劉茂柯,唐玉明,曹曉涵,任道群,姚萬(wàn)春,敖曉琳
(1.四川省農(nóng)業(yè)科學(xué)院水稻高粱研究所生物中心,四川瀘州646100;2.四川農(nóng)業(yè)大學(xué)生命科學(xué)與理學(xué)院,四川雅安625014;3.四川農(nóng)業(yè)大學(xué)食品學(xué)院,四川雅安625014)
近年來(lái),隨著微生態(tài)技術(shù)的發(fā)展,益生菌應(yīng)用于食品、藥物的成果日益增加,新產(chǎn)品層出不窮。然而,由于活菌數(shù)對(duì)益生菌產(chǎn)品功效具有基礎(chǔ)性作用,使得相關(guān)產(chǎn)品的研發(fā)主要致力于如何提高活菌數(shù),而易忽視制造工藝對(duì)益生菌健康效應(yīng)存在的巨大影響[1]。還有研究顯示,制造過(guò)程中若盲目追求提高益生菌活菌數(shù),可能會(huì)導(dǎo)致健康效應(yīng)的衰退,降低產(chǎn)品功效[2]。因此,除活菌數(shù)外,應(yīng)對(duì)產(chǎn)品制造過(guò)程中影響益生菌健康效應(yīng)的其他因素投入更多的關(guān)注,合理調(diào)整工藝,方能使益生菌在宿主體內(nèi)更高效地起到有益效果,推動(dòng)益生菌產(chǎn)品的功效朝所期待的方向發(fā)展。
益生菌健康效應(yīng)的體現(xiàn)高度依賴(lài)對(duì)生長(zhǎng)培養(yǎng)基的選擇。不同培養(yǎng)基培養(yǎng)的益生菌在拮抗病原菌[3]、免疫調(diào)節(jié)[4]和降解膽固醇[5]等方面的能力均有差異。例如,M17培養(yǎng)的L.lactis G50誘導(dǎo)小鼠巨噬細(xì)胞產(chǎn)生干擾素IL-12的能力顯著強(qiáng)于MRS培養(yǎng)[4],而在MRS中生長(zhǎng)的L.johnsonii NCC 533對(duì)沙門(mén)氏菌的拮抗作用明顯高于MLM+培養(yǎng)[6]。
培養(yǎng)基營(yíng)養(yǎng)成分的不同可改變益生菌代謝途徑,造成細(xì)胞表面與生理功能相關(guān)的糖蛋白、脂肪酸等分子種類(lèi)、構(gòu)象發(fā)生變化進(jìn)而造成健康效應(yīng)的差異。如在生長(zhǎng)培養(yǎng)基中添加不同的碳源、氮源以及無(wú)機(jī)鹽可影響抗菌素的生成,使菌株顯示出不同的拮抗能力[3,7]。而添加不同脂肪酸可能導(dǎo)致菌株細(xì)胞表面非飽和與飽和脂肪酸的比率發(fā)生變化,改變細(xì)胞膜疏水性,影響腸道黏附性和拮抗能力[6]。
培養(yǎng)pH對(duì)益生菌健康效應(yīng)有很大影響。一方面,培養(yǎng)pH的變化可影響相關(guān)代謝產(chǎn)物的合成與分泌。例如,抗菌素的產(chǎn)生對(duì)pH具有高度易感性,使得不同pH條件下培養(yǎng)的菌株拮抗能力有所不同[3,7]。還有研究證實(shí),與益生菌耐膽鹽和降解膽固醇能力相關(guān)的膽酸鹽水解酶的活性[8]以及具有腫瘤生長(zhǎng)抑制作用的精氨酸脫亞胺酶的分泌[9]也高度依賴(lài)pH的調(diào)控。另一方面,Sashihara等[10]認(rèn)為培養(yǎng)環(huán)境中的H+對(duì)肽聚糖的構(gòu)象可能起到修飾作用,從而影響菌株免疫調(diào)節(jié)功能。在他們的研究中,不同pH培養(yǎng)的L.gasseriOLL2809誘導(dǎo)小鼠脾細(xì)胞白介素IL-12(P70)的分泌量分別約為:500 pg/mL(pH6)、1000pg/mL(pH5)、1800pg/mL(pH4)。
益生菌在不同生長(zhǎng)期健康效應(yīng)的作用機(jī)理不同[11-13]。如Maassen等[11]分別向小鼠飼喂對(duì)數(shù)期和生長(zhǎng)期的乳酸菌后接種疫苗,兩個(gè)處理間血清IgG1/IgG2a比率呈現(xiàn)顯著差異,表明不同生長(zhǎng)期乳酸菌可能決定疫苗誘導(dǎo)的免疫應(yīng)答是偏向于Th1還是Th2型,進(jìn)而造成免疫應(yīng)答類(lèi)型的不同。目前的研究顯示,益生菌在穩(wěn)定期時(shí),其黏附[13]、拮抗[3]與免疫調(diào)節(jié)能力[10]相對(duì)較強(qiáng),原因是細(xì)胞表面物質(zhì)如疏水性蛋白、聚糖類(lèi)物質(zhì)等均在此時(shí)分化成熟。此外,穩(wěn)定期不同時(shí)間點(diǎn)收獲的菌株各方面表現(xiàn)也不同。例如L.rhamnosus GG對(duì)Caco-2黏附性以穩(wěn)定期前期最強(qiáng)[13]。而L.gasseri OLL2809誘導(dǎo)鼠脾細(xì)胞白介素IL-12(P70)的分泌量在穩(wěn)定期后期達(dá)到最高[10]。
已有研究顯示,培養(yǎng)溫度對(duì)益生菌抗菌能力有較大影響。如在20、30、40℃條件下培養(yǎng)的L.rhamnosus GP1對(duì)哈氏弧菌的抗菌效價(jià)分別為420、1 200 AU/mL與200 AU/mL[7]。而有關(guān)培養(yǎng)溫度對(duì)其他健康效應(yīng)有何影響的報(bào)道較少。現(xiàn)已證實(shí)培養(yǎng)溫度對(duì)胞外多糖(EPS)的富集有顯著影響[14],而胞外多糖在益生菌黏附、免疫調(diào)節(jié)與消除細(xì)胞病變中起重要作用[15-17],但尚缺乏直接的證據(jù)將兩者聯(lián)系起來(lái)。
研究顯示,與不同載體配伍,益生菌在治療關(guān)節(jié)炎[18]、抑制幽門(mén)螺桿菌[19]以及抗腫瘤[20]等方面的表現(xiàn)不同。說(shuō)明了載體對(duì)健康效應(yīng)存在影響,但相關(guān)作用機(jī)理尚不清楚??赡艿臋C(jī)理之一是載體可降低不利環(huán)境因素的脅迫作用對(duì)益生菌生理功能造成的傷害,使活菌數(shù)和細(xì)胞結(jié)構(gòu)得以保持。Saxelin等[21]將復(fù)合益生菌制成膠囊、酸奶酪與干酪3種形式,讓成年人以1010cfu/d的劑量服用四周,停用后各處理糞便中B.lactis Bb12活菌數(shù)呈現(xiàn)出極顯著的差異,揭示了載體對(duì)定植力的影響。還有研究顯示將益生菌與脫脂乳配伍,脫脂乳中的蛋白質(zhì)可分散高壓勻漿過(guò)程中的壓力,降低其對(duì)細(xì)胞膜疏水性造成的影響,使黏附性得到保持[22]。
另一可能的機(jī)理是載體所含的生物活性物質(zhì)與益生菌之間存在協(xié)同作用。Larsen等[23]在體外試驗(yàn)中發(fā)現(xiàn)Ca2+可促進(jìn)益生菌黏附性和拮抗能力增強(qiáng)。Sachdeva等[19]在研究中指出,以富含Ca2+的乳制品為載體可使益生菌在人體內(nèi)對(duì)幽門(mén)螺桿菌的抑制作用較其他載體提升5%到10%。這可能也是目前益生菌食品主要以乳制品為載體的原因之一。
Vinderola等[24]發(fā)現(xiàn)不同香型發(fā)酵乳制品中L.casei的胃腸道耐受性有較大差異。因此,他推測(cè)食品添加劑對(duì)健康效應(yīng)有一定影響,但他檢測(cè)的樣品來(lái)源于不同廠(chǎng)商,這種差異是否僅由香味劑所引起尚有待證實(shí)。此外,對(duì)于復(fù)合益生菌產(chǎn)品,菌株配伍方式也存在較大影響。例如,將B.lactis Bb12與L.rhamnosusGG進(jìn)行配伍,可使L.rhamnosus GG的腸道黏附性顯著提高,免疫調(diào)節(jié)效應(yīng)得到加強(qiáng)[25]。但若將L.rhamnosus LC705或B.breve Bb99與其進(jìn)行組合,則可能導(dǎo)致完全相反的結(jié)果[26]。
益生菌產(chǎn)品功效主要取決于活菌數(shù)基礎(chǔ)上菌株健康效應(yīng)的展現(xiàn)。然而制造工藝對(duì)健康效應(yīng)存在的巨大影響,可能產(chǎn)生某一工藝措施在提高活菌數(shù)的同時(shí)卻導(dǎo)致健康效應(yīng)的衰退,這是易被忽視的問(wèn)題。
研究發(fā)現(xiàn),對(duì)數(shù)期的L.rhamnosus GG抗逆性顯著強(qiáng)于穩(wěn)定期[27],但此時(shí)其腸道黏附性相對(duì)于穩(wěn)定期時(shí)卻顯著下降[13]。若將對(duì)數(shù)期的培養(yǎng)物用于產(chǎn)品研發(fā),雖利于活菌數(shù)的提高,但也可能減弱其免疫調(diào)節(jié)效應(yīng)。Burns等[2]的研究印證了這一觀點(diǎn)。他們發(fā)現(xiàn),對(duì)L.lactis 200進(jìn)行耐膽鹽馴化雖可提高其腸道存活率,但會(huì)造成細(xì)胞膜完整性的缺失,使疏水性和凝集作用下降,導(dǎo)致免疫調(diào)節(jié)效應(yīng)受損。因此,對(duì)工藝的調(diào)整應(yīng)考慮到對(duì)活菌數(shù)和健康效應(yīng)的兼顧,做到全局優(yōu)化。例如,酸馴化可促進(jìn)細(xì)胞膜飽和脂肪酸的富集提高菌株抗逆性[28],但脂肪酸結(jié)構(gòu)的改變將導(dǎo)致細(xì)胞膜疏水性變化,影響到腸道黏附性[6]。生長(zhǎng)培養(yǎng)基中添加甘露糖可提高菌株凍干和存儲(chǔ)期的活菌數(shù)[29],同時(shí)這對(duì)抗菌素的產(chǎn)生[3,7]、EPS[30]的形成將帶來(lái)何種影響都是須注意的問(wèn)題。
因此,若能在深入解析益生菌生理功能的基礎(chǔ)上,將相關(guān)作用機(jī)制靈活應(yīng)用于對(duì)制造工藝的優(yōu)化中,目的和手段有效結(jié)合,有所兼顧,有的放矢,方能使益生菌產(chǎn)品的功效得到增強(qiáng)。
益生菌健康效應(yīng)的展現(xiàn)主要與細(xì)胞表面物質(zhì)、代謝產(chǎn)物以及特殊DNA序列有關(guān)[31]。調(diào)整工藝使相關(guān)作用機(jī)理得以保持是提升產(chǎn)品功效的有效措施。例如,Sashihara等[10]指出雖然在pH 5.5~6.5環(huán)境下培養(yǎng)有利于獲得益生菌細(xì)胞產(chǎn)量和初級(jí)代謝產(chǎn)物,但在此基礎(chǔ)上適當(dāng)降低pH并將益生菌培養(yǎng)至穩(wěn)定期更有利于肽聚糖的成熟,使免疫調(diào)節(jié)效應(yīng)得到提升。類(lèi)似的結(jié)論在隨后的研究中得到[3,13,32]。而 Roy 等[33]通過(guò)基因重組對(duì)益生菌細(xì)胞表面受體進(jìn)行設(shè)計(jì)來(lái)阻斷病原菌對(duì)腸道細(xì)胞的結(jié)合也取得了較好的效果。另外,對(duì)相關(guān)作用機(jī)理的研究應(yīng)注重對(duì)共性的把握。其中,黏附性被認(rèn)為是益生菌在體內(nèi)發(fā)揮健康效應(yīng)的關(guān)鍵,與之相關(guān)的細(xì)胞表面物質(zhì)如EPS[15]、S-layer[34]以及菌毛蛋白[35]等是值得重點(diǎn)研究的對(duì)象。
F1F0 ATPase是益生菌在逆境中維持自身內(nèi)穩(wěn)態(tài)的關(guān)鍵酶,研究顯示通過(guò)耐酸[36]、耐膽鹽[37]馴化均可促進(jìn)此酶的表達(dá)與活性的提高進(jìn)而提升菌株抗逆性。Ongol等[38]則采用新霉素誘變的方式來(lái)減弱L.bulgaricus中該酶的活性,降低乳制品后酸化作用,使B.breve的活菌數(shù)在存儲(chǔ)期顯著提高。這提示,深入研究益生菌抗逆性的生理機(jī)制,可為提升活菌數(shù)帶來(lái)更多的工藝措施,使對(duì)工藝的選擇更靈活、更具針對(duì)性。例如,L.rhamnosus是運(yùn)用較廣的益生菌,但由于其缺乏過(guò)氧化氫酶,使得相關(guān)產(chǎn)品的活菌數(shù)難以維持。An等[39]將該菌與L.sakei YSI8中表達(dá)過(guò)氧化氫酶的KatA進(jìn)行重組,使其在有氧培養(yǎng)條件下活菌數(shù)提高100倍左右,同時(shí)健康效應(yīng)也得到保持。
利用益生菌生理功能的相關(guān)性,從側(cè)面對(duì)菌株進(jìn)行改造可為工藝調(diào)整提供更多的切入點(diǎn)。如前所述,適應(yīng)性馴化提高菌株抗逆性的機(jī)制之一是其有利于F1F0 ATPase的表達(dá)與活性的提高。F1F0 ATPase的活性需消耗大量ATP來(lái)維持。因此,抗逆性較強(qiáng)的菌株往往伴隨著相對(duì)旺盛的糖酵解能力[27]。所以,在適應(yīng)性馴化可能損傷菌株健康效應(yīng)時(shí),借鑒Fu等[40]的方法通過(guò)代謝工程手段針對(duì)糖酵解途徑進(jìn)行調(diào)控來(lái)提高其抗逆性也是值得嘗試的。同時(shí),這也提示,優(yōu)化培養(yǎng)條件提升益生菌抗逆性時(shí),為其提供更多的營(yíng)養(yǎng)物質(zhì)可能會(huì)取得更好的效果。
對(duì)大多數(shù)消費(fèi)者而言,對(duì)益生菌產(chǎn)品的使用方式是影響其功效的主要因素。Tsai等[41]向小鼠飼喂L.paracasei NTU 101(108cfu/d),其拮抗與免疫調(diào)節(jié)效應(yīng)在連續(xù)飼喂6周后才有所體現(xiàn),連續(xù)飼喂9周后方能使健康效應(yīng)在停飼后維持一段時(shí)間。這說(shuō)明健康效應(yīng)的展現(xiàn)具有時(shí)間依賴(lài)性,而使用時(shí)間長(zhǎng)短還可能造成相關(guān)的作用機(jī)制發(fā)生轉(zhuǎn)變[42]。然而目前臨床研究的試驗(yàn)期普遍較短,尤其缺乏對(duì)益生菌健康效應(yīng)隨使用時(shí)間變化的動(dòng)態(tài)結(jié)果,造成相關(guān)產(chǎn)品具體功效的標(biāo)識(shí)不明確,間接導(dǎo)致了消費(fèi)者對(duì)產(chǎn)品的使用方式具有隨意性的特點(diǎn),造成功效的不確定性。
除活菌數(shù)外,應(yīng)將腸道黏附性、拮抗、免疫調(diào)節(jié)等納入質(zhì)量評(píng)價(jià)體系當(dāng)中,針對(duì)產(chǎn)品所標(biāo)示的具體健康功效進(jìn)行鑒定。此外,為避免因材料方法的不同導(dǎo)致對(duì)菌株功能評(píng)價(jià)結(jié)果出現(xiàn)差異,對(duì)鑒定方法的選擇應(yīng)具有多元化。
目前,益生菌產(chǎn)品研發(fā)需要解決的問(wèn)題是在深入解析益生菌生理功能的同時(shí)加大對(duì)制造工藝學(xué)的研究力度。在此基礎(chǔ)上,合理兼顧益生菌活菌數(shù)與健康效應(yīng)之間的關(guān)系,全局優(yōu)化,這對(duì)提升益生菌產(chǎn)品的功效、推動(dòng)益生菌產(chǎn)業(yè)的發(fā)展具有重要的理論和應(yīng)用價(jià)值。隨著相關(guān)研究的深入,益生菌產(chǎn)品將進(jìn)一步發(fā)揮對(duì)人類(lèi)健康的促進(jìn)作用。
[1]Grzeskowiak L,Isolauri E,Salminen S,et al.Manufacturing process influences properties of probiotic bacteria[J].Br J Nutr,2011,105(6):887-894
[2]Burns P,Reinheimer J,Vinderola G.Impact of bile salt adaptation of Lactobacillus delbrueckii subsp.lactis 200 on its interaction capacity with the gut[J].Research in Microbiology,2011,162(8):782-790
[3]Khalil R,Djadouni F,Elbahloul Y,et al.The influence of cultural and physical conditions on the antimicrobial activity of bacteriocin produced by a newly isolated Bacillus megaterium 22 strain[J].African Journal of Food Science,2009,3(1):011-022
[4]Kimoto-Nira H,Suzuki C,Kobayashi M,et al.Different growth media alter the induction of interleukin 12 by a Lactococcus lactis strain[J].Journal of Food Protection,2008,71(10):2124-2128
[5]Lye H S,Rahmat-Ali G R,Liong M T.Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract[J].International Dairy Journal,2010,20(3):169-175
[6]Muller J,Ross R,Sybesma W,et al.Modification of the Technical Properties of Lactobacillus johnsonii NCC 533 by Supplementing the Growth Medium with Unsaturated Fatty Acids[J].Applied and Environmental Microbiology,2011,77(19):6889-6898
[7]Sarika A,Lipton A,Aishwarya M.Bacteriocin production by a new isolate of Lactobacillus rhamnosus GP1 under different culture conditions[J].Adv J Food Sci Technol,2010,2(5):291-297
[8]Kumar R,Grover S,Batish V K.Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolase-producing Lactobacillus plantarum strains in Sprague-Dawley rats[J].British Journal of Nutrition,2011,105(4):561
[9]Rimaux T,Rivière A,Illeghems K,et al.Expression of the arginine deiminase pathway genes in Lactobacillus sakei is strain-dependent and is affected by environmental pH[J].Applied and Environmental Microbiology,2012,78(14):4874-4883
[10]Sashihara T,Sueki N,Furuichi K,et al.Effect of growth conditions of Lactobacillus gasseri OLL2809 on the immunostimulatory activity for production of interleukin-12(p70)by murine splenocytes[J].International Journal of Food Microbiology,2007,120(3):274-281
[11]Maassen C,Boersma W J A,van Holten-Neelen C,et al.Growth phase of orally administered Lactobacillus strains differentially affects IgG1/IgG2a ratio for soluble antigens:implications for vaccine development[J].Vaccine,2003,21(21/22):2751-2757
[12]Van Baarlen P,Troost F J,Van Hemert S,et al.Differential NFKB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance[J].Proceedings of the National Academy of Sciences,2009,106(7):2371
[13]Deepika G,Green R J,Frazier R A,et al.Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG[J].Journal of Applied Microbiology,2009,107(4):1230-1240
[14]Aslim B,Yuksekdag Z N,Beyatli Y,et al.Exopolysaccharide production by Lactobacillus delbruckii subsp.bulgaricus and Streptococcus thermophilus strains under different growth conditions[J].World Journal of Microbiology and Biotechnology,2005,21(5):673-677
[15]Fanning S,Hall L J,Cronin M,et al.Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection[J].Proceedings of the National Academy of Sciences,2012,109(6):2108-2113
[16]Lebeer S,Claes I J J,Verhoeven T L A,et al.Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innateimmunefactorsintheintestine[J].MicrobialBiotechnology,2011,4(3):368-374
[17]Ruas-Madiedo P,Medrano M,Salazar N,et al.Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells[J].Journal of Applied Microbiology,2010,109(6):2079-2086
[18]Baharav E,Mor F,Halpern M,et al.Lactobacillus GG bacteria ameliorate arthritis in Lewis rats[J].The Journal of nutrition,2004,134(8):1964-1969
[19]Sachdeva A,Nagpal J.Effect of fermented milk-based probiotic preparations on Helicobacter pylori eradication:a systematic review and meta-analysis of randomized-controlled trials[J].European journal of gastroenterology&hepatology,2009,21(1):45
[20]Urbanska A M,Bhathena J,Martoni C,et al.Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophilus yogurt formulation in the attenuation of tumorigenesis in Apc(Min/+)mice[J].Digestive diseases and sciences,2009,54(2):264-273
[21]Saxelin M,Lassig A,Karjalainen H,et al.Persistence of probiotic strains in the gastrointestinal tract when administered as capsules,yoghurt,or cheese[J].International Journal of Food Microbiology,2010,144(2):293-300
[22]Lanciotti R,Patrignani F,Iucci L,et al.Potential of high pressure homogenization in the control and enhancement of proteolytic and fermentative activities of some Lactobacillus species[J].Food chemistry,2007,102(2):542-550
[23]Larsen N,Nissen P,Willats W G T.The effect of calcium ions on adhesion and competitive exclusion of Lactobacillus ssp.and E.coli O138[J].International Journal of Food Microbiology,2007,114(1):113-119
[24]Vinderola G,Cespedes M,Mateolli D,et al.Changes in gastric resistance of Lactobacillus casei in flavoured commercial fermented milks during refrigerated storage[J].International Journal of Dairy Technology,2011,64(2):269-275
[25]Ouwehand A,Isolauri E,Kirjavainen P,et al.The mucus binding of Bifidobacterium lactis Bb12 is enhanced in the presence of Lactobacillus GG and Lact.delbrueckii subsp.bulgaricus[J].Lettersinapplied microbiology,2000,30(1):10-13
[26]Kukkonen K,Savilahti E,Haahtela T,et al.Long-term safety and impact on infection rates of postnatal probiotic and prebiotic(synbi-otic)treatment:randomized,double-blind,placebo-controlled trial[J].Pediatrics,2008,122(1):8-12
[27]Ampatzoglou A,Schurr B,Deepika G,et al.Influence of fermentation on the acid tolerance and freeze drying survival of Lactobacillus rhamnosus GG[J].Biochemical Engineering Journal,2010,52(1):65-70
[28]Broadbent J R,Larsen R L,Deibel V,et al.Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress[J].Journal of Bacteriology,2011,192(9):2445-2458
[29]Carvalho A S,Silva J,Ho P,et al.Effects of Various Sugars Added to Growth and Drying Media upon Thermotolerance and Survival throughout Storage of Freeze-Dried lactobacillus delbrueckii ssp.bulgaricus[J].Biotechnology progress,2004,20(1):248-254
[30]Garrido D,Kim J H,German J B,et al.Oligosaccharide binding proteins from Bifidobacterium longum subsp.infantis reveal a preference for host glycans[J].PLoS One,2011,6(3):e17315
[31]Li Z,Li G,Liu H,et al.The analysis of the impacting factors of probiotics on immune responses[J].African Journal of Microbiology Research,2012,6(11):2735-2743
[32]Marianelli C,Cifani N,Pasquali P.Evaluation of antimicrobial activity of probiotic bacteria against Salmonella enterica subsp.enterica serovar typhimurium 1344 in a common medium under different environmental conditions[J].Research in Microbiology,2010,161(8):673-680
[33]Roy D S,Colin H.Rational Design of Improved Pharmabiotics[J].Journal of Biomedicine and Biotechnology,2009,doi:10.1155/2009/275287
[34]Konstantinov S R,Smidt H,De Vos W M,et al.S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions[J].Proceedings of the National Academy of Sciences,2008,105(49):19474-19479
[35]Lebeer S,Claes I,Tytgat H L P,et al.Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells[J].Applied and Environmental Microbiology,2012,78(1):185-193
[36]Waddington L,Cyr T,Hefford M,et al.Understanding the acid tolerance response of bifidobacteria[J].Journal of Applied Microbiology,2010,108(4):1408-1420.
[37]Sánchez B,De Los Reyes-Gavilán C G,Margolles A.The F1F0-ATPase of Bifidobacterium animalis is involved in bile tolerance[J].Environmental microbiology,2006,8(10):1825-1833
[38]Ongol M P,Sawatari Y,Ebina Y,et al.Yoghurt fermented by Lactobacillus delbrueckii subsp.bulgaricus H+-ATPase-defective mutants exhibits enhanced viability of Bifidobacterium breve during storage[J].International Journal of Food Microbiology,2007,116(3):358-366
[39]An H,Zhou H,Huang Y,et al.High-level expression of hemedependent catalase gene katA from Lactobacillus sakei protects Lactobacillusrhamnosus from oxidative stress[J].Molecular biotechnology,2010,45(2):155-160
[40]Fu R Y,Bongers R S,Van Swam I I,et al.Introducing glutathione biosynthetic capability into Lactococcus lactis subsp.cremoris NZ9000 improves the oxidative-stress resistance of the host[J].Metabolic engineering,2006,8(6):662-671
[41]Tsai Y T,Cheng P C,Fan C K,et al.Time-dependent persistence of enhanced immune response by a potential probiotic strain Lactobacillus paracasei subsp.paracasei NTU 101[J].International Journal of Food Microbiology,2008,128(2):219-225
[42]Vinderola G,Perdigon G,Duarte J,et al.Effects of kefir fractions on innate immunity[J].Immunobiology,2006,211(3):149-156