趙 群
(山東省環(huán)境保護(hù)科學(xué)研究設(shè)計(jì)院, 山東 濟(jì)南 250013)
許多PPCPs具有萘環(huán)、雜環(huán)、硝基等結(jié)構(gòu),能吸收自然光發(fā)生化學(xué)鍵斷裂、電子重排以及異構(gòu)化等轉(zhuǎn)變成另外一種物質(zhì).有些PPCPs雖能吸收自然光,但將能量傳遞出去不發(fā)生光化學(xué)轉(zhuǎn)化或轉(zhuǎn)化較慢.如卡馬西平吸收的光最多,但降解常數(shù)最小.氯貝酸雖吸收的光最小,但能迅速降解生成4-氯酚、對(duì)羥基苯酚、苯酚和對(duì)位苯醌[9].一般來(lái)說(shuō),PPCPs的直接光解取決于三方面:PPCPs分子結(jié)構(gòu)、溶液pH值和PPCPs自敏化.
表1 一些PPCPs的直接光降解速率常數(shù)、半衰期和量子產(chǎn)率
續(xù)表
注:表中DI為去離子水,UV為紫外光
PPCPs對(duì)光的吸收與去定域化π電子體系有關(guān),這類體系最可能發(fā)生π→π*躍遷.如果π電子體系存在帶有雜原子,還可發(fā)生n→π*躍遷.通常一個(gè)分子的共軛效應(yīng)越明顯,其吸收峰向長(zhǎng)波方向偏移越多,與太陽(yáng)光譜重疊越多[29].普奈洛爾具有萘結(jié)構(gòu),吸收光譜與太陽(yáng)光譜重疊最多,光解最快.而阿替洛爾和美托洛爾只有苯環(huán)結(jié)構(gòu),無(wú)論在低濃度(1mg/L)還是高濃度(10mg/L)二者光解速率均遠(yuǎn)遠(yuǎn)低于普奈洛爾[15].酮洛芬直接光解很快是由于其中羰基與兩個(gè)苯環(huán)共軛,使n→π*躍遷能很低,易產(chǎn)生活性三重態(tài).雌二醇和炔雌二醇的量子產(chǎn)率非常接近,分別為0.067和0.062,這與具有酚結(jié)構(gòu)的物質(zhì)很接近[27].
許多PPCPs陰離子形態(tài)傾向于紅移,吸收光譜與自然光譜重疊的部分增加,利于光降解.在pH為5.9、8.0、9.1、11.0下,三氯生光解速率常數(shù)分別為(3.8±0.6)×10-4s-1、(6.9±0.5)×10-3s-1、(1.1±0.2)×10-2s-1、(1.2±0.3)×10-2s-1[13,30].雷尼替丁在pH為6時(shí)量子產(chǎn)率為(5.3±0.5)×10-3,pH為10時(shí)量子產(chǎn)率為(5.5±0.5)×10-3[10].pH升高使撲熱息痛中酚羥基失去質(zhì)子發(fā)生紅移吸收更多自然光[31].
但有些PPCPs的光降解機(jī)理比較復(fù)雜,酸催化可使PPCPs在酸性下的降解速率大于堿性和中性.呋喃類抗生素(呋喃他酮、呋喃唑酮和呋喃妥因)的光解受pH的影響,光解速率在酸性條件下達(dá)到最大,pKa影響較小[19].也存在堿催化現(xiàn)象.自然光照下氟西汀在pH為9時(shí)的速率常數(shù)為pH為4和7時(shí)的二倍,在堿性條件下未觀察到紅移現(xiàn)象[18].
PPCPs能自敏化產(chǎn)生活性氧(ROS)降解自身.四環(huán)素在水中光解并不滿足一級(jí)動(dòng)力學(xué),這是因?yàn)榻到猱a(chǎn)物發(fā)生自敏化產(chǎn)生ROS使其具有直接光解和ROS氧化兩個(gè)途徑,另外一個(gè)解釋是四環(huán)素之間發(fā)生自敏化,這種自敏化在其帶有兩個(gè)負(fù)電荷時(shí)達(dá)到最大,甚至遠(yuǎn)大于直接光解,甚至加入金屬離子后,這種自敏化仍能夠發(fā)生[14].
一些磺胺類藥物直接光解機(jī)理較為復(fù)雜,磺胺甲基異惡唑的光解速率隨著吸收光量的增加而增加,在中性時(shí)光解速率常數(shù)最大,陰離子態(tài)光解速率則慢得多.磺胺異惡唑在中性時(shí)吸收光量最多,但陽(yáng)離子態(tài)時(shí)光解速率最快.磺胺甲噻二唑和磺胺噻唑在中性時(shí)吸收光量最多,但是它們?cè)陉庪x子態(tài)時(shí)光解速率最快,這些磺胺類物質(zhì)結(jié)構(gòu)相似,僅有雜環(huán)中雜原子及其取代基不同,但是光解特點(diǎn)卻有很大差別[12].
DOM與PPCPs的光反應(yīng)機(jī)制較為復(fù)雜,一方面DOM通過(guò)能量轉(zhuǎn)移、電子轉(zhuǎn)移和氫轉(zhuǎn)移或產(chǎn)生活性氧(HO·、1O2、H2O2等)促進(jìn)PPCPs的光降解,另一方面DOM具有內(nèi)濾作用,與PPCPs競(jìng)爭(zhēng)吸收重要譜段的光抑制PPCPs的光降解,而且作為羥基自由基的淬滅劑DOM也會(huì)抑制PPCPs的光化學(xué)轉(zhuǎn)化[36-37].DOM與三氯生競(jìng)爭(zhēng)光減少三氯生的光降解[13].低濃度的DOM促進(jìn)卡馬西平的光解,濃度升高時(shí),這種促進(jìn)作用會(huì)減弱[9,22].阿托伐他汀與富里酸的光反應(yīng)速率大于加入疊氮化鈉的反應(yīng)速率,阿托伐他汀與富里酸在D2O(重水(氧化氘)是由氘和氧組成的化合物)的反應(yīng)速率也大于在水中光反應(yīng)速率,單重態(tài)氧能被疊氮化鈉淬滅,單重態(tài)氧在D2O中的存留時(shí)間比H2O中長(zhǎng),這說(shuō)明阿托伐他汀與富里酸在光照下有單重態(tài)氧參與反應(yīng)[24].DOM能夠促進(jìn)甲酚那酸的光降解,經(jīng)過(guò)研究發(fā)現(xiàn)是DOM吸收光后向甲酚那酸傳遞能量或傳遞電子使其發(fā)生降解[26].撲熱息痛與兩種富里酸的光解反應(yīng)速率均隨著富里酸濃度的增加而加快,這是由于形成一系列活性中間體[38-39].
Fe3+主要通過(guò)兩種途徑參與PPCPs光降解:(1)Fe3+與有機(jī)物結(jié)合,使不吸收太陽(yáng)光譜的有機(jī)物吸收太陽(yáng)光譜發(fā)生光降解;(2)Fe3+通過(guò)光化學(xué)氧化還原循環(huán)產(chǎn)生羥基自由基參與PPCPs的氧化[40].卡馬西平和Fe3+的光解速率隨著pH的增加而減小,溶解態(tài)FeOH2+能在光照下產(chǎn)生羥基自由基降解卡馬西平,隨著pH增加,F(xiàn)eOH2+減少,自由基減少.但將Cl-加入卡馬西平和Fe3+后,光解速率隨pH的增加而增大.酸性條件下,Cl-是羥基自由基的淬滅劑,所以反應(yīng)速率低,堿性條件下,Cl-對(duì)羥基自由基的淬滅減弱,F(xiàn)e3+將Cl-氧化成Cl·/Cl2·參與卡馬西平的氧化[41].雌酮水溶液幾乎不發(fā)生光解,加入三價(jià)鐵后,降解效率隨光照時(shí)間延長(zhǎng)而增加,但降解效率(55.1%)不高.pH為3~4時(shí),雌酮與鐵-草酸鹽配合物有較高光解效率,pH降低或升高光解效率都有所下降[42].
國(guó)外對(duì)PPCPs與生物體系的光反應(yīng)研究較少,國(guó)內(nèi)劉先利和葛利云研究了乙炔基雌二醇和雌二醇與藻類體系的光降解,發(fā)現(xiàn)魚(yú)腥藻使乙炔基雌二醇光降解率增加.藻液中增多了活性氧H2O2、單重態(tài)氧和腐殖質(zhì),反應(yīng)途徑增加.在紫外光下,藻在107cells/L和109cells/L時(shí)具有催化作用,而在108cells/L則不理想,因?yàn)殡S著藻濃度增加,水體中光強(qiáng)受到部分削減,濃度繼續(xù)增大,藻或腐殖質(zhì)增大的綜合催化補(bǔ)償了光削減的影響[43].普通小球藻也能誘發(fā)雌二醇光降解,小球藻與17β-雌二醇結(jié)合吸收波長(zhǎng)較長(zhǎng)的光,藻液在光照下產(chǎn)生了活性氧以及藻類的死亡產(chǎn)生了具有催化作用的腐殖質(zhì)[44].
PPCPs種類繁多,不同種類PPCPs的化學(xué)結(jié)構(gòu)不同,在水環(huán)境中的光解途徑會(huì)有很大差別.同時(shí),水環(huán)境介質(zhì)是一個(gè)非常復(fù)雜的混合體系,即使是同種PPCPs,在不同水環(huán)境中光解途徑也可能會(huì)有很大差別.目前已經(jīng)有許多科研工作者對(duì)環(huán)境中出現(xiàn)的典型PPCPs進(jìn)行了光化學(xué)降解研究,這些研究主要集中在:PPCPs在純水中的直接光解和光解產(chǎn)物的鑒定以及根據(jù)光解產(chǎn)物推斷直接光解機(jī)理;羥基自由基、單重態(tài)氧對(duì)PPCPs的光化學(xué)轉(zhuǎn)化和產(chǎn)物鑒定以及根據(jù)產(chǎn)物推斷機(jī)理;PPCPs在模擬水環(huán)境體系如硝酸根體系、碳酸根體系、DOM體系和金屬絡(luò)合物體系中的光解動(dòng)力學(xué)及影響因素、產(chǎn)物鑒定及相關(guān)機(jī)理.也有人研究PPCPs在天然水包括海水環(huán)境中的光降解狀況,并推斷降解的機(jī)理.隨著對(duì)PPCPs在水環(huán)境光降解研究的不斷深入,人們發(fā)現(xiàn)有些PPCPs的光降解產(chǎn)物的毒性遠(yuǎn)大于母體化合物,如三氯生光解后能產(chǎn)生毒性極大的二噁英,所以很有必要對(duì)PPCPs的光降解產(chǎn)物進(jìn)行毒性實(shí)驗(yàn).一些PPCPs的光降解機(jī)理非常復(fù)雜,如磺胺類藥物的降解無(wú)法用常規(guī)的直接光解、活性氧氧化進(jìn)行解釋,這就需要一些新的手段檢測(cè)可能未被認(rèn)識(shí)的物質(zhì)如自由基或反應(yīng)機(jī)理.隨著QSAR技術(shù)的不斷成熟,可對(duì)PPCPs的化學(xué)結(jié)構(gòu)及空間構(gòu)型通過(guò)合適的參數(shù)進(jìn)行量化,建立光解速率模型來(lái)消減實(shí)驗(yàn)次數(shù),減少人力、物力和財(cái)力的投入.
[1] EPA. Pharmaceuticals & personal care products in the environment: an emerging concern?[EB/OL]. (1999-12-24)[2005-3-20]. http://www.epa.gov/nerl/research/1999/html/g8-14.html.
[2] Carballa M, Omil F, Lema J M,etal. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant[J]. Water Research, 2004. 38(12): 2 918-2 926.
[3] Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data[J]. Toxicology Letters, 2002,131(1-2): 5-17.
[4] Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? [J]. Environmental Health Perspectives, 1999,107: 907-938.
[5] Jorgensen S E, Halling-Sorensen B. Drugs in the environment[J]. Chemosphere, 2000,40(7): 691-699.
[6] Kummerer K. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources - a review[J]. Chemosphere, 2001,45(6-7): 957-969.
[7] Arnold W A, McNeill K. Transformation of pharmaceuticals in the environment: photolysis and other abiotic processes[J]. Comprehensive Analytical Chemistry, 2007,50: 361-385.
[8] Boreen A L, Arnold W A, McNeill K. Photodegradation of pharmaceuticals in the aquatic environment: a review[J]. Aquatic Sciences, 2003,65(4): 320-341.
[9] Doll T E, Frimmel F H. Fate of pharmaceuticals-photodegradation by simulated solar UV-light[J]. Chemosphere, 2003,52(10): 175 7-176 9.
[10] Latch D E, Stender B L, Packer J L,etal. Photochemical fate of pharmaceuticals in the environment: cimetidine and ranitidine[J]. Environmental Science & Technology, 2003,37(15): 3 342-3 350.
[11] Boreen A L, Arnold W A, McNeill K. Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: Identification of an SO2extrusion photoproduct[J]. Environmental Science & Technology, 2005, 39(10): 3 630-3 638.
[12] Boreen A L, Arnold W A, McNeill K. Photochemical fate of sulfa drugs in the aquatic environment: Sulfa drugs containing five-membered heterocyclic groups[J]. Environmental Science & Technology, 2004,38(14): 3 933-3 940.
[13] Tixier C, Singer H P, Canonica S,etal. Phototransformation of triclosan in surface waters: a relevant elimination process for this widely used biocide - laboratory studies, field measurements, and modeling[J]. Environmental Science & Technology, 2002,36(16): 3 482-3 489.
[14] Werner J J, Arnold W A, McNeill K. Water hardness as a photochemical parameter: tetracycline photolysis as a function of calcium concentration, magnesium concentration, and pH[J]. Environmental Science & Technology, 2006,40(23): 7 236-7 241.
[15] Liu Q T, Williams H E. Kinetics and degradation products for direct photolysis of beta-blockers in water[J]. Environmental Science & Technology, 2007,41(3): 803-810.
[16] Lin A Y C, Reinhard M. Photodegradation of common environmental pharmaceuticals and estrogens in river water[J]. Environmental Toxicology and Chemistry, 2005,24(6): 1 303-1 309.
[17] Piram A, Salvador A, Verne C,etal. Photolysis of beta-blockers in environmental waters[J]. Chemosphere, 2008,73(8): 1 265-1 271.
[18] Lam M W, Young C J, Mabury S A. Aqueous photochemical reaction kinetics and transformations of fluoxetine[J]. Environmental Science & Technology, 2005,39(2): 513-522.
[19] Edhlund B L, Arnold W A, McNeill K. Aquatic photochemistry of nitrofuran antibiotics[J]. Environmental Science & Technology, 2006, 40(17): 5 422-5 427.
[20] Packer J L, Werner J J, Latch D E,etal. Photochemical fate of pharmaceuticals in the environment: aproxen, diclofenac, clofibric acid, and ibuprofen[J]. Aquatic Sciences, 2003,65(4): 342-351.
[21] Eriksson J J, Svanfelt L K. A photochemical study of diclofenac and its major transformation products[J]. Photochemistry and Photobiology, 2010,86(3): 528-532.
[22] Matamoros V, Duhec A, Albaiges J,etal. Photodegradation of carbamazepine, ibuprofen, ketoprofen and 17 alpha-ethinylestradiol in fresh and seawater[J]. Water Air and Soil Pollution, 2009,196(1-4): 161-168.
[23] Lam M W, Mabury S A. Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters[J]. Aquatic Sciences, 2005,67(2): 177-188.
[24] Razavi B, Ben Abdelmelek S, Song W,etal. Photochemical fate of atorvastatin (lipitor) in simulated natural waters[J]. Water Research, 2011,45(2):625-631.
[25] Cermola F, DellaGreca M, Lesce M R,etal. Photochemical behavior of the drug atorvastatin in water[J]. Tetrahedron, 2006,62(31): 7 390-7 395.
[26] Werner J J, McNeill K, Arnold W A . Environmental photodegradation of mefenamic acid[J]. Chemosphere, 2005,58(10): 1 339-1 346.
[27] Mazellier P, Meite L, De Laat J. Photodegradation of the steroid hormones 17 beta-estradiol (E2) and 17 alpha-ethinylestradiol (EE2) in dilute aqueous solution[J]. Chemosphere, 2008,73(8): 1 216-1 223.
[28] 鐘明潔, 陳勇, 胡春. 水中安替比林的紫外光降解研究[J]. 環(huán)境工程學(xué)報(bào), 2009(6): 1 049-1 053.
[29] 瑞恩 P. 施瓦茨巴赫,菲利普 M. 施格文, 迪特爾 M. 英博登.環(huán)境有機(jī)化學(xué)[M]. 王連生,譯. 北京:化學(xué)工業(yè)出版社,2003.
[30] Latch D E, Packer J L, Stender B L,etal. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products[J]. Environmental Toxicology and Chemistry, 2005,24(3): 517-525.
[31] 劉鈺, 楊曦, 高穎. 撲熱息痛在硝酸根溶液中的光解研究[J]. 環(huán)境科學(xué), 2007,28(6): 1 274-1 279.
[32] Zafiriou O C, True M B. Nitrite photolysis in seawater by sunlight[J]. Marine Chemistry, 1979,8(1): 9-32.
[33] Zepp R G, Hoigne J, Bader H. Nitrate-induced photooxidation of trace organic-chemicals in water[J]. Environmental Science & Technology, 1987,21(5): 443-450.
[34] Brezonik P L, Fulkerson-Brekken J. Nitrate-induced photolysis in natural waters: controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents[J]. Environmental Science & Technology, 1998, 32(19): 3 004-3 010.
[35] Vione D, Khanra S, Man S C,etal. Inhibition vs. enhancement of the nitrate-induced phototransformation of organic substrates by the (OH)-O-center dot scavengers bicarbonate and carbonate[J]. Water Research, 2009, 43(18): 4 718-4 728.
[36] Canonica S, Jans U, Stemmler K,etal. Transformation kinetics of phenols in water - photosensitization by dissolved natural organic material and aromatic ketones[J]. Environmental Science & Technology, 1995, 29(7): 1 822-1 831.
[37] Richard C, Vialaton D, Aguer J P,etal. Transformation of monuron photosensitized by soil extracted humic substances: energy or hydrogen transfer mechanism? [J]. Journal of Photochemistry and Photobiology a-Chemistry, 1997, 111(1-3): 265-271.
[38] 高穎, 楊曦, 劉鈺. 在Suwannee河富里酸溶液中撲熱息痛的光解行為[J]. 環(huán)境化學(xué), 2008, 27(4): 432-435.
[39] 高穎, 楊曦, 張金鳳. 腐殖質(zhì)NAFA溶液中的撲熱息痛光解研究[J]. 環(huán)境保護(hù)科學(xué), 2008, 34(3): 26-29.
[40] 鄧南圣, 吳峰. 環(huán)境光化學(xué)[M]. 北京:化學(xué)工業(yè)出版社,2003.
[41] Chiron S, Minero C, Vione D. Photodegradation processes of the Antiepileptic drug carbamazepine, relevant to estuarine waters[J]. Environmental Science & Technology, 2006, 40(19): 5 977-5 983.
[42] 陳勇, 張長(zhǎng)波, 吳峰,等. 雌酮在鐵(Ⅲ)-草酸鹽配合物體系中的光降解[J]. 環(huán)境污染治理技術(shù)與設(shè)備, 2006, 7(3): 45-47.
[43] 劉先利, 鄧南圣, 徐棟,等. 含魚(yú)腥藻水溶液中17α-乙炔雌二醇光降解[J]. 重慶環(huán)境科學(xué), 2003, 25(8): 21-24.
[44] 葛利云, 鄧歡歡, 吳峰, 等, 普通小球藻引發(fā)水中17β-雌二醇的降解[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2004, 15(7): 1 257-1 260.