量的百分比;(3)土壤氮素生產(chǎn)率(N Productivity)為試驗(yàn)條件下每克氮素得到的地上部生物量鮮重克數(shù),由地上部生物量鮮重除以播種前土壤總氮得到,單位g/g。
所有試驗(yàn)數(shù)據(jù)和圖表采用Microsoft Excel 2007處理。不同處理間差異采取SPSS16.0進(jìn)行單因素方差分析,LSD法進(jìn)行顯著性檢驗(yàn)(P<0.05)。測定結(jié)果數(shù)據(jù)均以平均值±標(biāo)準(zhǔn)差的形式表示。
不同用量生物質(zhì)炭添加對小白菜產(chǎn)量的影響見表2。與對照相比,生物質(zhì)炭添加下地上部產(chǎn)量均顯著提高,C1、 C2、 C3和C4處理下增產(chǎn)幅度分別達(dá)到49.5%、 62.8%、 77.8% 和74.4%。其中,C3和C4處理下增產(chǎn)幅度達(dá)到75%,增產(chǎn)效應(yīng)十分顯著。
表2 生物質(zhì)炭施用下小白菜產(chǎn)量、 生物量、 收獲指數(shù)和葉面積
圖1 不同生物質(zhì)炭處理小白菜葉片中含量 contents in leaves of Brassica chinensis Linn under biochar additions
本研究表明,溫室大棚栽培小白菜的土壤中加入不同量的生物質(zhì)炭能提高小白菜產(chǎn)量,并且產(chǎn)量與生物質(zhì)炭的添加量呈正相關(guān)關(guān)系(P<0.05)(表4),表明生物質(zhì)炭對蔬菜生長具有顯著的促進(jìn)作用。
表3 不同比例生物質(zhì)炭處理對氮素保持效應(yīng)及土壤氮素生產(chǎn)率的影響
圖2 生物質(zhì)炭處理下土壤含量(A)和銨硝比(B)的變化Fig.2 Soil contents (A) and ratio(B) under the biochar amendments
生物質(zhì)炭提高大田糧食作物產(chǎn)量已經(jīng)在很多研究中有所報(bào)道[24-27]。也有研究表明了生物質(zhì)炭對菠菜[28]、 辣椒[29]等蔬菜具有不同幅度的增產(chǎn)作用。本研究結(jié)果看,添加生物質(zhì)炭能夠增加植株生物量,同時(shí)降低了根冠比而提高了蔬菜收獲指數(shù)。根冠比主要反映地上部和根系之間對光合產(chǎn)物的分配狀況[30],它與土壤中氮素的含量有關(guān),Reich[31]發(fā)現(xiàn)施肥減少了生物量向根系的分配。在一定氮素范圍內(nèi),根冠比在低氮條件下高于高氮條件[30,32]。Spokas[33]發(fā)現(xiàn)生物質(zhì)炭加入土壤中導(dǎo)致植物體內(nèi)乙烯含量的增加,這可能是促進(jìn)植物地上部生長的原因之一[33]。但是,生物質(zhì)炭添加是否影響了土壤生物學(xué)性質(zhì),進(jìn)而影響了蔬菜的產(chǎn)量性能還不清楚。
本試驗(yàn)還表明,蔬菜植株硝酸鹽含量與土壤中銨態(tài)氮和硝態(tài)氮含量具有相關(guān)性,但與土壤全氮含量相關(guān)性不顯著(表4)。不同用量下植株硝酸鹽含量降低幅度在50%以上,特別是2%生物質(zhì)炭土壤添加降低硝酸鹽含量的幅度達(dá)到68%。
在本試驗(yàn)中,土壤全氮含量與生物質(zhì)炭添加量存在顯著的相關(guān)性,但與土壤中銨態(tài)氮和硝態(tài)氮含量不具相關(guān)性(表4)。與降低蔬菜硝酸鹽含量類似,生物質(zhì)炭降低了土壤硝態(tài)氮和銨態(tài)氮含量。氮素平衡分析表明,添加生物質(zhì)炭顯著降低氮素?fù)p失率42%以上,提高土壤氮素生產(chǎn)率超過35%。這一方面可能是由于添加生物質(zhì)炭降低了氮素N2O排放損失。土壤中氨硝含量的降低可能與生物質(zhì)炭降低農(nóng)田土壤中碳氮的礦化有關(guān)[34-36]。生物質(zhì)炭通過改善土壤通氣狀況從而抑制了氮素在硝化和反硝化過程中N2O的形成和排放[27,37]。同時(shí),研究指出生物質(zhì)炭可減低土壤溶液中的氨濃度,從而降低氮素以氨氣形式的揮發(fā)[37-38]。另外,生物質(zhì)炭顆粒具有較大的陽離子吸附量,有多孔性和高比表面積等特性[39-40],化肥氮素特別是銨離子易被吸附進(jìn)而與生物質(zhì)炭復(fù)合而達(dá)到緩釋的作用,從而促進(jìn)植物持續(xù)吸收利用。
表4 各調(diào)查指標(biāo)間的相關(guān)性
參考文獻(xiàn):
[1] 中國統(tǒng)計(jì)局. 中國統(tǒng)計(jì)年鑒(2009-2013)[M]. 北京:中國統(tǒng)計(jì)局.
Chinese Statistical Bureau. China statistical year book (2009-2013)[M]. Beijing:Chinese Statistical Bureau.
[2] Chang J, Wu X, Liu Aetal. Assessment of net ecosystem services of plastic greenhouse vegetable cultivation in China[J]. Ecological Economics, 2011, 70(4):740-748.
[3] Chen Y, Huang B, Hu Wetal. Environmental assessment of closed greenhouse vegetable production system in Nanjing, China[J]. Journal of Soils and Sediments, 2013, 13:1418-1429.
[4] Guo J H, Liu X J, Zhang Yetal. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968):1008-1010.
[5] 張福鎖, 王激清, 張衛(wèi)峰, 等. 中國主要糧食作物肥料利用率現(xiàn)狀與提高途徑[J]. 土壤學(xué)報(bào), 2008, 45(5):915-924.
Zhang F S, Wang J Q, Zhang W Fetal. Nutrient use efficiencies of major cereal crop in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5):915-924.
[6] Zhu J H, Li X L, Christie P, Li J L. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (CapsicumfrutescensL.) cropping systems[J]. Agriculture, Ecosystems & Environment, 2005, 111:70-80.
[7] Ju X T, Kou C L, Christie Petal. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J]. Environmental Pollution, 2007, 145(2):497-506.
[8] Min J, Zhao X, Shi W Metal. Nitrogen balance and loss in a greenhouse vegetable system in Southeastern China[J]. Pedosphere, 2011, 21(4):464-472.
[9] Zhou Z Y, Wang M J, Wang J S. Nitrate and nitrite contamination in vegetables in China[J]. Food Reviews International, 2000, 16(1):61-76.
[10] Min J, Shi W, Xing Getal. Effects of a catch crop and reduced nitrogen fertilization on nitrogen leaching in greenhouse vegetable production systems[J]. Nutrient Cycling in Agroecosystems, 2011, 91:31-39.
[11] Constantin J, Mary B, Laurent Fetal. Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments[J]. Agriculture, Ecosystems & Environment, 2010, 135(4):268-278.
[12] Shi W M, Yao J, Yan F. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in South-Eastern China[J]. Nutrient Cycling in Agroecosystems, 2009, 83:73-84.
[13] Santamaria P. Nitrate in vegetables:toxicity, content, intake and EC regulation[J]. Journal of the Science of Food and Agriculture, 2006, 86(1):10-17.
[14] 都韶婷, 金崇偉, 章永松. 蔬菜硝酸鹽積累現(xiàn)狀及其調(diào)控措施研究進(jìn)展[J]. 中國農(nóng)業(yè)科學(xué), 2010, 43(17):3580-3589.
Du S T, Jin C W, Zhang Y S. Current situations and research progress of nitrate pollution in vegetables and their regulating strategies[J]. Scientia Agriculturae Sinica, 2010, 43(17):3580-3589.
[15] Authority E F S. Nitrate in vegetables:scientific opinion of the panel on contaminants in the food chain[J]. The EFSA Journal, 2008, 689:1-79.
[16] 劉永剛, 陳利軍, 武志杰. 蔬菜中硝酸鹽的積累機(jī)制及其調(diào)控措施[J]. 土壤通報(bào), 2006, 37(3):612-616.
Liu Y G, Chen L J, Wu Z Jetal. Accumulation mechanisms of nitrate in vegetables and their regulation[J]. Chinese Journal of Soil Science, 2006, 37(3):612-616.
[17] Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review[J]. Biology and Fertility of Soils, 2002, 35(4):219-230.
[18] Isobe T. Suppression of nitrogen outflow from bedding plants soil by zeolite or charcoal[J]. Horticultural Research(Japan), 2002, 1:45-48.
[19] 曲晶晶, 鄭金偉, 鄭聚鋒, 等. 小麥秸稈生物質(zhì)炭對水稻產(chǎn)量及晚稻氮素利用率的影響[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2012, 28(3):288-293.
Qu J J, Zheng J W, Zheng J Fetal. Effects of Wheat-Straw-Based Biochar on Yield of Rice and Nitrogen Use Efficiency of Late Rice[J]. Journal of Ecology and Rural Environment, 2012, 28(3):288-293
[20] Atkinson C J, Fitzgerald J D, Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:a review[J]. Plant and Soil, 2010, 337:1-18.
[21] 王學(xué)奎. 植物生理生化實(shí)驗(yàn)原理和技術(shù)(第二版)[M]. 北京:高等教育出版社, 2006. 122-123.
Wang X K. Experimental principle and technipue for plant physiology and biochemistry[M]. Beijing:Higher Education Press, 2006. 122-123.
[22] 鮑士旦. 土壤農(nóng)化分析(第三版)[M]. 北京:中國農(nóng)業(yè)出版社, 2000.
Bao S D. Soil and Agro-chemistry Analysis(3rd Ed.)[M]. Beijing:China Agricultural Press, 2000.
[23] 國家環(huán)境保護(hù)總局. 水和廢水監(jiān)測分析方法(第四版)[M]. 北京:中國環(huán)境科學(xué)出版社, 2002. 266-268.
State Environmental Protection Administration. Analysis methods for water and wastewater (4th edition)[M]. Beijing:China Environmental Science Press, 2002. 266-268.
[24] Asai H, Samson B K, Stephan H Metal. Biochar amendment techniques for upland rice production in Northern Laos:1. Soil physical properties, leaf SPAD and grain yield[J]. Field Crops Research, 2009, 111:81-84.
[25] Major J, Rondon M, Molina Detal. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and Soil, 2010, 333:117-128.
[26] Haefele S M, Konboon Y, Wongboon Wetal. Effects and fate of biochar from rice residues in rice-based systems[J]. Field Crops Research, 2011, 121(3):430-440.
[27] Zhang A, Liu Y, Pan Getal. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain[J]. Plant and Soil, 2012, 351(1-2):263-275.
[28] 張萬杰, 李志芳, 張慶忠, 等. 生物質(zhì)炭和氮肥配施對菠菜產(chǎn)量和硝酸鹽含量的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2011, 30(10):1946-1952.
Zhang W J, Li Z F, Zhang Q Zetal. Impacts of biochar and nitrogen fertilizer on spinach yield and tissue nitrate content from a pot experiment[J]. Journal of Agro-Environment Science. 2011, 30(10):1946-1952.
[29] Pudasaini K, Ashwath N, Walsh K, Bhattarai T. Biochar Improves Plant Growth and Reduces Nutrient Leaching in Red Clay Loam and Sandy Loam[J]. Hydro Nepal:Journal of Water, Energy and Environment, 2012, 11(1):86-90.
[30] 姜琳琳, 韓立思, 韓曉日, 等. 氮素對玉米幼苗生長, 根系形態(tài)及氮素吸收利用效率的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2011, 17(1):247-253.
Jiang L l, Han L S, Han X Retal. Effects of nitrogen on growth, root morphological traits, nitrogen uptake and utilization efficiency of maize seedlings[J]. Plant Nutrition and Fertilizer Science, 2011, 17(1):247-253.
[31] Reich P. Root-shoot relations:optimality in acclimation and adaptation or the “Emperor’s new clothes”[A]. Waisel Y, Eshel A, Kafkafi U. Plant roots, the hidden half[C]. New York:Marcel Dekker, 2002. 205-220.
[32] Vamerali T, Saccomani M, Bona Setal. A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids[J]. Plant Soil, 2003, 255:157-167.
[33] Spokas K A, Baker J M, Reicosky D C. Ethylene:Potential key for biochar amendment impacts[J]. Plant and Soil, 2010, 333:443-452.
[34] Kuzyakov Y, Subbotina I, Chen Hetal. Black carbon decomposition and incorporation into soil microbial biomass estimated by14C labeling[J]. Soil Biology and Biochemistry, 2009, 41(2):210-219
[35] Jones D L, Murphy D V, Khalid Metal. Short-term biochar-induced increase in soil CO2release is both biotically and abiotically mediated[J]. Soil Biology and Biochemistry, 2011, 43(8):1723-1731.
[36] Dempster D N, Gleeson D B, Solaiman Z Metal. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J]. Plant and Soil, 2012, 354:311-324.
[37] Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems-a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2):395-419.
[38] Taghizadeh-Toosi A, Clough T J, Sherlock R R, Condron L M. A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability[J]. Plant and Soil, 2012, 353:73-84.
[39] Lehmann J, Joseph S. Biochar for environmental management:science and technology[M]. London, UK:Earthscan, 2009. 1-29,107-157.
[40] 劉瑩瑩, 秦海芝, 李戀卿, 潘根興, 等. 不同作物原料熱裂解生物質(zhì)炭對溶液中Cd2+和Pb2+的吸附特征[J]. 生態(tài)環(huán)境學(xué)報(bào), 2012, 21(1):146-152.
Liu Y Y, Qin H Z, Li L Q, Pan G Xetal. Adsorption of Cd2+and Pb2+in aqueous solution by biochars produced from the pyrolysis of different crop feedstock[J]. Ecology and Environmental Sciences, 2012, 21(1):146-152.