国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

天然產(chǎn)物通過細(xì)胞自噬調(diào)節(jié)抑制癌癥的研究進(jìn)展

2014-02-08 08:35:17張淑芳王玉芳
食品科學(xué) 2014年23期
關(guān)鍵詞:姜黃皂苷癌細(xì)胞

張淑芳,王玉芳,袁 紅,陳 寧

(1.武漢體育學(xué)院研究生院,湖北 武漢 430079;2.武漢體育學(xué)院體育科技學(xué)院,湖北 武漢 430205;

3.武漢體育學(xué)院健康科學(xué)學(xué)院,運(yùn)動(dòng)干預(yù)與健康促進(jìn)湖北省協(xié)同創(chuàng)新中心,湖北 武漢 430079)

天然產(chǎn)物通過細(xì)胞自噬調(diào)節(jié)抑制癌癥的研究進(jìn)展

張淑芳1,2,王玉芳1,袁 紅1,陳 寧3,*

(1.武漢體育學(xué)院研究生院,湖北 武漢 430079;2.武漢體育學(xué)院體育科技學(xué)院,湖北 武漢 430205;

3.武漢體育學(xué)院健康科學(xué)學(xué)院,運(yùn)動(dòng)干預(yù)與健康促進(jìn)湖北省協(xié)同創(chuàng)新中心,湖北 武漢 430079)

傳統(tǒng)的化療手段在抑制腫瘤細(xì)胞生長的同時(shí)也會(huì)損傷到正常細(xì)胞,所以其臨床治療效果受到很大限制。新型天然產(chǎn)物抗癌化合物基于其安全性和有效性,將會(huì)成為人工合成化合物的替代物。臨床前和臨床研究已經(jīng)證實(shí)一些植物天然產(chǎn)物(如白藜蘆醇、姜黃素、人參皂苷等)具有抗癌潛力。本文綜述具有代表性的天然產(chǎn)物如何通過靶向細(xì)胞內(nèi)自噬通路誘導(dǎo)腫瘤細(xì)胞死亡及其涉及到的信號(hào)通路,為其進(jìn)一步開發(fā)應(yīng)用于原發(fā)性和轉(zhuǎn)移性腫瘤的治療提供新的思路。

白藜蘆醇;姜黃素;人參皂苷;自噬;癌癥

大量流行病學(xué)調(diào)查發(fā)現(xiàn),多種癌癥的發(fā)生與人們的飲食結(jié)構(gòu)有關(guān),由于生活方式和飲食習(xí)慣的改變,癌癥的發(fā)病率逐年提高。目前鑒于許多癌癥的化療效果不甚理想,因此尋找一種新的高效率而毒性低的抗癌藥物顯得尤為迫切。近50年來,從植物、動(dòng)物、微生物中分離并鑒定出一系列具有強(qiáng)大生理活性的天然產(chǎn)物,其中很大一部分具有很好的抗癌活性。因此,天然化合物必將成為未來癌癥預(yù)防和治療的潛在有效藥物。體內(nèi)和體外研究表明,飲食中的許多物質(zhì)具有抗癌性能,這些膳食劑通過調(diào)節(jié)細(xì)胞凋亡和自噬的信號(hào)通路從而起到癌癥預(yù)防和預(yù)防的作用。細(xì)胞自噬是一種利用溶酶體對(duì)細(xì)胞內(nèi)受損、變性或者衰老的蛋白質(zhì)以及細(xì)胞器進(jìn)行降解的分解代謝過程。迄今為止,有很多天然產(chǎn)物已被報(bào)道通過自噬信號(hào)途徑調(diào)節(jié)導(dǎo)致癌細(xì)胞死亡。本文選擇一些具有代表性的天然產(chǎn)物,綜述其在癌癥治療方面的應(yīng)用,并總結(jié)其針對(duì)自噬信號(hào)通路的作用機(jī)制,以期為臨床癌癥預(yù)防與治療提供新的研究思路。

1 自噬的發(fā)生過程

自噬是一種利用溶酶體對(duì)細(xì)胞內(nèi)受損、變性或者衰老的蛋白質(zhì)以及細(xì)胞器進(jìn)行降解的分解代謝過程。正常生理情況下,自噬處于基礎(chǔ)水平,而當(dāng)細(xì)胞面臨營養(yǎng)缺乏、DNA損傷、低氧和其他壓力時(shí),自噬的活性被上調(diào)。自噬作為一種機(jī)體保護(hù)機(jī)制能清除多余或受損的細(xì)胞器,但自噬過度活化會(huì)導(dǎo)致細(xì)胞死亡。根據(jù)細(xì)胞內(nèi)底物運(yùn)送到溶酶體腔內(nèi)方式的不同,細(xì)胞自噬可分為3 種方式:大自噬、小自噬和分子伴侶介導(dǎo)的自噬,通常講的細(xì)胞自噬即大自噬。

自噬過程是由自噬相關(guān)基因(autophagy related gene,ATG)調(diào)節(jié)的,從酵母到哺乳動(dòng)物,目前發(fā)現(xiàn)的ATG有30多種[1]。Atg1也稱為Unc51樣激酶1(Unc51-like kinase 1,Ulk1),是一種絲氨酸/蘇氨酸激酶,它對(duì)自噬的激活起著非常重要。自噬的激活還需要激活Ⅲ型磷脂酰肌醇-3-激酶(phosphatidylinositol 3-kinase,PI3K)蛋白復(fù)合物,其組件中包括Atg6(Beclin1基因),PI3K的活化是通過Beclin1與Vps34結(jié)合而實(shí)現(xiàn)的,其中Vps34起催化作用。

自噬在誘導(dǎo)過程中形成雙層膜囊泡,該膜不斷擴(kuò)張,形成成熟的囊泡,即自噬小體。自噬小體的形成由兩個(gè)泛素樣結(jié)合途徑介導(dǎo):Atg5-Atg12途徑和微管相關(guān)蛋白1輕鏈3(microtubule-associated protein 1 light chain 3,LC3)途徑。磷脂酰乙醇胺(phosphatidylethanolamine,PE)與LC3的泛素樣結(jié)合會(huì)促進(jìn)LC3從細(xì)胞漿易位到自噬小體膜的起始部位;此外,LC3-PE在自噬小體膜上的定位是自噬啟動(dòng)的可靠標(biāo)志。缺失Atg5的細(xì)胞其自噬的激活受到明顯抑制,提示Atg5-Atg12通路在自噬中的重要作用。

自噬的最后步驟是自噬小體與溶酶體的融合,自噬體降解的內(nèi)容物由溶酶體水解和回收重新回到細(xì)胞質(zhì)中。使用溶酶體酸化劑(如氯喹)和蛋白酶抑制劑(如胃蛋白酶抑制劑A)會(huì)使自噬體在體內(nèi)聚集,從而產(chǎn)生毒性作用[2]。

圖1 細(xì)胞自噬的發(fā)生過程[3]Fig.1 Development and progression of autophagy[3]

2 自噬與癌癥

細(xì)胞自噬在細(xì)胞生存與死亡中有著雙重作用,從而參與機(jī)體的許多生理和病理過程。研究證實(shí),細(xì)胞自噬最主要的調(diào)節(jié)因子Beclin1在多種癌細(xì)胞中缺失,如卵巢癌、乳腺癌和前列腺癌等[4];此外,Beclin1基因雜合型小鼠患腫瘤的發(fā)生率比正常小鼠高[4-5]。這些研究表明,當(dāng)Beclin1基因的表達(dá)受到抑制時(shí),癌癥的發(fā)生率增加;研究還發(fā)現(xiàn),Atg5和LC3突變造成的功能喪失會(huì)分別促進(jìn)骨髓瘤和膠質(zhì)母細(xì)胞瘤的生長[6-7];另外,還有實(shí)驗(yàn)證明在正常組織中長期慢性地抑制細(xì)胞自噬,會(huì)激活腫瘤的生成過程[8],由此可知,自噬功能異常是腫瘤形成與發(fā)展的重要因素。雖然自噬起著一定的腫瘤抑制功能,但腫瘤一旦形成,對(duì)營養(yǎng)和能量的需求比正常細(xì)胞更高,而腫瘤的微環(huán)境往往會(huì)出現(xiàn)營養(yǎng)不良或供應(yīng)中斷,此時(shí)細(xì)胞自噬活性的提高可以為癌細(xì)胞提供更豐富的營養(yǎng),促進(jìn)腫瘤生長[9]。臨床證據(jù)表明,晚期人鼻咽癌標(biāo)本中,Beclin1基因高表達(dá)與生存率呈負(fù)相關(guān)。缺氧誘導(dǎo)的Beclin1和自噬激活可能使癌細(xì)胞存活并可能導(dǎo)致癌癥復(fù)發(fā)[10]。90%結(jié)直腸癌和胰腺癌病例標(biāo)本的免疫組織化學(xué)結(jié)果顯示,在癌組織周邊區(qū)域LC3的高表達(dá)與預(yù)后不良相關(guān)[10-11]。有研究發(fā)現(xiàn),自噬缺陷會(huì)導(dǎo)致腫瘤局部營養(yǎng)缺乏,從而使腫瘤細(xì)胞數(shù)目減少[12]。因此,在腫瘤發(fā)生發(fā)展的過程中,細(xì)胞自噬的作用具有兩面性。

3 與自噬有關(guān)的抑癌天然產(chǎn)物

研究發(fā)現(xiàn)眾多的天然產(chǎn)物(圖2)在癌癥防治中起到一定的作用。它們可以調(diào)節(jié)機(jī)體的氧化應(yīng)激反應(yīng)以及影響腫瘤細(xì)胞增殖和細(xì)胞自噬。

圖2 代表性天然產(chǎn)物的化學(xué)結(jié)構(gòu)Fig.2 Chemical structures of representative natural products

3.1 白藜蘆醇

白藜蘆醇(resveratrol,RSV)是一種由植物產(chǎn)生的多酚類物質(zhì),主要存在于紅葡萄皮、豌豆、堅(jiān)果、藍(lán)莓、桑葚、蔓越莓、菠菜、百合等植物組織中,化學(xué)名稱為3,5,4’-三羥基二苯乙烯(3,5,4’-thrihydroxystilbene),分子式為C14H12O3。RSV的天然存在形式有順式和反式兩種異構(gòu)體,在植物中主要是反式異構(gòu)體(圖2),其生理活性要強(qiáng)于順式。早在1997年,就有研究發(fā)現(xiàn)局部應(yīng)用RSV能使鼠皮膚腫瘤的發(fā)生率下降,從而激發(fā)了人們對(duì)RSV抗癌活性的廣泛關(guān)注[13]。RSV可對(duì)癌癥發(fā)生的3 個(gè)階段(起始、增殖、發(fā)生)進(jìn)行抑制乃至逆轉(zhuǎn)[14]。在大多數(shù)腫瘤細(xì)胞中,誘導(dǎo)細(xì)胞發(fā)生凋亡是RSV抗腫瘤效應(yīng)的主要機(jī)制,如RSV能誘導(dǎo)人乳腺癌細(xì)胞株T47D發(fā)生凋亡,而對(duì)正常外周血淋巴細(xì)胞則沒有此作用。利用免疫熒光和聚合酶鏈?zhǔn)椒磻?yīng)技術(shù)發(fā)現(xiàn),RSV處理后的人白血病HL-60細(xì)胞,其細(xì)胞內(nèi)表現(xiàn)出膜磷脂的不對(duì)稱性和DNA片段的損失,且表現(xiàn)出一定的濃度依賴性。研究表明RSV誘導(dǎo)的HL-60細(xì)胞死亡與CD95信號(hào)傳導(dǎo)依賴性凋亡有關(guān)[15]。而近期研究發(fā)現(xiàn)RSV能通過誘導(dǎo)腫瘤細(xì)胞自噬性死亡來抑制其生長[16-18],蛋白免疫印跡法測定結(jié)果表明,RSV通過介導(dǎo)Bcl-2和Bcl-xL表達(dá)來引發(fā)卵巢癌A2780細(xì)胞自噬。RSV處理后的MCF-7細(xì)胞中,自噬的經(jīng)典蛋白Beclin1的表達(dá)并沒有發(fā)生改變,這提示,與其他天然產(chǎn)物于依賴于Beclin1復(fù)合物誘導(dǎo)自噬不同,RSV在乳腺癌細(xì)胞中對(duì)自噬的誘導(dǎo)是不依賴于Beclin1的[19]。據(jù)報(bào)道,PI3K/Akt/mTOR信號(hào)轉(zhuǎn)導(dǎo)途徑是腫瘤細(xì)胞存活及凋亡以及新陳代謝重要的信號(hào)通路,Akt可通過p-Akt在能量代謝中的作用來抑制AMPK的活化,實(shí)現(xiàn)完全抑制TSC2,被抑制TSC2進(jìn)一步傳遞信息激活mTOR,而RSV通過抑制蛋白激酶B(protein kinase B,PKB或Akt)的磷酸化,抑制了哺乳動(dòng)物雷帕霉素靶點(diǎn)(mammalian target of rapamycin,mTOR)的底物p70S6K(p70 ribosomal protein S6 kinase)的磷酸化,從而抑制了mTOR信號(hào)通路[20],因此,RSV可以通過調(diào)節(jié)PKB和AMPK的活性誘導(dǎo)自噬[21]。利用流式細(xì)胞儀監(jiān)測發(fā)現(xiàn),RSV使小鼠肝癌細(xì)胞(hepatoma 22,H22)S期生長阻滯,從而增強(qiáng)氟尿嘧啶(fluorouradl,5-FU)的抗腫瘤效應(yīng),同時(shí)還能降低5-FU的毒性[22]。

3.2 姜黃素

姜黃素(curcumin)是從姜科植物姜黃、莪術(shù)、郁金等根莖中提取的主要有效成分[23],這種黃色色素一直作為食品著色劑被人們所利用。研究發(fā)現(xiàn),姜黃素有非常廣泛的生物學(xué)功能,特別是其抗癌作用備受關(guān)注。姜黃素可以抑制腫瘤細(xì)胞增殖,誘導(dǎo)多種腫瘤細(xì)胞的體外凋亡,包括膀胱癌[24]、胰腺癌[25]、前列腺癌[26]、子宮頸癌[27]等,細(xì)胞實(shí)驗(yàn)還證實(shí),它在化療和γ射線治療中顯示出良好的藥物性能[28]。Kim等[29]研究了姜黃素對(duì)大鼠乳腺癌的抑制作用,當(dāng)以100、200 mg/kg的劑量進(jìn)行注射時(shí),姜黃素能夠顯著降低乳腺癌細(xì)胞的數(shù)量,同時(shí)肝臟谷胱甘肽巰基轉(zhuǎn)移酶活性沒有受到影響[30]。研究還發(fā)現(xiàn),姜黃素能夠明顯降低乳腺癌向肺部的轉(zhuǎn)移,小鼠接種乳腺癌35 d后,非治療組動(dòng)物肺部都出現(xiàn)癌變,而口服1%的姜黃素后,21%小鼠肺部未出現(xiàn)癌變。Hong等[31]研究證實(shí),小鼠皮下注射具有雄性激素依賴性的前列腺癌細(xì)胞后,對(duì)照組口服安慰劑,實(shí)驗(yàn)組口服姜黃素5 mg/kg,10 周后,實(shí)驗(yàn)組小鼠腫瘤體積明顯減少,同時(shí)腫瘤擴(kuò)散率明顯下降。據(jù)報(bào)道,姜黃素通過誘導(dǎo)細(xì)胞自噬從而抑制慢性粒細(xì)胞白血病、惡性膠質(zhì)瘤和食道癌的癌細(xì)胞增殖[32-34]。姜黃素能抑制白血病細(xì)胞系K562細(xì)胞的活力,使K562細(xì)胞中LC3-Ⅱ和Beclin1表達(dá)水平升高,這表明姜黃素能夠促進(jìn)自噬體的形成。利用自噬抑制劑巴弗洛霉素A1后,會(huì)抑制姜黃素誘導(dǎo)的K562細(xì)胞死亡。這些結(jié)果表明,姜黃素誘導(dǎo)自噬和K562細(xì)胞死亡[33]。在惡性膠質(zhì)瘤細(xì)胞中,發(fā)現(xiàn)姜黃素可以抑制Akt/p70S6K途徑以及激活ERK1/2(extracellular signalregulated kinases),從而誘導(dǎo)自噬[35]。姜黃素能誘導(dǎo)活性氧(reactive oxygen species,ROS)的生成,上調(diào)Beclin 1和p53表達(dá)水平,激活自噬并最終導(dǎo)致人結(jié)腸癌細(xì)胞的死亡[36]。絲氨酸/蘇氨酸蛋白磷酸酶1(serine/ threonine protein phosphatases type-1,PP1)和PP2A是磷酸化作用的重要靶標(biāo),姜黃素通過抑制PP1,刺激ERK的磷酸化[34]。除了激活自噬外,姜黃素在抑制K562細(xì)胞生長中,還表現(xiàn)出一定的時(shí)間和濃度依賴性?,F(xiàn)已發(fā)現(xiàn)姜黃素誘導(dǎo)的細(xì)胞死亡與凋亡復(fù)合物的形成、線粒體膜電位(mitochondrial membrane potential,MMP)以及Caspase-3的活化有關(guān),此外,姜黃素的治療還會(huì)引起K562細(xì)胞中Bcl-2蛋白表達(dá)下調(diào)[33]。Qian Haoran等[37]研究了姜黃素與阿霉素聯(lián)合治療對(duì)人肝癌G2(hepatoma G2,HepG2)細(xì)胞的殺傷作用,發(fā)現(xiàn)兩者組合治療與單一治療相比,HepG2活細(xì)胞的數(shù)量顯著下降。姜黃素和阿霉素治療后,Hoechst染色能觀察到HepG2細(xì)胞凋亡現(xiàn)象,同時(shí)檢測到Bcl-2/Bax蛋白的比例下調(diào)和Caspase-3的活化。此外,姜黃素還能導(dǎo)致HepG2細(xì)胞線粒體的裂解、降低線粒體膜電位、以及自噬的激活。這些結(jié)果表明姜黃素可能通過激活線粒體介導(dǎo)的細(xì)胞自噬,增強(qiáng)阿霉素對(duì)HepG2細(xì)胞殺傷率。

3.3 人參皂苷

人參作為滋養(yǎng)品在中國已經(jīng)有幾千年的歷史,《神農(nóng)本草經(jīng)》一書詳細(xì)介紹了人參有“補(bǔ)五臟、安精神、定魂魄、止驚悸、除邪氣、明目開心益智、久服輕身延年”的功效。人參皂苷(ginsenoside)是人參的主要藥理學(xué)活性成分。大量研究表明,人參皂苷具有抑制腫瘤細(xì)胞生長、抗疲勞、抗衰老、增強(qiáng)機(jī)體免疫力、調(diào)節(jié)中樞神經(jīng)、改善心腦血管供血不足等作用[38]。國內(nèi)外學(xué)者對(duì)人參皂苷預(yù)防和抑制腫瘤的作用進(jìn)行了深入的研究,結(jié)果發(fā)現(xiàn),人參皂苷能夠促進(jìn)腫瘤細(xì)胞的凋亡,促使腫瘤細(xì)胞的分化增強(qiáng),提高腫瘤細(xì)胞對(duì)化療藥物的敏感性,抑制腫瘤新生血管的形成,抑制腫瘤的生長和轉(zhuǎn)移等方面具有重要作用[39]。目前確定的人參皂苷化合物接近40種,人參皂苷由于其化學(xué)結(jié)構(gòu)差異可能會(huì)造成藥理學(xué)功能的不同,其中最常用的人參皂苷是Rb1、Rg1、Rg3、F2、Rd和Rh1。已報(bào)道Rg3和Rh2對(duì)各種癌細(xì)胞的生長有明顯的抑制作用[40-41]。人參皂苷Rg3能增強(qiáng)癌癥化療的療效,多西他賽、紫杉醇、順鉑、多柔比星等和Rg3聯(lián)合治療能增強(qiáng)結(jié)腸癌細(xì)胞對(duì)化療藥物的敏感性[41]。類似的現(xiàn)象還發(fā)生在前列腺癌細(xì)胞中,Rg3和多西紫杉醇組合應(yīng)用能更有效地誘導(dǎo)細(xì)胞凋亡和細(xì)胞周期G1期的阻滯[42]。低劑量的環(huán)磷酰胺與Rg3合用能抑制腫瘤微血管的生成,兩藥合用還提高了病人的最長存活率[43]。人參皂苷的抑癌作用可能與其對(duì)自噬的調(diào)節(jié)作用有關(guān),Ko等[44]研究發(fā)現(xiàn),人參皂苷Rk1在體外使HepG2細(xì)胞活力下降,抑制HepG2細(xì)胞增生。利用不同濃度的Rk1處理后,處于G1期的HepG2細(xì)胞從53.3%上升到91.9%。Rk1能夠誘導(dǎo)自噬,共聚焦顯微鏡觀察它使自噬標(biāo)志物L(fēng)C3表達(dá)增加,特別是LC3-Ⅱ增加明顯,人參皂苷Rk1與自噬抑制劑組合使用,能增強(qiáng)Rk1的抗癌作用。Mai等[45]研究了人參皂苷F2對(duì)乳腺癌干細(xì)胞增殖活性的抑制作用。F2通過激活內(nèi)在凋亡途徑和線粒體功能障礙引起人乳腺癌干細(xì)胞凋亡。同時(shí),人參皂苷F2可以誘導(dǎo)酸性囊泡的形成,募集GFP-LC3-Ⅱ到自噬體,并且使Atg7的表達(dá)水平升高,這表明人參皂苷F2啟動(dòng)了乳腺癌干細(xì)胞中的自噬進(jìn)程,利用自噬抑制劑可以增強(qiáng)F2誘導(dǎo)的細(xì)胞死亡。

3.4 兒茶素

兒茶素是綠茶的主要成分,其有效生物學(xué)成分為表沒食子兒茶素沒食子酸酯(epigallocatechin-3-gallate,EGCG)。在一定的生理范圍內(nèi),EGCG在不影響到正常細(xì)胞的情況下,能夠誘導(dǎo)多種癌細(xì)胞凋亡,并且使癌細(xì)胞生長周期停滯[46]。EGCG和環(huán)氧合酶-2抑制劑聯(lián)合治療前列腺癌能抑制癌細(xì)胞生長、激活Caspases、誘導(dǎo)癌細(xì)胞凋亡和抑制NF-κB的活性。EGCG預(yù)處理導(dǎo)致細(xì)胞死亡的信號(hào)調(diào)制級(jí)聯(lián)反應(yīng)非常復(fù)雜,涉及到Fas相關(guān)蛋白(Fasassociated protein with death domain,F(xiàn)ADD)和FLICE抑制蛋白。EGCG通過依賴于P53的信號(hào)通路使同基因系細(xì)胞的生長周期收到抑制,同時(shí)誘導(dǎo)前列腺癌細(xì)胞的凋亡。EGCG發(fā)揮作用與兩個(gè)蛋白的功能密切相關(guān):p21和Bax,其中任何一個(gè)蛋白下調(diào)都有利于細(xì)胞的生長[47]。

利用前列腺癌細(xì)胞研究發(fā)現(xiàn),EGCG能抑制腫瘤干細(xì)胞的自我更新能力。EGCG誘導(dǎo)的腫瘤細(xì)胞凋亡是通過激活Caspase-3以及抑制Bcl-2的表達(dá)實(shí)現(xiàn)[48]。EGCG能顯著抑制人乳腺癌MCF-7細(xì)胞中依賴于Fas mRNA和Fas蛋白誘導(dǎo)的抑制蛋白(heregulin,HRG)-β1的表達(dá),此外,還能降低Akt和Erk1/2的磷酸化[49]。在人類表皮樣癌A431細(xì)胞中,EGCG能顯著增強(qiáng)A431細(xì)胞中Caspases的活性,增加Caspases-3、Caspase-8和Caspase-9的表達(dá)。Caspase抑制劑會(huì)阻斷EGCG誘導(dǎo)的細(xì)胞凋亡。在多發(fā)性骨髓瘤細(xì)胞中,EGCG通過誘導(dǎo)死亡相關(guān)蛋白激酶2、Fas配體、Fas和Caspase-3的表達(dá),抑制腫瘤細(xì)胞的生長及誘導(dǎo)腫瘤細(xì)胞凋亡[50]。在人類胰腺癌細(xì)胞中,EGCG誘發(fā)Bax基因低聚、線粒體膜去極化以促進(jìn)細(xì)胞色素c釋放到細(xì)胞質(zhì)中、Caspase依賴的細(xì)胞凋亡增強(qiáng)[51]。

3.5 大蒜素

大蒜(garlic)是全球廣為使用的日常食物,屬百合科蔥屬,有巨大的藥用價(jià)值。大蒜素(allicin)是大蒜中最豐富的成分。大蒜中保健作用最高的當(dāng)屬有機(jī)硫化合物,如蒜氨酸、γ-谷氨酰半胱氨酸以及它們的衍生物。除了這些有機(jī)硫化合物,大蒜中還含有豐富的微量元素(鋅、鎂、銅、硒、碘)、蛋白質(zhì)、膳食纖維、維生素、抗壞血酸和多酚。大蒜用于治療麻風(fēng)病、腹瀉、便秘、感染等疾病已經(jīng)有非常悠久的歷史。然而,直到20世紀(jì)50年代后期Weisberger等[52]研究才發(fā)現(xiàn)從大蒜中提取的硫代亞磺酸酯具有抗腫瘤特性。由于大蒜的治療潛力和現(xiàn)代分析技術(shù)的改進(jìn),全球出現(xiàn)了很多研究大蒜的研究小組。目前研究已經(jīng)證實(shí),大蒜能夠?qū)垢鞣N癌細(xì)胞,如結(jié)腸癌細(xì)胞[53]、膠質(zhì)瘤細(xì)胞[54]和肝癌細(xì)胞[55]。大部分研究表明,大蒜的抗癌特性與細(xì)胞凋亡機(jī)制有關(guān),然而,部分研究發(fā)現(xiàn)大蒜可能會(huì)引發(fā)自噬現(xiàn)象。例如,大蒜素可以誘導(dǎo)p53介導(dǎo)的細(xì)胞自噬,抑制人肝癌細(xì)胞株的生存能力。使用免疫印跡觀察到大蒜素能降低HepG2細(xì)胞質(zhì)中p53的表達(dá)、抑制PI3K/mTOR信號(hào)通路、減弱Bcl-2的表達(dá)水平、增加AMPK/TSC2和Beclin1信號(hào)轉(zhuǎn)導(dǎo)途徑的表達(dá)[56]。

3.6 其他天然產(chǎn)物

還有一些其他天然產(chǎn)物通過調(diào)控自噬誘導(dǎo)癌細(xì)胞死亡。紫杉醇,最初是從太平洋紅豆杉樹樹皮中分離出的一種物質(zhì),廣泛應(yīng)用于肺癌、卵巢癌和乳腺癌的治療[57]。紫杉醇的抗癌特性與細(xì)胞死亡應(yīng)答反應(yīng)有一定的聯(lián)系,它能夠上調(diào)細(xì)胞自噬的水平,同時(shí)抑制細(xì)胞凋亡因子的表達(dá)[58]。冬凌草甲素,從中草藥冬凌草中分離出來的二萜類化合物。已經(jīng)發(fā)現(xiàn)冬凌草甲素能夠?qū)е潞谏亓黾?xì)胞和宮頸癌細(xì)胞死亡,從而抑制腫瘤的生長。冬凌草甲素可以調(diào)節(jié)細(xì)胞凋亡和細(xì)胞自噬中一些轉(zhuǎn)錄因子,這些轉(zhuǎn)錄因子抑制腫瘤細(xì)胞的增殖[59]。染料木黃銅,大豆異常黃酮中的主要活性因子,已報(bào)道具有治療多種類型腫瘤的潛力。染料木黃銅發(fā)揮其抗腫瘤作用是通過抑制Akt的活化而實(shí)現(xiàn)的[60]。

4 結(jié) 語

天然產(chǎn)物在殺傷癌細(xì)胞的同時(shí),對(duì)機(jī)體未表現(xiàn)出明顯的不利影響,因此可以作為未來理想的化療劑。在過去的幾十年中,已經(jīng)證實(shí)植物來源的天然產(chǎn)物(如白藜蘆醇、姜黃素、人參皂苷、大蒜素等)在自噬相關(guān)的細(xì)胞死亡信號(hào)通路及其網(wǎng)絡(luò)調(diào)節(jié)中起重要作用??傊?,這些研究強(qiáng)調(diào)一個(gè)事實(shí),即利用天然產(chǎn)物預(yù)防和治療癌癥會(huì)成為未來臨床治療的創(chuàng)新策略。

參考文獻(xiàn):

[1] NOBORU M, TAMOTSU Y, YOSHINORI O. The role of Atg proteins in autophagosome formation[J]. Annual Review of Cell and Developmental Biology, 2011, 27(7): 107-132.

[2] YANG Shenghong, WANG Xiaoxu, GIANMARCO C, et al. Pancreatic cancers require autophagy for tumor growth[J]. Genes & Development, 2011, 25(7): 717-729.

[3] LIU Bo, CHENG Yan, LIU Qian, et al. Autophagic pathways as new targets for cancer drug development[J]. Acta Pharmacologica Sinica, 2010, 31(9): 1154-1164.

[4] QU Xueping, YU Jie, GOVIND B, et al. Promotion of tumorigenesis by heterozygous disruption of the Beclin 1 autophagy gene[J]. Journal of Clinical Investigation, 2003, 112(12): 1809-1820.

[5] YUE Zhenyu, JIN Shengkan, YANG Chingwen, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(25): 15077-15082.

[6] HUANG Xin, BAI Hongmin, CHEN Liang, et al. Reduced expression of LC3B-Ⅱ and Beclin 1 in glioblastoma multiform indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors[J]. Journal of Clinical Neuroscience, 2010, 17(12): 1515-1519.

[7] IQBAL J, KUCUK C, DELEEUW R J, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies[J]. Leukemia, 2009, 23(6): 1139-1151.

[8] ANDREAS B, TERJE A, RAGNHILD L A, et al. Autophagy in tumor suppression and promotion[J]. Molecular Oncology, 2009, 3(4): 366-375.

[9] REBECCA L, JAYANTA D. Extracellular matrix regulation of autophagy[J]. Current Opinion in Cell Biology, 2008, 20(5): 583-588.

[10] SCHLIE K, HUGHSON L R, SPOWART J E, et al. When cells suffocate: autophagy in cancer and immune cells under low oxygen[J]. International Journal of Cell Biology, 2011. doi: 10.1155/2011/470597.

[11] KANG Rui, TANG Daolin. Autophagy in pancreatic cancer pathogenesis and treatment[J]. American Journal of Cancer Research, 2012, 2(4): 383-396.

[12] ROBIN M, CRISTINA K M, BRIAN B, et al. Autophagy suppresses tumorigenesis through elimination of p62[J]. Cell, 2009, 137(6): 1062-1075.

[13] JANG M, CAI L, UDEANI G O, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes[J]. Science, 1997, 275(5297): 218-220.

[14] MOAMMIR A H, RAJ K, NIHAL A. Cancer chemoprevention by resveratrol: in vitro and in vivo studies and the underlying mechanisms[J]. International Journal of Oncology, 2003, 23(1): 17-28.

[15] CLéMENT M V, HIRPARA J L, CHAWDHURY S H, et al. Chemopreventive agent resveratrol, a natural product derived from grapes, triggers Cd95 signaling-dependent apoptosis in human tumor cells[J]. Blood, 1998, 92(3): 996-1002.

[16] CHENG Yan, QIU Feng, HUANG Jian, et al. Apoptosis-suppressing and autophagy-promoting effects of calpain on oridonin-induced L929 cell death[J]. Archives of Biochemistry and Biophysics, 2008, 475(2): 148-155.

[17] 勞鳳學(xué), 商迎輝, 劉端祺. 白藜蘆醇誘導(dǎo)Raji細(xì)胞死亡的自噬途徑[J].中國生物制品學(xué)雜志, 2009(7): 654-658.

[18] OPIPARI A W, TAN L, BOITANO A E, et al. Resveratrol-induced autophagocytosis in ovarian cancer cells[J]. Cancer Research, 2004, 64(2): 696-703.

[19] SCARLATTI F, MAFFEI R, BEAU I, et al. Role of non-canonical Beclin1-independent autophagy in cell death induced by resveratrol in human breast cancer cells[J]. Cell Death & Differentiation, 2008, 15(8): 1318-1329.

[20] FRANCESCA S, CHANTAL B, VENTRUTI A, et al. Ceramidemediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin1[J]. Journal of Biological Chemistry, 2004, 279(18): 18384-18391.

[21] OHSHIRO K, RAVALA S K, El-NAGGAR A K, et al. Delivery of cytoplasmic proteins to autophagosomes[J]. Autophagy, 2007, 4(1): 104-106.

[22] WU Shengli, SUN Zhongjie, YU Liang, et al. Effect of resveratrol and in combination with 5-FU on murine liver cancer[J]. World Journal of Gastroenterology, 2004, 10(20): 3048-3052.

[23] SRIVASTAVA R M, SINGH S, DUBEY S K, et al. Immunomodulatory and therapeutic activity of curcumin[J]. International Immunopharmacology, 2010, 11(3): 331-341.

[24] GAO Shenmeng, YANG Junjun, CHEN Chiqi, et al. Pure curcumin decreases the expression of WT1 by upregulation of miR-15a and miR-16-1 in leukemic cells[J]. Journal of Experimental & Clinical Cancer Research, 2012, 31(1): 27-38.

[25] TULLAYAKOM P, VITHOON V, VEERACHAI E, et al. Anticancer activities against cholangiocarcinoma, toxicity and pharmacological activities of Thai medicinal plants in animal models[J]. BMC Complementary and Alternative Medicine, 2012, 1(27): 12-23.

[26] 劉立民. 姜黃素對(duì)前列腺癌PC-3M細(xì)胞作用的實(shí)驗(yàn)研究[D]. 長春:吉林大學(xué), 2007: 1-233.

[27] ODOT J, ALERT P, CARLIER A, et al. in vitro and in vivo anti-tumor effect of curcumin against melanoma cells[J]. International Journal of Cancer, 2004, 111(3): 381-387.

[28] BANSALS, GOEL M, AGIL F, et al. Advanced drug delivery systems of curcumin for cancer chemoprevention[J]. Cancer Prevention Research, 2011, 4(8): 1158-1171.

[29] KIM H I, HUANG H, CHEEPALA S, et al. Curcumin inhibition of integrin (alpha 6 beta 4)-dependent breast cancer cell motility and invasion[J]. Cancer Prevention Research, 2009, 1(5): 385-391.

[30] MUKHERIEE S, ROY M, DEY S, et al. A mechanistic approach for modulation of arsenic toxicity in human lymphocytes by curcumin, an active constituent of medicinal herb curcuma longa linn[J]. Journal of Clinical Biochemistry and Nutrition, 2008, 41(1): 32-42.

[31] HONG J H, AHN K S, BAE E, et al. The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo[J]. Prostate Cancer and Prostatic Diseases, 2006, 9(2): 147-152.

[32] O’SULLIVAN-COYNE G, O’SULLIVAN G C, O’DONOVAN T R, et al. Curcumin induces apoptosis-independent death in oesophageal cancer cells[J]. British Journal of Cancer, 2009, 101(9): 1585-1595.

[33] JIA Yanli, LI Jun, QIN Zhenghong, et al. Autophagic and apoptotic mechanisms of curcumin-induced death in K562 cells[J]. Journal of Asian Natural Products Research, 2010, 11(11): 918-928.

[34] AOKI H, TAKADA Y, KONDO S, et al. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signalregulated kinase signaling pathways[J]. Molecular Pharmacology, 2007, 72(1): 29-39.

[35] SHINOJIMA N, YOKOYAMA T, KONDO Y, et al. Roles of the Akt/ mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy[J]. Autophagy, 2007, 3(6): 635-637.

[36] LEE Y J, KIM N, SUH Y, et al. Involvement of ROS in curcumininduced autophagic cell death[J]. Korean Journal of Physiology and Pharmacology, 2011, 15(1): 1-7.

[37] QIAN Haoran, YANG Yi, WANG Xianfa. Curcumin enhanced adriamycin-induced human liver-derived hepatoma G2 cell death through activation of mitochondria-mediated apoptosis and autophagy[J]. European Journal of Pharmaceutical Sciences, 2011, 43(3): 125-131.

[38] 張春枝, 安利佳, 金鳳燮. 人參皂苷生理活性的研究進(jìn)展[J]. 食品與發(fā)酵工業(yè), 2002, 28(4): 70-74.

[39] 李杰, 宋淑霞, 呂占軍. 人參皂苷抗腫瘤作用的研究進(jìn)展[J]. 中國腫瘤生物治療雜志, 2004, 11(1): 61-63.

[40] KWON H Y, KIM E H, KIM S W, et al. Selective toxicity of ginsenoside Rg3 on multidrug resistant cells by membrane fluidity modulation[J]. Archives of Pharmacology Research, 2008, 31(2): 171-177.

[41] TODE T, KIKUCHI Y, HIRATA J, et al. Inhibitory effects of oral administration of ginsenoside Rh2 on tumor growth in nude mice bearing serous cyst adenocarcinoma of the human ovary[J]. Nihon Sanka Fujinka Gakkai Zasshi, 1993, 45(11): 1275-1282.

[42] KIM S M, LEE S Y, CHO J S, et al. Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-κB[J]. European Journal of Pharmacology, 2010, 631(1): 1-9.

[43] ZHANG Q, KANG X, ZHAO W. Antiangiogenic effect of lowdose cyclophosphamide combined with ginsenoside Rg3 on lewis lung carcinoma[J]. Biochemical and Biophysical Research Communications, 2006, 342(3): 824-828.

[44] KO H, KIM Y J, PARK J S, et al. Autophagy inhibition enhances apoptosis induced by ginsenoside Rk1 in hepatocellular carcinoma cells[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(10): 2183-2189.

[45] MAI T T, MOON J, SONG Y, et al. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells[J]. Cancer Letters, 2012, 321(2): 144-153.

[46] AHMAD N, FEYES D K, AGARWAL R, et al. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells[J]. JNCI Journal of the National Cancer Institute, 1997, 89(24): 1881-1886.

[47] VIJAY T, KARISHMA G, SANJAY G. Green tea polyphenols increase P53 transcriptional activity and acetylation by suppressing class Ⅰ histone deacetylases[J]. International Journal of Oncology, 2012, 41(1): 353-361.

[48] SU-NI T, CHANDAN S, DARA N, et al. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition[J]. Journal of Molecular Signaling, 2010, 5(1): 5-14.

[49] RAJESH L, THANGAPAZHA M, NEENA P, et al. Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells[J]. Cancer Biology & Therapy, 2007, 6(12): 1938-1943.

[50] SHAMMAS MA, NERI P, KOLEY H, et al. Specific Killing of multiple myeloma cells by (-)-epigallocatechin-3-gallate extracted from green tea: biologic activity and therapeutic implications[J]. Blood, 2006, 108(8): 2804-2810.

[51] QANUNGO S. Epigallocatechin-3-gallate Induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells[J]. Carcinogenesis, 2004, 26(5): 958-967.

[52] WEISBERGER A S, PENSKY J. Tumor inhibition by a sulfhydrylblocking agent related to an active principle of garlic (Allium sativum)[J]. Cancer Research, 1958, 18(11): 1301-1308.

[53] MOHAMMED O, ALTONS Y, SIMON C. Diallyl disulphide, a beneficial component of garlic oil, causes a redistribution of cell-cycle growth phases, induces apoptosis, and enhances butyrate-induced apoptosis in colorectal adenocarcinoma cells (ht-29)[J]. Nutrition and Cancer, 2011, 63(7): 1104-1113.

[54] DAS A, BANIK N L, RAY S K. Garlic compounds generate reactive oxygen species leading to activation of stress kinases and cysteine proteases for apoptosis in human glioblastoma T98g and U87mg cells[J]. Cancer, 2007, 110(5): 1083-1095.

[55] KIM H J, HAN M H, KIM G Y, et al. Hexane extracts of garlic cloves induce apoptosis through the generation of reactive oxygen species in Hep3b human hepatocarcinoma cells[J]. Oncology Reports, 2012, 28(5): 1757-1763.

[56] CHU Y L, HO C T, CHUNG J G. Allicin induces p53-mediated autophagy in HepG2 human liver cancer cells[J]. Journal of Agricultural and Food Chemistry, 2012, 60(34): 8363-8371.

[57] WESSELY R, SCHOMIG A, KASTRATI A. Sirolimus and paclitaxel on polymer-based drug-eluting stents: similar but different[J]. American College of Cardiology Journal, 2006, 47(4): 708-714.

[58] AIABNOOR G M A, CROOK T, COLEY H M. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells[J]. Cell Death & Disease, 2012, 3: e260. doi: 10.1038/cddis.2011.139.

[59] CUI Qiao, TASSHIRO S I, ONOFERA S, et al. Augmentation of oridonin-induced apoptosis observed with reduced autophagy[J]. Journal of Pharmacological Sciences, 2006, 101(3): 230-239.

[60] GOSSNER G, CHOI M, TAN L, et al. Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells[J]. Gynecologic Oncology, 2007, 105(1): 23-30.

Natural Compounds: Targeting Pathways of Autophagy as Anticancer Agents

ZHANG Shu-fang1,2, WANG Yu-fang1, YUAN Hong1, CHEN Ning3,*
(1. Graduate School, Wuhan Sports University, Wuhan 430079, China; 2. College of Sports Science and Technology, Wuhan Sports University, Wuhan 430205, China; 3. Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion, College of Health Science, Wuhan Sports University, Wuhan 430079, China)

Conventional chemotherapeutic agents are often toxic not only to tumor cells, but also to normal cells, limiting their therapeutic efficiency in clinical application. Novel natural anticancer compounds present an attractive alternative to synthetic compounds, based on their favorable safety and efficacy profiles. Pre-clinical and clinical studies have demonstrated that several representative natural compounds such as resveratrol, curcumin, and ginsenosides have anticancer potential. In this review, we summarize how natural compounds target autophagy to lead to cell death. We also discuss some involved core autophagic pathways. Recent advances in the discovery and evaluation of natural compounds as anticancer agents support future pre-clinical and clinical development of these agents for the treatment of primary and metastatic tumors.

resveratrol; curcumin; ginsenosides; autophagy; cancer

TS201.1

A

1002-6630(2014)23-0331-06

10.7506/spkx1002-6630-201423064

2014-09-01

武漢體育學(xué)院湖北省楚天學(xué)者啟動(dòng)基金項(xiàng)目

張淑芳(1980—),女,博士研究生,研究方向?yàn)檫\(yùn)動(dòng)人體科學(xué)。E-mail:272807322@qq.com

*通信作者:陳寧(1972—),男,教授,博士,研究方向?yàn)樯锘瘜W(xué)與分子運(yùn)動(dòng)生理學(xué),運(yùn)動(dòng)或營養(yǎng)與健康促進(jìn)。E-mail:nchen510@gmail.com

猜你喜歡
姜黃皂苷癌細(xì)胞
癌細(xì)胞最怕LOVE
Curcumin in The Treatment of in Animals Myocardial ischemia reperfusion: A Systematic review and Meta-analysis
假如吃下癌細(xì)胞
HPLC-MS/MS法同時(shí)測定三七花總皂苷中2種成分
中成藥(2018年9期)2018-10-09 07:19:04
姜黃提取物二氧化硅固體分散體的制備與表征
中成藥(2018年2期)2018-05-09 07:19:43
姜黃素對(duì)人胃癌AGS細(xì)胞自噬流的作用
中成藥(2018年3期)2018-05-07 13:34:37
HPLC法測定大鼠皮膚中三七皂苷R1和人參皂苷Rb1
中成藥(2017年9期)2017-12-19 13:34:40
癌細(xì)胞最怕Love
奧秘(2017年5期)2017-07-05 11:09:30
HPLC法同時(shí)測定熟三七散中13種皂苷
中成藥(2017年6期)2017-06-13 07:30:34
正常細(xì)胞為何會(huì)“叛變”? 一管血可測出早期癌細(xì)胞
乌什县| 黄浦区| 大庆市| 芜湖市| 金秀| 靖边县| 亳州市| 东乡族自治县| 涞水县| 泰安市| 平安县| 长宁区| 罗源县| 永州市| 长沙县| 阳谷县| 登封市| 都昌县| 会昌县| 奇台县| 邯郸市| 兰坪| 夹江县| 莱阳市| 开鲁县| 楚雄市| 郯城县| 米林县| 正阳县| 罗平县| 凌海市| 会东县| 远安县| 米易县| 台南县| 桓台县| 株洲县| 杂多县| 西吉县| 察隅县| 都兰县|