田明君 李永剛 萬浩章 張宇 高婷婷
TIAN MingJun1,2,LI YongGang1**,WAN HaoZhang3,ZHANG Yu1,2 and GAO TingTing1,2
1. 中國科學院地質與地球物理研究所,北京 100029
2. 中國科學院大學,北京 100049
3. 江西地礦局九一二大隊,鷹潭 35000
1. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
2. University of Chinese Academy of Sciences,Beijing 100049,China
3. 912 Geological Party of JBEDGMR,Yintan 35000,China
2014-02-13 收稿,2014-10-17 改回.
矽卡巖是一種從礦物學角度命名的巖石類型,可在區(qū)域變質、巖漿接觸交代或者是流體滲透交代過程中形成,流體類型可能是巖漿流體、變質流體、天水或者是海水(Einaudi and Burt,1982;Meinert et al.,2005)。矽卡巖礦床在時間上與空間上與矽卡巖有緊密相關,在地殼范圍內(nèi)廣泛分布(Meinert et al.,2005),是世界上鎢礦的最主要來源以及銅、鐵、鉬、錫的重要來源。矽卡巖是通過接觸反應交代形成,其形成方式有兩種:一種是擴散作用,在碳酸鹽巖石和鋁硅酸鹽巖石接觸界面,受到高溫巖漿期后熱液作用,通過雙交代形成;另一種是滲濾作用,也發(fā)育在碳酸鹽巖石和鋁硅酸鹽巖石接觸帶上,是組分被溶液單方向搬運的結果(Einaudi and Burt,1982;Jamtveit et al.,1993;Meinert et al.,2005)。通常情況下,這兩種形成方式共存。目前,矽卡巖礦床研究熱點在于通過PIXE(Proton-Induced X-ray Emission,質子探針)、LA-ICP-MS 手段分析熔融包裹體與水鹽包裹體成分變化,研究巖漿熔體與熱液流體轉換(Heinrich et al.,1992,1999,2003;Chang and Meinert,2004)。國內(nèi)矽卡巖礦床的研究主要集中在阿爾泰地區(qū)(Liu et al.,2012;Zhu et al.,2012;Wan et al.,2014)、岡底斯成礦域中與斑巖系統(tǒng)共生的矽卡巖(李光明等,2005;Li et al.,2014),以及長江中下游地區(qū)(Mao et al.,2011;Xie et al.,2011)。
永平銅礦地處江西上饒永平鎮(zhèn)境內(nèi),位于北武夷成礦帶北緣。前人針對該礦床曾進行過較多研究,包括礦區(qū)圍巖混合巖的原巖及時代(楊樹峰等,1976)、圍巖石炭系沉積環(huán)境(徐躍通,1996;李二恒等,2012)、礦化蝕變花崗質巖體地球化學及年代學(丁昕等,2005;李曉峰等,2007)、礦田構造及礦床地球化學(劉訊和黃震,1991;何江,1993)、成巖成礦流體(倪培等,2005;呂赟珊等,2012)、礦床成因(何江,1993;趙常勝,2001;廖宗廷和劉金水,2003;倪培等,2005;Gu et al.,2007)和成礦前景預測(羅平,2005;李會欣,2009)等。關于礦床成因,主要有兩種觀點,一是矽卡巖型或廣義矽卡巖型礦床(何江,1989,1993;丁昕等,2005),另一種觀點是與海底噴流作用有關,并經(jīng)后期改造的礦床(廖宗廷和劉金水,2003;倪培等,2005;Gu et al.,2007)。以上研究主要為大尺度研究,尚缺乏對礦區(qū)巖石學和礦物學的詳細研究。因此,本文使用掃描電鏡-能譜(SEM-EDS)及電子探針(EPMA)手段對永平銅礦矽卡巖礦物進行礦物微觀特征、化學成分及巖石結構研究,以推斷矽卡巖礦床形成過程、流體演化特征,進而探討礦床成因。永平銅礦型礦床在華南地區(qū)較為常見(Gu et al.,2007),如武山銅礦(孔凡斌等,2012)、東鄉(xiāng)銅礦(蔡逸濤等,2011)等。所以,本文研究結果不僅可以為認識該區(qū)域礦床成因提供重要參考,而且也可以為礦區(qū)的勘探提供理論依據(jù)。
華南主要由揚子地塊和華夏地塊構成(圖1a),基底巖石為前南華紀泥砂質巖和火山巖,多發(fā)生變質(沈渭洲等,1993)。紹興-江山-萍鄉(xiāng)NE-NEE 向斷裂為二者的新元古代縫合帶(圖1a 中①)。華南塊體在新元古代拼合后,經(jīng)歷了裂解-聚合-再裂解-再聚合的一系列過程(舒良樹,2012)。華南在0.8 ~0.7Ga 時屬大陸裂解期,以發(fā)育有雙峰式火山巖及科馬提質巖為特征(Zheng et al.,2007;Wang et al.,2007)。自700Ma 至190 Ma,本區(qū)為濱海-淺海-斜坡沉積環(huán)境,其中,志留紀及早-中三疊紀發(fā)生兩次陸內(nèi)褶皺及過鋁質巖漿活動(汪洋和鄧晉福,2004;胡艷華等,2009;舒良樹,2012)。華南在晚古生代以廣泛的伸展和淺海盆地為特征(Gu et al.,2007),發(fā)育了較多裂陷盆地(倪培等,2005)。多數(shù)學者認為在石炭紀發(fā)生了海底噴流沉積成礦作用(廖宗廷和劉金水,2003;侯增謙等,2011;孔凡斌等,2012),主要依據(jù)為礦區(qū)內(nèi)發(fā)育塊狀硫化物、噴氣巖-硅質巖等(徐躍通,1996;李二恒等,2012)。永平銅礦就位于此時的錢塘江-信江斷裂坳陷帶南緣(圖1a),該坳陷帶在石炭紀晚期才開始接受沉積(廖宗廷和劉金水,2003;舒良樹,2012)。
侏羅紀開始,華南地區(qū)進入燕山構造期,形成一系列的NE、NNE 向斷裂及褶皺(孟立豐,2012;舒良樹,2012;李建華,2013)以及多期次基性、中酸性侵入體(Zhou et al.,2006),并發(fā)育了一些與巖體有關的礦床,如德興銅礦、永平銅礦、冷水坑銀多金屬礦、西華山鎢礦等(梅勇文,1987;李曉峰等,2007;徐貽贛等,2013;Hou et al.,2013)。
長期的構造作用和多期的花崗質巖漿活動使華南地區(qū)具有很好的成礦條件(舒良樹,2012),發(fā)育多處成礦帶,主要有長江中下游成礦帶(Mao et al.,2011;周濤發(fā)等,2011)、欽杭成礦帶(楊明桂和梅勇文,1997;毛景文等,2011)、武夷山成礦帶(羅平,2010;蘇慧敏,2013)和南嶺成礦帶(Peng et al.,2006)等。其中,永平銅礦即處于欽杭成礦帶內(nèi)。
在永平銅礦外圍,沿著晚古生代盆地周邊,發(fā)育了一系列大型-中型銅多金屬礦、金鉛鋅多金屬礦:鐵砂街銅礦、長壽源銀鉛鋅礦、蔡家坪-洋錫洞-九骨牌鉛鋅礦、銅山銅礦、王塢鉬礦等,以及應天寺等金多金屬礦區(qū)(圖1b;江西地質局九一二隊,1970①江西地質局九一二隊.1970.永平銅礦勘探報告)。
永平銅礦是錢塘江-信江坳陷帶西南緣的一個大型銅礦(圖1b)。礦區(qū)內(nèi)地層相對較為簡單,主要為前震旦紀周潭群和晚古生界。周潭群為該區(qū)結晶基底巖系(余達淦等,1999),巖性包括各類片巖、片麻巖、變粒巖及混合巖等(贛東北地質調(diào)查隊,1982①贛東北地質調(diào)查隊.1982. 上饒幅區(qū)域地質調(diào)查報告),其原巖是一套淺海相類復理石建造。晚古生界主要為石炭系-二疊系沉積,包括中石炭統(tǒng)葉家灣組、上石炭統(tǒng)船山組、下二疊統(tǒng)銅茅口-棲霞組及上二疊統(tǒng)李家組。礦區(qū)內(nèi)晚古生界因構造作用夾在周潭群之間(圖2b,c)。石炭系葉家灣組是礦區(qū)主要的賦礦地層,為一套以淺海相為主的灰?guī)r、泥灰?guī)r和長英質碎屑巖沉積建造。該巖組在礦區(qū)內(nèi)多發(fā)生矽卡巖化,以矽卡巖與灰?guī)r、砂頁巖互層出現(xiàn)(圖3)。
礦區(qū)內(nèi)主要的構造是侯家-嵩山倒轉背斜,背斜軸近南北向,軸面東傾。背斜軸部由混合巖組成,向北收斂;背斜兩翼為石炭-二疊系。侯家-嵩山倒轉背斜東翼在露天采場出露部分稱為天排山倒轉背斜(圖2b),與次一級打字坪倒轉向斜相接;西翼和礦區(qū)西側的局里向斜被烏石崗-姜塢牌逆斷層破壞。礦區(qū)主要斷層為應天寺-火燒崗逆掩斷層(F1,圖2b)、天排山逆斷層(F2,圖2b)。礦體分布在兩個斷裂帶內(nèi)及兩斷裂間的石炭系地層中(圖2b)。
圖2 永平銅礦礦區(qū)地質圖(a)、侯家-嵩山倒轉背斜示意圖(b)和Ⅰ-Ⅰ’地質剖面圖(c)(據(jù)贛東北地質調(diào)查隊,1982 有刪改)Fig.2 Geological map of Yongping copper deposit (a),sketch map of Houjia-Songshan reversed anticline (b)and Ⅰ-Ⅰ’cross section (c)
礦區(qū)內(nèi)侵入體主要為中酸性巖體。根據(jù)上饒幅區(qū)域地質報告(贛東北地質調(diào)查隊,1982),礦區(qū)內(nèi)的巖漿可分為兩期三階段:燕山早期第二階段的火燒崗-十字頭花崗閃長斑巖、燕山早期第三階段石英斑巖及燕山晚期第二階段花崗斑巖(圖2)。礦區(qū)內(nèi)巖體以火燒崗-十字頭花崗閃長斑巖為代表,其侵位形成于~160Ma,并遭受后期(~135Ma)熱液變質/蝕變改造(丁昕等,2005)。該花崗巖屬燕山期俯沖環(huán)境下形成的高鉀鈣堿質巖石(李曉峰等,2007)。礦區(qū)內(nèi)的還發(fā)育有石英斑巖脈和花崗斑巖脈,均為近南北向(圖2a)。
永平銅礦礦體以似層狀為主,透鏡狀次之,產(chǎn)狀因礦帶不同而不同,其中主礦帶傾角為20° ~30°。礦石類型主要為透輝石榴石矽卡巖,次為矽卡巖化灰?guī)r、千枚狀頁巖、灰?guī)r等。礦床品位變化較大,上部氧化帶品位可達1.12%,其余礦體品位在0.66% ~0.95%,平均品位為0.73%。礦床自上而下主要分為三個帶:淺部為氧化鐵礦;中部為銅硫礦帶(上部以銅礦為主,下部以硫礦為主);下部為鉛鋅礦帶。
區(qū)內(nèi)圍巖蝕變主要為矽卡巖化,其次為硅化、碳酸鹽化、綠泥石化等。矽卡巖化蝕變在礦區(qū)廣泛分布,其空間分布嚴格受F1,F(xiàn)2 斷層及混合巖接觸面、巖性分界面等控制。
礦化強度及礦物形成的順序與矽卡巖化規(guī)律一致。沿走向自火燒崗向兩側,沿傾向由中部向下,矽卡巖化、礦化強度減弱;磁鐵礦、磁黃鐵礦、黃鐵礦及矽卡巖礦物減少,閃鋅礦、方鉛礦增多。
矽卡巖與礦體在空間上緊密相關,我們將從矽卡巖分帶、礦物生成順序及成礦期次來探討成礦過程。
礦區(qū)內(nèi)石炭系夾在周潭群之間組成“夾心層”結構,這一特殊的地質構造致使后期巖漿巖沿著構造斷面及灰?guī)r層間裂隙貫入,對灰?guī)r、千枚巖等進行強烈交代,形成矽卡巖、角巖等。這種特殊的構造形式及巖漿貫入形式,致使該區(qū)矽卡巖分帶相對于Bingham 礦床中典型的銅矽卡巖分帶(Atkinson and Einaudi,1978)更復雜,該區(qū)矽卡巖在巖體延伸方向上及其垂向上均有分帶現(xiàn)象(圖3)。為此我們選取礦床中部的0 號剖面進行研究,根據(jù)空間分布,分三部分:內(nèi)矽卡巖(CK011)、巖體邊部矽卡巖(CK006、CK008)及遠離巖體矽卡巖(CK013)(圖3)。從巖體到圍巖方向,以巖體為中心向兩側由石榴石矽卡巖逐漸變?yōu)橥篙x石矽卡巖(圖3,Ⅲ兩側的虛線部分)。
圖3 永平銅礦0 號勘探線部分鉆孔柱狀圖(據(jù)贛東北地質調(diào)查隊,1982 有刪改)(a)為0 號勘探線圖(b)中粗線部分放大,分別為Ⅰ、Ⅱ、Ⅲ、Ⅳ;鉆孔柱狀圖中,矽卡巖沿著同一巖體分帶,虛線部分為同一巖株方向上分帶Fig.3 Profile map of 0 prospecting line and bore hole columnar section from Yongping copper depositBold lines part enlarged in Fig.3a from profile map of 0 prospecting line (b),indentified as Ⅰ,Ⅱ,Ⅲ,Ⅳ;drill hole column of skarn distribution along the granite;dashed lines present zones of skarns along the same stock
永平銅礦矽卡巖礦物廣泛發(fā)育,矽卡巖礦物的生成及分布與礦體密切相關。根據(jù)礦物組合,該區(qū)矽卡巖可分為石榴石矽卡巖、透輝石榴矽卡巖、透輝石矽卡巖、綠簾石矽卡巖、硅灰石矽卡巖等。根據(jù)野外礦體產(chǎn)狀及鏡下礦石觀察,矽卡巖礦物及部分主要金屬硫化物生成順序如表1。綜合礦物組合、礦物生成順序及礦床分帶可將成礦過程概略分為兩個階段:進變質階段和退變質階段。
(1)進變質階段:主要生成石榴石、透輝石及硅灰石等無水矽卡巖礦物,形成以石榴石、透輝石、硅灰石為主的簡單矽卡巖(圖4a,b,e);
(2)退變質階段:在進變質矽卡巖基礎上,矽卡巖被交代、破碎,形成以殘留石榴石、石英、赤鐵礦、云母、硫化物等礦物為組合的復雜矽卡巖;同時在大理巖中形成碧玉(圖4g)。黃銅礦、黃鐵礦等金屬硫化物主要在這一階段中期形成。
表1 永平銅礦主要礦物生成順序表Table 1 Sequence of major minerals in Yongping copper deposit
圖4 永平銅礦典型矽卡巖礦石(a)-翠綠色透輝石榴矽卡巖;(b)-含礦綠簾透輝石榴矽卡巖,浸染狀螢石(Fl)分布;(c)-石榴石矽卡巖礦石,可見流體逃逸構造(小細脈);(d)-透輝石石榴石矽卡巖,石榴石退變質;(e、f)-矽卡巖蝕變前鋒,矽卡巖與大理巖突變接觸;(e)-石榴石硅灰石大理巖;(g)-大理巖中的礦包-鐵碧玉;(h、i)-浸染狀、脈狀蝕變巖礦石,透閃石-硫化物脈,被后期硬石膏脈切穿. Grt-石榴石;Di-透輝石;Ep-綠簾石;Fl-螢石;Py-黃鐵礦;Ccp-黃銅礦;Sph-閃鋅礦;Wo-硅灰石;Hem-赤鐵礦;Tr-透閃石;Qz-石英;Anh-硬石膏Fig.4 Typical skarn ores in Yongping copper deposit(a)-emerald diopside garnet skarn;(b)-diopside garnet skarn,dissemination fluorite;(c)-garnet ore skarn,fluid escape structure(veins)in middle and light;(d)-diopside garnet skarn,garnet retrograde;(e,f)-front of skarns,skarn and marble,with sharp contact;(e)-andadrite wollastonite marble;(g)-nudle in marble-iron jasper;(h,i)-dissemination and vein structure in altered rock,tremolite-sulfides vein cut by late anhydrite. Grtgarnet;Di-diopside;Ep-epidote;Fl-flourite;Py-pyrite;Ccp-chalcopyrite;Sph-sphalerite;Wo-wollastonite;Hem-hematite;Tr-tremolite;Qz-quartz;Anh-anhydrite
本文對礦區(qū)Ⅱ號主礦體地表及井下、火燒崗處等等不同層位、不同位置的48 個樣品,進行了詳細巖石礦物學研究。樣品巖石類型包括透輝石榴石矽卡巖、塊狀礦石、變質砂頁巖礦石、矽卡巖化大理巖。根據(jù)巖體到圍巖矽卡巖分帶現(xiàn)象,結合手標本及鏡下觀察,選取8 個具有代表性的矽卡巖礦石,對石榴石、輝石、綠簾石、透閃石等進行了電子探針成分測定;其中S-13 為巖體邊部矽卡巖化角巖;YTKS-1、YTKS-9 為棕色含礦透輝石綠簾石榴石矽卡巖(圖4b),矽卡巖內(nèi)可見石英-硫化物脈體疊加在早期的塊狀石榴石矽卡巖中,可代表進變質階段及隨后的退變質階段流體特征;YTJ-1 為井下退變質透閃石矽卡巖(圖4h,i);S-14、S-15 為貧礦透輝石榴石矽卡巖(圖4a),屬于遠端矽卡巖;YT-7、YT-4 為前鋒矽卡巖化大理巖。鏡下觀察在中科院地質與地球物理研究所顯微實驗室完成;電子探針分析在中國地質科學院礦產(chǎn)資源研究所電子探針實驗室JXA-8230 電子探針上完成,工作電壓是15kV,束斑直徑為5μm,使用天然礦物樣品和PAP 校正處理程序進行儀器標定和數(shù)據(jù)處理,分析精度優(yōu)于2%。電子探針數(shù)據(jù)使用劍橋大學地球科學學院開發(fā)的AX 軟件處理,該軟件主要用于電子探針數(shù)據(jù)處理及礦物活度的計算(http://wserv2.esc.cam.ac.uk/research/research-groups/holland/ax)。
圖5 永平銅礦矽卡巖礦物鏡下照片(a)-石榴石生長環(huán)帶明顯,無礦矽卡巖,中部少量透輝石交代;(b)-后期石英硫化物交代早期的石榴石;(c)-石榴石殘留假象,被磁鐵礦、黑云母、黃鐵礦交代;(d)-石榴石中包含赤鐵礦和石英;(e)-透輝石零星分布與矽卡巖邊部,晶型較好,含有水鹽包裹體;(f)-條帶狀綠簾透輝石榴矽卡巖礦石,被后期石英-硫化物交代;(g)-石英硫化物脈中間的黃鐵礦及透輝石;(h)-柱狀透閃石,格架中間充填黃銅礦;(i)-放射狀透閃石(陽起石). Adr-鈣鐵榴石;Gro-鈣鋁榴石;Pl-長石;Ser-絹云母;Mt-磁鐵礦;Chl-綠泥石Fig.5 Micrographs of skarn minerals in Yongping copper deposit(a)-free skarn,garnets have growth zone,with minor diopsides in the core;(b)-late quartz-sulfides replace early garnet;(c)-garnet pseudomorph,replaced by magnetite,biotite and pyrite;(d)-hematite and quartz in garnet;(e)-dopsides scatter in garnets,well form,with brine inclusions;(f)-quartz-wulfides bands in diopside garnet skarn,replace the early garnets;(g)-diopsides and pyrites in auartz-sulfides vein;(h)-chalcopyrites filling in grillage of columnar tremolites;(i)-radiative tremolites. Adr-andradite;Gro-grossulor;Pl-feldspar;Ser-sercite;Mt-magnetite;Chl-chlorite
區(qū)內(nèi)矽卡巖主要為石榴石矽卡巖,次為輝石矽卡巖、輝石-石榴石矽卡巖、綠簾石-石榴石矽卡巖,少量硅灰石矽卡巖。矽卡巖礦物主要為石榴石,其次為透輝石、綠簾石、透閃石、陽起石等,與礦化最密切的是綠簾石-輝石-石榴石組合。本區(qū)的主要賦礦矽卡巖為鈣鐵榴石-綠簾石組合,該類巖石是與斑巖體有關的矽卡巖型銅礦的典型巖石(Einaudi and Burt,1982)。本次研究主要對火燒崗處矽卡巖、Ⅱ礦體中矽卡巖以及蝕變前鋒中的石榴石、輝石、綠簾石、透閃石、陽起石分別進行了成分分析,分析結果見表2、表3、表4、表5。
石榴石是礦區(qū)矽卡巖的主要礦物成分,晶型較好,有五角十二面體、菱形十二面體、八面體等單形或聚形。手標本上,無礦矽卡巖石榴石主要為綠色,鏡下觀察可見石榴石發(fā)育完好晶型,蝕變較弱,部分發(fā)育連晶,邊部有光性異常,伴生有少量的石英和方解石(圖4a、圖5a);含礦矽卡巖中石榴石為棕色、淺紅棕色,裂隙發(fā)育并被后期的石英硫化物交代(圖6b,c),綠泥石成脈狀充填在裂隙中。部分石榴石中可見有黃鐵礦沿著石榴石的生長震蕩環(huán)帶發(fā)育(圖7a)。根據(jù)鏡下觀察,石榴石可分為兩期:進變質階段形成的以鈣鐵榴石為主的石榴石核(圖6f,YTKS-9),全消光;退變質階段在早期石榴石與流體接觸面上形成的鈣鐵榴石-鈣鋁榴石固溶體系列(YTKS-1),呈現(xiàn)黑-一級灰白干涉色。YTKS-9 樣品石榴石中包裹有大量赤鐵礦(圖5d)。
?
表3 永平銅礦輝石類礦物電子探針成分(wt%)Table 3 EPMA composition of pyroxene from Yongping copper deposit (wt%)
表4 永平銅礦綠簾石電子探針成分(wt%)Table 4 EPMA composition of epidotes from Yongping copper deposit (wt%)
圖6 石榴石矽卡巖礦石BSE 圖像(a)-石榴石核部充填黃鐵礦、黃銅礦,邊部發(fā)育震蕩環(huán)帶;(b)-黃銅礦與石榴石構成海綿隕鐵結構,二者被后期石英交代;(c)-脈體中發(fā)育的螢石;(d)-矽卡巖中斷續(xù)石英-綠簾石-透輝石-黃鐵礦-黃銅礦脈;(e)-石英脈中的黃鐵礦、黃銅礦、白鎢礦及綠簾石;(f)-含少量石英-硫化物脈矽卡巖中大的大顆粒石榴石,為鈣鐵榴石;(g)-YT-4,前鋒矽卡巖化大理巖中緊密堆積的石榴石;(h)-層狀大理巖硫化物熔體中石榴石;(i)-蝕變前鋒中放射狀硅灰石,與透輝石等共生. Sch-白鎢礦Fig.6 BSE Micrographs of ore skarn(a)-pyrite,chalcopyrite filling in garnet core,and oscillatory zone in garnet rim;(b)-chalcopyrite and garnet forming sideronitic texture,replaced by late quartz;(c)-fluorite in veins;(d)-intermittently qutarz-epidote-diopside-pyrite-chalcopyrite in skarn;(e)-pyrite-chalcopyrite-scheelite-epidote in vein;(f)-nearly pure andadratie in skarn,with minor veins;(g)-YT-4,closer packed garnets in front skarn;(h)-garnet in melt in stratiform skarn;(i)-radiative wollastonite in front skarn,with diopside. Sch-scheelite
表5 永平銅礦透閃石電子探針成分(wt%)Table 5 EPMA composition of tremolite from Yongping copper deposit (wt%)
圖7 石榴石成分剖面圖(a)-綠簾石榴矽卡巖,黃鐵礦和黃銅礦沿石榴石邊生長;(b)-矽卡巖化大理巖中硫化物熔體,自形石榴石,閃鋅礦含有黃銅礦與硫銻鉍礦.Jos-硫銻鉍礦Fig.7 Composition section of garnets(a)-epidote garnet skarn,pyrite and chalcopyrite grow along zone of garnet;(b)-sulfide melt in skarn marble,euhedral garnet,sphalerite with chalcopyrite and joseite. Jos-joseite
石榴石中SiO2含量為34.22% ~37.81%,平均值為36.01%,F(xiàn)eOT含量為14.77% ~28.97%,平均值為25.32%;CaO 含量為32.06% ~34.94%,平均值為33.57%;Al2O3含量在0.00% ~11.21%,平均值為2.43%(表2)。在四種主量元素含量投圖(圖7),可見SiO2和CaO 呈正相關,F(xiàn)e2O3和Al2O3含量呈震蕩式變化,且相鄰環(huán)帶間周期性漸變;遠端矽卡巖化大理巖中石榴石Al2O3含量高于含脈透輝石綠簾石石榴石矽卡巖。
在石榴石三元圖解(圖8)上,可見火燒崗矽卡巖(YTKS-9)與矽卡巖化大理巖(YT-4)中石榴石為鈣鐵榴石;Ⅱ號礦體含礦石榴石矽卡巖(YTKS-1)中石榴石則為鈣鋁榴石-鈣鐵榴石系列,端元組分為And82Gro18(Sp+Al)0-And97Gro2(Sp+Al)1;層狀大理巖(YT-7)中石榴石端元組分變化較大,為And59Gro39(Sp+Al)2-And99Gro0(Sp+Al)1。
輝石相對石榴石分布較少,手標本上呈淺綠色(圖4a,d),鏡下為無色(圖5e、圖6b)。在礦石中主要以三種形式出現(xiàn):細小柱狀交代石榴石核部(圖5a)、呈粒狀、短柱狀零散分布在中矽卡巖中(圖4d),以及在石英-黃鐵礦-黃銅礦脈兩側出現(xiàn),并被后期流體溶蝕(圖6b)。前兩種類型透輝石出現(xiàn)在S-14,S-15 綠色遠端矽卡巖中,礦化較弱,第三類輝石出現(xiàn)在YTKS-1,YTKS-9 棕色含脈矽卡巖中,為主礦體組成部分,礦化強。
硅灰石在矽卡巖蝕變前鋒帶中出現(xiàn),呈乳白色,主要呈纖維狀,放射狀,與透輝石、方解石、石榴石及石英等共生(圖4e,6i)。
電子探針數(shù)據(jù)(表3)顯示,輝石中SiO2含量為53.79%~55.24%;CaO 含量為24.87% ~25.80%;FeO 含量為1.27% ~5.03%;MgO 含量在14.80% ~17.57%;并有的少量的Mn,且Mn 的含量與FeO 含量呈正比(表3)。蝕變前鋒及主要矽卡巖礦石(YTKS-1)中FeO 含量比貧礦矽卡巖(S-15)中含鐵量高,且不均勻。根據(jù)電子探針結果,輝石的化學式可寫為Ca0.98-1.0Mg0.82-0.96Fe0.04-0.15Mn0.01-0.04Si2O6,端元組分式為Di96He4-Di85He15。按照透輝石和鈣鐵輝石組成的類質同象系列劃分屬于透輝石-次透輝石。
圖8 永平銅礦矽卡巖石榴石與輝石三元圖S-13,14,15,弱礦化矽卡巖;Sp-錳鋁榴石;Alm-鐵鋁榴石;Hed-鈣鐵輝石;Di-透輝石;Jo-錳鈣輝石Fig.8 Ternary diagram of the composition of skarn garnet and pyroxene from Yongping copper depositS-13,14,15 poor ore skarn;Sp-spessartine;Alm-almandite;Hed-hedenbergite;Di-diopide;Jo-johannsenite
綠簾石是由進變質階段晚期石榴石蝕變形成的,可以交代脈中或者晶洞中硅酸巖礦物、碳酸鹽礦物及鐵氧化物(Bird and Spieler,2004)。礦區(qū)內(nèi)綠簾石榴石矽卡巖主要在靠近巖體處出現(xiàn)(圖3)。綠簾石在脈狀礦石(YTKS-1,YTKS-9)中與透輝石出現(xiàn)在石英-黃鐵礦-黃銅礦脈兩側(圖5f),是流體與石榴石作用形成。
綠簾石成分如下:SiO2含量在36.16% ~37.48%,平均值為36.94%;Al2O3含量在18.94% ~22.86%,平均值為21.23%;CaO 含量在22% ~23.21%,平均值為22.67%;FeOT含量為12.85% ~18.27%,平均值為15.07%;礦物中還含有少量Mn。綠簾石中XEp=0.27 ~0.38,化學成分不均勻,說明流體中鐵鋁成分存在變化(表4)。
透閃石在絹云母化透閃石矽卡巖(YTJ-1)產(chǎn)出,成脈狀,鏡下為無色,可見黃銅礦充填在透閃石顆粒間(圖5h,i)。透閃石中SiO2含量在55.69% ~57.79%,平均值為56.99%;MgO 含量在19.1% ~24.45%,平均值為22.79%;CaO 含量在12.8% ~13.35%,平均值為13.00%;FeOT為1.12% ~8.17%(表5);透閃石中含有微量的Na、K、Mn、Al。
石榴石是早期矽卡巖化階段產(chǎn)物,并經(jīng)歷后期流體作用,其化學成分與外界的物理化學條件密切相關。多數(shù)石榴石發(fā)育有震蕩環(huán)帶,這種環(huán)帶與石榴石形成時溫度無關,而與流體成分變化有關,是石榴石-流體相互作用的結果(Jamtveit et al.,1993)。石榴石震蕩環(huán)帶中Fe、Al 的含量的變化,可能是流體氧逸度的變化引起含礦熱液中Fe3+含量的周期性變化(Yardley et al.,1991;Jamtveit et al.,1993),可反映成礦流體的演化特征(Jamtveit et al.,1993;Crowe et al.,2001)。Yardley et al.(1991)認為石榴石環(huán)帶是在流體發(fā)生大量沸騰的階段形成,具體過程為:流體沸騰作用引起殘留熱液的氧化態(tài)發(fā)生變化,進而引起Fe3+和Al3+活度的變化,即aFe3+/aAl3+的變化,此時石榴石快速生長,形成Fe2O3和Al2O3變化的生長環(huán)帶,多次沸騰形成周期性變化。熱液石榴石中氧同位素和微量元素的研究表明石榴石環(huán)帶可能是在巖漿水與天水混合過程中形成(Crowe et al.,2001)。
梁祥濟(2000)經(jīng)過大量的實驗證明,鈣鋁-鈣鐵榴石系列在450 ~600℃、弱氧化-弱還原(logfO2= - 28.637 ~-11.066)、中酸性條件下發(fā)育較好;當流體含F(xiàn)、Cl 時,可降低石榴石的形成溫度,提高結晶速率,使鈣鋁-鈣鐵榴石固溶體系列出現(xiàn)光性異常。礦區(qū)內(nèi)發(fā)育有大量的螢石脈,矽卡巖礦石石英硫化物脈中含有螢石(圖4b、圖6c),說明流體中攜帶有較多的F,使該區(qū)石榴石形成溫度降低。
永平銅礦早期形成的石榴石構成核部純鈣鐵榴石(圖6f),與趙勁松等(2008)測得的熔融包體中石榴石成分一致,晚期在流體作用下形成鈣鋁榴石-鈣鐵榴石系列,可能是流體中某些組分變化,引起流體中Fe3+和Al3+活度發(fā)生震蕩式變化,而流體中含有F 元素,導致石榴石快速結晶,將aFe3+/aAl3+記錄在石榴石環(huán)帶中,流體持續(xù)補充,石榴石多次生長,形成震蕩式變化。
圖9 CaO-Fe2O3-Al2O3-SiO2-HCl-H2O 體系中含有石英及流體時,在P =1kbar、T =400℃和aH2O≈1 下log(aCa2+ /)、log( /)及l(fā)og( /)相圖(據(jù)Bird and Helgeson,1981)虛線代表系統(tǒng)中硅灰石、鈣鐵榴石、赤鐵礦、紅柱石飽和線,點虛線代表石榴石和綠簾石的組分Fig.9 Phase relations in the system CaO-Fe2O3-Al2O3-SiO2-HCl-H2O in the presence of quartz and an aqueous solution in which aH2O≈1 as a function of log(/),log(aFe3+ /)and log(/)in the aqueous phase at P =1kbar and T =400℃(after Bird and Helgeson,1981)The dashed curves represent saturation of the fluid phase with respect to wollastonite,andradite,andalusite,or hematite,but the dot-dash curves denote compositions of epidote and grandite grandite garnet solid solutions
綠簾石與石榴石是交代和熱液過程的常見造巖礦物,二者均有Fe3+及Al3+互相置換的現(xiàn)象。共生的綠簾石和石榴石或者葡萄石中Al3+、Fe3+的分配可反映系統(tǒng)中Fe3+及Al3+組分的變化,進而反映系統(tǒng)性質,而/aAl3+比值變化,可能是pH,fO2以及Al3+,F(xiàn)e3+富集程度差異及其絡合物類型等引起的(Bird and Spieler,2004)。前人通過實驗和熱力學計算顯示綠簾石中Fe 含量是fO2的函數(shù)(圖9、圖10;Holdaway,1972;Liou,1973,1993;Bird and Helgeson,1981)。當系統(tǒng)靠近赤鐵礦-磁鐵礦緩沖對(HM)時,富鐵綠簾石是穩(wěn)定的,這時候綠簾石成分隨氧逸度變化不大。但是在靠近石英-鐵橄欖石-磁鐵礦平衡對條件下,富鋁綠簾石的成分對氧逸度的變化反應靈敏(Bird and Norton,1981)。
Bird and Helgeson(1980,1981)對CaO-(FeO)-Fe2O3-Al2O3-SiO2-HCl-H2O(P =1kbar,T =400℃,圖9、圖10)體系研究發(fā)現(xiàn),當有方解石、石英和流體存在,鈣鋁鐵榴石固溶體與綠簾石固溶體共存時,系統(tǒng)中CO2含量極低(Einaudi et al.,1980;Bird and Helgeson,1981),當體系中有石英和流體存在時,隨著熱液中/的減小和/增加,石榴石和綠簾石中Fe3+替代Al3+增加,反之亦然(圖9a),且當體系平衡時XCa2Fe3[Si2O7](OH)≈0.35。但是共存的石榴石和綠簾石中/基本不變(圖9b)。根據(jù)礦物組合及電子探針結果,將YTKS-1,YTKS-9 數(shù)據(jù)投圖(圖9、圖10)可見,YTKS-1 中石榴石與綠簾石共存(圖10),log(/)≈7.0 ~7.5,log(/)≈-8.1 ~-7.6,log(a)≈-2.5。YTKS-9 分為兩期,一期為含鈣鐵榴石、赤鐵礦、石英及流體,log(aCa2+/)≈7.1,log(/)≥-7.5,log(aAl3+/)≈0(圖10 中①),二期為石英、綠簾石及流體,log(aCa2+/)≈6.8 ~6.9,log(/a3H+)≈-7.9 ~ - 7.5,log(/)≈-2.3 ~-2.1(圖10 中②)。在log(aCa2+/)-logfO2圖解(圖11)可見,YTKS-1 矽卡巖體系中,logfO2≈-29 ~-26,而log(/)幾乎不變;YTKS-9 體系早期處于氧化狀態(tài),logfO2≥-24,晚期系統(tǒng)的logfO2≈-28.5 ~-26。以上說明,體系中l(wèi)og(/)約為定值,隨著系統(tǒng)演化,log(/)發(fā)生降低,log/)突然增加,同矽卡巖中石英-綠簾石-硫化物脈的出現(xiàn)對應,之后log(/)與log/)呈震蕩變化;早期系統(tǒng)處于強氧化狀態(tài),后局部演化為弱氧化-弱還原狀態(tài)。
圖10 含石英CaO-FeO-Fe2O3-Al2O3-SiO2-HCl-H2O 體系以及CaO-FeO-Fe2O3-SiO2(虛線)體系在P =1kbar、T =400℃和aH2O≈1 下的log /)與logfO2 相圖(據(jù)Bird and Helgeson,1981)其虛線代表含有石英的CaO-FeO-Fe2O3-SiO2 體系,淺灰色代表相應礦物區(qū)域。點虛線代表疊加的綠簾石固溶系列Fig. 10 Phase relations in the system CaO-FeO-Fe2O3-Al2O3-SiO2-HCl-H2O in the presence of quartz and other minerals in the subsystem CaO-FeO-Fe2O3-SiO2(indicated by the dashed labels)as a function of log(aCa2+ /)and logfO2 in the aqueous phase at P =1kbar,T =400℃,and aH2O≈1 (after Bird and Helgeson,1981)The dashed curves represent phase relations in the subsystem CaOFeO-Fe2O3-SiO2 in the presence of quartz,light grey represents corresponding mineral region. The dot-dash curves denote the compositions of epidote solid solutions
圖11 典型矽卡巖銅礦礦床分帶(底圖據(jù)Meinert et al.,2005;Atktnson et al.,1978)Fig.11 Typical zonation pattern of Cu skarns (after Meinert et al.,2005;Atktnson et al.,1978)
黃銅礦與黃鐵礦出現(xiàn)在石榴石核部(圖6a)、流體邊緣與石榴石交代區(qū)域(圖6c)以及石榴石邊部震蕩帶(圖7a),與鈣鋁鐵榴石形成密切相關。銅在熱液中可能是以Cu(I)的Cl 絡合物形式運移(Crerar and Barnes,1976;Mountain and Seward,1999,2003),溫度降低、流體混合、稀釋及沸騰等可使銅絡合物不穩(wěn)定,發(fā)生分解并沉淀。退變質石榴石震蕩環(huán)帶中(圖7a)可見,黃銅礦、黃鐵礦與石榴石共生,且二者均與含鈣鋁榴石組分石榴石相關(圖7a)。根據(jù)前人對其他礦區(qū)石榴石環(huán)帶氧同位素的研究(Crowe et al.,2001),這一過程很可能與巖漿熱液與天水的混合有關。
根據(jù)以上討論,我們推斷,早期巖體與圍巖處于相對封閉的系統(tǒng)(Meinert et al.,2005;Pirojno,2009),巖體與碳酸鹽充分交代,形成石榴石矽卡巖,后期隨著巖漿演化及流體作用范圍的擴大,熱液從巖漿中分離聚集,促使大量熱液裂隙的形成,熱液沿裂隙與早期的石榴石矽卡巖持續(xù)作用,形成綠簾石。當黃鐵礦及黃銅礦等硫化物沉淀,引起局部環(huán)境log(/)降低,log(aAl3+/a)不變,引起同時沉淀的石榴石中鈣鋁榴石成分相對增加。
Atkinson et al.(1978)在研究美國猶他州Bingham 礦床中巖株與圍巖接觸交代暈時提出矽卡巖銅礦的礦床分帶,Meinert et al.(2005)在總結全球矽卡巖礦床時,修改與完善該礦床分帶(圖11):由侵入體到圍巖石榴石含量減少,顏色有紅棕色-棕色-黃綠色-淺黃色的變化趨勢;輝石含量增加;礦石品位先減低后升高再降低,這一趨勢與石榴石中Al2O3含量的變化較一致(Collins,1977)。根據(jù)對永平銅礦礦石中石榴石成分的研究,我們認為這種變化是含礦熱液對早期形成的矽卡巖進行交代改造的結果。在交代改造過程中,巖漿熱液可能與天水發(fā)生混合,使熱液中銅從絡合物分解并沉淀下來。根據(jù)矽卡巖礦物的這些特征,在礦床勘探時,可依據(jù)棕色石榴石來追蹤礦體的位置。
矽卡巖是該區(qū)主要的賦礦巖石,其成因對礦床成因的研究有著至關重要的作用。Ciobanu and Cook(2004)在研究羅馬尼亞Ocna de Fier-Doganecea 礦田時,提出了一種以巖體為中心的矽卡巖系統(tǒng)模型。巖漿演化后期隨著后期結晶作用結束,在巖體邊緣有熱液的對流,這些熱液發(fā)生自聚集,因浮力上升,并與圍巖作用,形成了不同的矽卡巖及礦石,同時回流的熱液疊加在早期矽卡巖上,形成退變質結構構造(Meinert et al.,2005)。何江(1989)在本區(qū)研究時,認為矽卡巖為混合巖化熱液引起,是混合巖化熱液提供高溫流體與灰?guī)r進行交代形成的;另有學者(丁昕等,2005;李曉峰等,2007)在研究燕山期巖體時認為,矽卡巖是巖體與碳酸鹽接觸交代形成的;在剖面圖(圖2c)中,十字頭巖體隱伏部分并穿切石炭系葉家灣組,在巖體兩側形成了矽卡巖,并且矽卡巖礦物學特征及分布與典型矽卡巖(Atkinson et al.,1978)一致,火燒崗處見有矽卡巖與巖體接觸,故永平火燒崗巖體與石炭系葉家灣組接觸交代產(chǎn)物。
Atkinson WW Jr and Einaudi MT. 1978. Skarn formation and mineralization in the contact aureole at Carr Fork,Bingham,Utah.Economic Geology,73(7):1326 -1365
Bird DK and Helgeson HC. 1980. Chemical interaction of aqueous solutions with epidote-feldspar mineral assemblages in geologic systems;Ⅰ,Thermodynamic analysis of phase relations in the system CaO-FeO-Fe2O3-Al2O3-SiO2-H2O-CO2. American Journal of Science,280(9):907 -941
Bird DK and Helgeson HC. 1981. Chemical interaction of aqueous solutions with epidote-feldspar mineral assemblages in geologic systems;II,Equilibrium constraints in metamorphic/geothermal processes. American Journal of Science,281(5):576 -614
Bird DK and Norton DL. 1981. Theoretical prediction of phase relations among aqueous solutions and minerals:Salton Sea geothermal system. Geochimica et Cosmochimica Acta,45(9):1479 -1494
Bird DK and Spieler AR. 2004. Epidote in geothermal systems. Reviews in Mineralogy & Geochemistry,56(1):235 -300
Cai YT,Ni P,Shen K,Zhu XT,Huang SJ,Zhang XC and Xu JH.2011. Study on the fluid inclusion from Dongxiang copper deposit,Jiangxi Province,China. Acta Petrologica Sinica,27(5):1375 -1386 (in Chinese with English abstract)
Chang ZS and Meinert LD. 2004. The magmatic-hydrothermal transition:Evidence from quartz phenocryst textures and endoskarn abundance in Cu-Zn skans at the Empire Mine,Idaho,USA. Chemical Geology,210(1 -4):149 -171
Ciobanu CL and Cook NJ. 2004. Skarn textures and a case study:The Ocna de Fier-Dognecea orefield,Banat,Romania. Ore Geology Reviews,24(3 -4):315 -370
Collins BI. 1977. Formation of scheelite-bearing and scheelite-barren skarns at Lost Creek,Pioneer Mountains,Montana. Economic Geology,72(8):1505 -1523
Crerar DA and Barnes HL. 1976. Ore solution chemistry; Ⅴ,Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200℃ to 350℃. Economic Geology,71(4):772 -794
Crowe DE,Riciputi LR,Bezenek S and Ignatiev A. 2001. Oxygen isotope and trace element zoning in hydrothermal garnets:Windows into large-scale fluid-flow behavior. Geology,29(6):479 -482
Ding X,Jiang SY,Ni P,Gu LX and Jiang YH. 2005. Zircon SIMS U-Pb geochronology of host granitoids in Wushan and Yongping copper deposits,Jiangxi Province. Geological Journal of China Universities,11(3):383 -389 (in Chinese with English abstract)
Droop GTR. 1987. A general equation for estimating Fe3+concentrations in ferromagnesian silicates and oxides from microprobe analyses,using stoichiometric criteria. Mineralogical Magazine,51(361):431 -435
Einaudi MT,Meinert LD and Newberry RJ. 1980. Skarn deposits. 75thAnniv. Volume Economic Geology,317 -391
Einaudi MT and Burt DM. 1982. Introduction-terminology,classification, and composition of skarn deposits. Economic Geology,77(4):745 -754
Gu LX,Zaw K,Hu WH et al. 2007. Distinctive features of Late Palaeozoic massive sulphide deposits in South China. Ore Geology Reviews,31(1 -4):107 -138
He J. 1989. Discussion on skarn genesis of Yongping copper deposit.Journal of Sichuan institute of Building Materials,4(2):31 -40(in Chinese with English abstract)
He J. 1993. Metallogenic geochemistry and genesis study on Yongping copper ore deposit of Jiangxi Province. Mineral Resources and Geology,7(1):1 -7 (in Chinese with English abstract)
Heinrich CA,Ryan CG,Mernagh TP and Eadington PJ. 1992.Segregation of ore metals between magmatic brine and vapor:A fluid inclusion study using PIXE microanalysis. Economic Geology,87(6):1566 -1583
Heinrich CA,Günther D,Audétat A,Ulrich T and Frischknecht R.1999. Metal fractionation between magmatic brine and vapor,determined by microanalysis of fluid inclusions. Geology,27(8):755 -758
Heinrich CA,Pettke T,Halter WE,Aigner-Torres M,Audétat A,Günther D,Hattendorf B,Bleiner D,Guillong M and Horn I.2003. Quantitative multi-element analysis of minerals,fluid and melt inclusions by laser-ablation inductively-coupled-plasma massspectrometry. Geochimica et Cosmochimica Acta,67(18):3473-3497
Holdaway MJ. 1972. Thermal stability of Al-Fe epidote as a function fO2and Fe content. Contrib. Mineral. Petrol.,37(4):307 -340
Holland TJB and Powell R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology,16(3):309 -343
Hou ZQ,Yang ZS,Lü QT et al. 2011. The large-scale Dongguashan deposit,Shizishan district in East China:Carboniferous Sedex-type massive sulfides overprinted by Late Jurassic skarn Cu mineralization. Acta Geologica Sinica,85(5):659 - 686 (in Chinese with English abstract)
Hou ZQ,Pan XF,Li QY,Yang ZM and Song YC. 2013. The giant Dexing porphyry Cu-Mo-Au deposit in East China:Product of melting of junenile lower crust in an intracontinental setting.Mineralium Deposita,48(8):1019 -1045
Hu YH,Sun WD,Ding X,Wang FY,Ling MX and Liu J. 2009.Volcanic event at the Ordovician-Silurian boundary:The message from K-bentonite of Yangtze Block. Acta Petrologica Sinica,25(12):3298 -3308 (in Chinese with English abstract)
Jamtveit B,Wogelius RA and Fraser DG. 1993. Zonation patterns of skarn garnets:Records of hydrothermal system evolution. Geology,21(2):113 -116
Kong FB,Jiang SY,Xu YM,Zhu ZY,Qian HD and Bian LZ. 2012.Submarine hydrothermal exhalation with superimposed magmatichydrothermal mineralization in the Wushan copper deposit,Jiangxi Province:Constraints from geology,ore texture and ore deposit geochemistry. Acta Petrologica Sinica,28(12):3929 -3937 (in Chinese with English abstract)
Li EH,Liu JR,Ni P et al. 2012. Geochemistry and sedimentary environment of the Late Carboniferous siliceous cherts from Yanshan County,Jiangxi Province. Geological Journal of China Universities,18(4):735 -744 (in Chinese with English abstract)
Li GM,Liu B,Qu WJ,Lin FC,She HQ and Feng CY. 2005. The porphyry-skarn ore-forming system in Gangdese metallogenic belt,southern Xizang:Evidence from molybdenite Re-Os age of porphyrytype copper deposit and skarn-type copper deposit polymetallic deposits. Geotectonica et Metallogenia,29(4):482 - 490 (in Chinese with English abstract)
Li HX. 2009. The appraisal of favorableness to ore-forming of copper and Polymetallic ore in Yongping of Jiangxi Province. Master Degree Thesis. Hefei:Hefei University of Technology (in Chinese with English summary)
Li JH. 2013. The Mesozoic tectonic evolution of South China. Ph. D.Dissertation. Beijing:Chinese Academy of Geological Sciences (in Chinese with English summary)
Li XF,Watanabe Y and Qu WJ. 2007. Textures and geochemical characteristics of granitic rocks in the Yongping climax-type Cu-Mo deposit, Jiangxi, southeastern China, and their alteration,mineralization and tectonic regime. Acta Petrologica Sinica,23(10):2353 -2365 (in Chinese with English abstract)
Li XF,Wang CZ,Mao W,Xu QH and Liu YH. 2014. The faultcontrolled skarn W-Mo polymetallic mineralization during the main India-Eurasia collision: Example from Hahaigang deposit of Gangdese metallogenic belt of Tibet. Ore Geology Reviews,58:27-40
Liang XJ. 2000. Experimental Studies on the Mechanism of the Formation of Skarns and Skarn Ore Deposits in China. Beijing:Xueyuan Pr.Inc.,56 -133 (in Chinese with English abstract)
Liao ZT and Liu JS. 2003. Evidences of submarine volcanic hydrothermal sediment mineralization in Yongping copper deposit. Copper Engineering,(1):31 -35 (in Chinese with English abstract)
Liou JG. 1973. Synthesis and stability relations of epidote,Ca2Al2FeSi3O12(OH). Journal of Petrology,14(3):381 -413
Liou JG. 1993. Stabilities of natural epidotes. In:H?ck V and Koller F(eds.). Abh. Geol. B. -A. 125 Jahre Knappenwand -125 years Knappenwand Proceedings of a Symposium, Neukirchen am Gro?venediger (Salzburg/Austria). Wein:Juin,7 -16
Liu X and Huang Z. 1991. Discussion on the development processes of the tectonic structure of Yongping copper deposit,Jiangxi Province.Mineral Resources and Geology,5(6):416 -422 (in Chinese)
Liu XJ,Liu W and Liu LJ. 2012. The generation of a stratiform skarn and volcanic exhalative Pb-Zn deposit (Sawusi)in the southern Chinese Altay Mountains:The constraints from petrography,mineral assemblage and chemistry. Gondwana Research,22(2):597 -614
Luo P. 2005. Metallogenetic regularities and prediction of copper-leadzinc-silver mineralization in the area of Chenfang-Yongping,Yanshan County,Jiangxi Province. Master Degree Thesis. Wuhan:China University of Geosciences (in Chinese with English summary)
Luo P. 2010. Research on metallogenic regularities and prospecting orientation of copper polymetal mineral resources in the northern Wuyi reigion of Jiangxi province. Ph. D. Dissertation. Beijing:China University of Geosciences (in Chinese with English summary)
Lü YS,Zhu XT,Cai YT and Xie GA. 2012. Fluid inclusion planes for the Huoshaogang granite in the Yongping copper deposit,Jiangxi,eastern China. Journal of Nanjing University (Natural Sciences),48(3):316 -327 (in Chinese with English abstract)
Mao JW,Xie GQ,Duan C,Pirajno F,Ishiyama D and Chen YC. 2011.A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley,Eastern China. Ore Geology Reviews,43(1):294 -314
Mao JW,Chen MH,Yuan SD and Guo CL. 2011. Geological characteristics of the Qinhang (or Shihang)metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica,85(5):636 -658 (in Chinese with English abstract)
Mei YW. 1987. Relation between evolution of granite and mineralization of vein-type Tungsten deposits of Xihuashan,Jiangxi Province. Acta Petrologica Sinica,(4):10 -20 (in Chinese with English abstract)
Meinert LD,Dipple GM and Nicolescu S. 2005. World skarn deposits.In:Hedenquist JW,Thompson JFH,Goldfarb RJ,Richards JP(eds.). Ecomonic Geology one Hundredth Anniversary Volume.Littleton,Colorado:Society of Economic Geologists Inc.,299 -336
Meng LF. 2012. Mesozoic tectonic evolution of the Southeast China Block:A study from the Mesozoic basins. Ph. D. Dissertation.Hangzhou:Zhejiang University (in Chinese with English summary)
Mountain BW and Seward TM. 1999. The hydrosulphide sulphide complexes of copper (I ): Experimental determination of stoichiometry and stability at 22℃ and reassessment of high temperature data. Geochimica et Cosmochimica Acta,63(1):11 -29
Mountain BW and Seward TM. 2003. Hydrosulfide/sulfide complexes of copper (I):Experimental confirmation of the stoichiometry and stability of Cu(HS)2-to elevated temperatures. Geochimica et Cosmochimica Acta,67(16):3005 -3014
Ni P,Tian JH,Zhu XT,Ling HF,Jiang SY and Gu LX. 2005. Fluid inclusion studies on footwall stringer system mineralization of Yongping massive copper deposit,Jiangxi Province,China. Acta Petrologica Sinica,21(5):1339 -1346 (in Chinese with English abstract)
Peng JT,Zhou MF,Hu RZ,Shen NP,Yuan SD,Bi XW,Du AD and Qu WJ. 2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit,central Nanling district,South China. Miner. Deposita,41(7):661 -669
Shen WZ,Zhu JC,Liu CS,Xu SJ and Ling HF. 1993. Sm-Nd Isotopic study of basement metamorphic rocks in South China and its constraint on material sources of granitoids. Acta Petrologica Sinica,9(2):115 -124 (in Chinese with English abstract)
Shu LS. 2012. An analysis of principal features of tectonic evolution in South China Block. Geological Bulletin of China,31(7):1035 -1053 (in Chinese with English abstract)
Su HM. 2013. Petrogenesis of Late Mesozoic volcanic-intrusive rocks in the Tianhuashan Basin in the North Wuyi area and relation to Pb-Zn-Cu mineralization. Ph. D. Dissertation. Beijing:China University of Geosciences (in Chinese with English summary)
Wan B,Xiao WJ,Han CM,Windley BF,Zhang LC,Qu WJ and Du AD. 2014. Re-Os molybdenite age of the Cu-Mo skarn ore deposit at Suoerkuduke in East Junggar, NW China and its geological significance. Ore Geology Reviews,56:541 -548
Wang XC,Li XH,Li WX and Li ZX. 2007. Ca. 825Ma komatiitic basalts in South China:First evidence for >1500℃mantle melts by a Rodinian mantle plume. Geology,35(12):1103 -1106
Wang Y and Deng JF. 2004. Petrochemical features and tectonic setting of Late Yanshanian strongly peraluminous granites in the northeastern part of Hunan Province. Geotectonica et Metallogenia,28(1):60 -68 (in Chinese with English abstract)
Xie GQ,Mao JW,Zhao HJ,Wei KT,Jin SG,Pan HJ and Ke YF.2011. Timing of skarn deposit formation of the Tonglushan ore district,southeastern Hubei Province,Middle-Lower Yangtze River Valley metallogenic belt and its implications. Ore Geology Reviews,43(1):62 -77
Xu YG,Wu GG,Wang CM,Zhang D and Zhang YY. 2013. Rb-Sr dating of sphalerite from the Lengshuikeng Ag-Pb-Zn deposit,Jiangxi,and its geological significances. Acta Geologica Sinica,87(5):621 -633 (in Chinese with English abstract)
Xu YT. 1996. The characteristics of genetical geochemistry of cherts in Yongping copper deposit, Jiangxi Province. Geotectonica et Metallogenia,20(1):20 -28 (in Chinese with English abstract)
Yang MG and Mei YW. 1997. Characteristics of geology and metallization in the Qinzhou-Hangzhou paleoplate juncture. Geology and Mineral Resources of South China,(3):52 -59 (in Chinese)
Yang SF,Meng XZ,Zhao MF,Qu SC,Wang ZG,Zhu KR,Ma HW,Zhang ZL,Xu HZ,Chen P,Zhang ZL,F(xiàn)u DX,Zhu JC and Wang CY. 1976. Discussion on the timing and genesis of migmatite in Yongping copper deposit,Jiangxi Province. Journal of Nanjing University (Natural Sciences),(1):96 -109 (in Chinese)
Yardley BWD,Rochelle CA,Barnicoat AC and Lloyd GE. 1991.Oscillatory zoning in metamorphic minerals: An indicator of infiltration metasomatism. Mineralogical Magazine,55(380):357-365
Yu DG,Ai GG,Huang GF and Liu PH. 1999. Isotopic age features and their geological implication of the Zhoutan Group in Jiangxi. Acta Geoscientia Sinica,20(2):83 - 88 (in Chinese with English abstract)
Zhao CS. 2001. The feature of synggenetic plume-sedimentation in Yongping copper deposit,Jiangxi. Copper Engineering,(3):48 -50 (in Chinese with English abstract)
Zhao JS,Xia B,Qiu XL,Zhao B,Xu DR,F(xiàn)en ZH,Li ZL,Shen GF,Hu RZ,Su WC,Qin CJ,Qin WM,F(xiàn)u X and Hu ZG. 2008.Finding of melt inclusion in garnet from skarn of Shilu iron deposit,Hainan Province. Acta Petrologica Sinica,24(1):149 -160 (in Chinese with English abstract)
Zheng YF,Zhang SB,Zhao ZF,Wu YB,Li XH,Li ZX and Wu FY.2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China:Implications for growth and reworking of continental crust. Lithos,96(1 -2):127 -150
Zhou TF,F(xiàn)an Y,Yuan F,Zhang LJ,Ma L,Qian B and Xie J. 2011.Petrogensis and metallogeny study of the volcanic basins in the Middle and Lower Yangtze Metallogenic Belt. Acta Geologica Sinica,85(5):712 -730 (in Chinese with English abstract)
Zhou XM,Sun T,Shen WZ,Shu LS and Niu YL. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution. Episodes,29(1):26 -33
Zhu MT,Wu G,Xie HJ,Liu J and Mei M. 2012. Geochronology and fluid inclusion studies of the Lailisigaoer and Lamasu porphyry-skarn Cu-Mo deposits in northwestern Tianshan,China. Journal of Asian Earth Sciences,49:116 -130
附中文參考文獻
蔡逸濤,倪培,沈昆,朱筱婷,黃蘇錦,張秀昌,徐積輝. 2011. 江西東鄉(xiāng)銅礦流體包裹體研究. 巖石學報,27(5):1375 -1386
丁昕,蔣少涌,倪培,顧連興,姜耀輝. 2005. 江西武山和永平銅礦含礦花崗質巖體鋯石SIMS U-Pb 年代學. 高校地質學報,11(3):383 -389
何江. 1989. 江西永平銅礦床矽卡巖成因初議. 四川建材學院學報,4(2):31 -40
何江. 1993. 永平銅礦床成礦地球化學及成因分析. 礦產(chǎn)與地質,7(1):1 -7
侯增謙,楊竹森,呂慶田等. 2011. 安徽銅陵冬瓜山大型銅礦:海底噴流-沉積與矽卡巖化疊加復合成礦過程. 地質學報,85(5):659 -686
胡艷華,孫衛(wèi)東,丁興,汪方躍,凌明星,劉健. 2009. 奧陶紀-志留紀邊界附近火山活動記錄:來華南周緣鉀質斑脫巖的信息. 巖石學報,25(12):3298 -3308
孔凡斌,蔣少涌,徐耀明,朱志勇,錢漢東,邊立曾. 2012. 江西武山銅礦床海底噴流與巖漿熱液疊加成礦作用:控礦地質條件、礦石結構構造與礦床地球化學制約. 巖石學報,28(12):3929-3937
李二恒,劉家潤,倪培等. 2012. 江西鉛山晚石炭世硅質巖地球化學特征與沉積環(huán)境. 高校地質學報,18(4):735 -744
李光明,劉波,屈文俊,林方成,佘宏全,豐成友. 2005. 西藏岡底斯成礦帶的斑巖-矽卡巖成礦系統(tǒng):來自斑巖礦床和矽卡巖型銅多金屬礦床的Re-Os 同位素年齡證據(jù). 大地構造與成礦,29(4):482 -490
李會欣. 2009. 江西永平地區(qū)銅多金屬成礦有利度評價. 碩士學位論文. 合肥:合肥工業(yè)大學
李建華. 2013. 華南中生代大地構造過程. 博士學位論文. 北京:中國地質科學院
李曉峰,Watanabe Y,屈文俊. 2007. 江西永平花崗質巖石的巖石結構、地球化學特征及其成礦意義. 巖石學報,23(10):2353-2365
梁祥濟. 2000. 中國矽卡巖和矽卡巖礦床形成機理的實驗研究. 北京:學苑出版社,56 -133
廖宗廷,劉金水. 2003. 永平銅礦海底火山熱液沉積成礦作用的依據(jù). 銅業(yè)工程,(1):31 -35
劉訊,黃震. 1991. 江西永平銅礦田構造發(fā)育過程的初步探討. 礦產(chǎn)與地質,5(6):416 -422
羅平. 2005. 江西鉛山縣陳坊-永平地區(qū)銅鉛鋅銀成礦規(guī)律與成礦預測. 碩士學位論文. 武漢:中國地質大學
羅平. 2010. 江西北武夷地區(qū)銅多金屬礦成礦規(guī)律及找礦方向研究.博士學位論文. 北京:中國地質大學
呂赟珊,朱筱婷,蔡逸濤,解國愛. 2012. 江西永平銅礦火燒崗巖體中流體包裹體面研究. 南京大學學報(自然科學),48(3):316-327
毛景文,陳懋弘,袁順達,郭春麗. 2011. 華南地區(qū)欽杭成礦帶地質特征和礦床時空分布規(guī)律. 地質學報,85(5):636 -658
梅勇文. 1987. 江西西華山花崗巖的演化與脈鎢礦床的成礦關系.巖石學報,(4):10 -20
孟立豐. 2012. 華南中生代構造演化特征. 博士學位論文. 杭州:浙江大學
倪培,田京輝,朱筱婷,凌洪飛,蔣少涌,顧連興. 2005. 江西永平銅礦下盤網(wǎng)脈狀礦化的流體包裹體研究. 巖石學報,21(5):1339 -1346
沈渭洲,朱金初,劉昌實,徐士進,凌洪飛. 1993. 華南基底變質巖的Sm-Nd 同位素及其對花崗巖類物質來源的制約. 巖石學報,9(2):115 -124
舒良樹. 2012. 華南構造演化的基本特征. 地質通報,31(7):1035-1053
蘇慧敏. 2013. 北武夷天華山盆地火山-侵入巖的成因及其與成礦關系的研究. 博士學位論文. 北京:中國地質大學
汪洋,鄧晉福. 2004. 湘東北地區(qū)燕山晚期強過鋁質花崗巖的巖石化學特征及構造背景探討. 大地構造與成礦,28(1):60 -68
徐貽贛,吳淦國,王長明,張達,張垚垚. 2013. 江西冷水坑銀鉛鋅礦田閃鋅礦銣-鍶測年及地質意義. 地質學報,87(5):621-633
徐躍通. 1996. 江西永平地區(qū)石炭紀硅質巖成因地球化學特征及沉積環(huán)境. 大地構造與成礦,20(1):20 -28
楊明桂,梅勇文. 1997. 欽-杭古板塊結合帶與成礦帶的主要特征.華南地質與礦產(chǎn),(3):52 -59
楊樹峰,孟祥振,趙梅芳,曲少翠,汪振國,朱克鋭,馬恒偉,張祖廉,徐鴻志,陳平,張祖林,傅德興,朱金初,王賜銀. 1976. 江西永平混合巖的形成時代和成因探討. 南京大學學報(自然科學),(1):96 -109
余達淦,艾桂根,黃國夫,劉平輝. 1999. 江西周潭群同位素年齡特征及其地質意義. 地球學報,20(2):83 -88
趙常勝. 2001. 江西永平銅礦床以噴流成礦為主體的成因特征. 銅業(yè)工程,(3):48 -50
趙勁松,夏斌,丘學林,趙斌,許德如,馮佐海,李兆麟,沈敢富,胡瑞忠,蘇文超,秦朝建,秦偉民,符賢,胡志高. 2008. 海南島石碌矽卡巖鐵礦石中石榴子石的熔融包裹體及其意義. 巖石學報,24(1):149 -160
周濤發(fā),范裕,袁峰,張樂駿,馬良,錢兵,謝杰. 2011. 長江中下游成礦帶火山巖盆地的成巖成礦作用. 地質學報,85(5):712-730