汪 燕,周慧軒,王 莉
(上海交通大學(xué)附屬第六人民醫(yī)院麻醉科,上海 200233)
原發(fā)性高血壓的發(fā)生機(jī)制復(fù)雜。在高血壓實(shí)驗(yàn)?zāi)P秃团R床患者中,常發(fā)現(xiàn)動(dòng)脈血管壁結(jié)構(gòu)和功能的異常,包括:動(dòng)脈血管壁增厚、血管收縮增強(qiáng)以及血管舒張減弱。上述因素共同導(dǎo)致血管平滑肌(vascular smooth muscle,VSM)張力增加,進(jìn)而引起周圍血管阻力和血壓的升高。眾所周知,VSM的張力大小與血管平滑肌細(xì)胞(vascular smooth muscle cell,VSMC)內(nèi)Ca2+離子濃度和肌絲對(duì)Ca2+的敏感性密切相關(guān)。高血壓時(shí),VSMC的鈣動(dòng)員和鈣敏感機(jī)制均發(fā)生變化,促使VSM過(guò)度收縮。因此,本文擬針對(duì)高血壓時(shí),VSMC中鈣動(dòng)員和鈣敏感的改變及其發(fā)生機(jī)制的最新研究進(jìn)展作一簡(jiǎn)要闡述。
肌球蛋白是VSM的一種收縮蛋白,其20 ku的調(diào)節(jié)性輕鏈MLC20的磷酸化和去磷酸化是血管舒縮調(diào)控的終末路徑,也是血管舒縮調(diào)節(jié)機(jī)制中信號(hào)轉(zhuǎn)導(dǎo)的重要介質(zhì)。而MLC20的磷酸化受MLCK和MLCP的雙向調(diào)節(jié)。血管收縮劑與VSMC的膜受體結(jié)合,導(dǎo)致細(xì)胞膜磷酯酰肌醇雙磷酸(phosphatidylinositol 4,5-bisphosphate,PIP2)水解,產(chǎn)生三磷酸肌醇(inositol triphosphate,IP3)和甘油二酯(diacylglycerol,DAG)。IP3與內(nèi)質(zhì)網(wǎng)上的Ca2+通道結(jié)合,促使內(nèi)質(zhì)網(wǎng)Ca2+釋放。同時(shí),激動(dòng)劑通過(guò)激活細(xì)胞膜上的電壓門控、受體門控等各種Ca2+通道,促進(jìn)細(xì)胞外Ca2+內(nèi)流。細(xì)胞內(nèi)Ca2+與鈣調(diào)蛋白(Calmodulin,CaM)結(jié)合形成鈣 -鈣調(diào)蛋白(Ca2+-CaM)復(fù)合物,進(jìn)而激活MLCK,促進(jìn) MLC20磷酸化,導(dǎo)致肌動(dòng)蛋白和肌球蛋白相互作用,引起VSM收縮[1-3]。除了上述Ca2+依賴的收縮機(jī)制外,在細(xì)胞內(nèi)Ca2+濃度相等時(shí),由激動(dòng)劑誘導(dǎo)的血管收縮幅度和MLC20磷酸化水平明顯大于單純由去極化引起的收縮幅度和MLC20磷酸化水平,且VSM收縮幅度和細(xì)胞內(nèi)Ca2+濃度并非嚴(yán)格的線性相關(guān),說(shuō)明在VSM收縮過(guò)程中,還有鈣敏感機(jī)制的參與[4]。鈣敏感機(jī)制主要是調(diào)節(jié)MLCP的磷酸化水平。PIP2分解生成的DAG激活蛋白激酶C(protein kinase C,PKC),使其下游的MLCP抑制蛋白(PKC-potentiated phosphatase inhibitor protein-17 ku,CPI-17)發(fā)生磷酸化,抑制 MLCP,使 MLC20磷酸化水平增高,促進(jìn)VSM收縮。另一方面,激動(dòng)劑以及部分內(nèi)流的Ca2+還可以激活小G蛋白R(shí)hoA,進(jìn)而激活Rho相關(guān)激酶(Rho-associated kinase,ROCK),使 MLCP的調(diào)節(jié)亞基MYPT1磷酸化,也抑制MLCP活性,使VSM收縮增強(qiáng)[6]。
原發(fā)性高血壓的發(fā)病機(jī)制涉及多種因素。其中VSMC中Ca2+動(dòng)員的異常,是高血壓重要的病理生理改變之一。Ca2+動(dòng)員包括兩方面:①細(xì)胞外Ca2+內(nèi)流,②肌漿網(wǎng)Ca2+釋放。
2.1 細(xì)胞外Ca2+內(nèi)流在高血壓中的改變 與Wistar Kyoto大鼠(WKY)相比,在靜息狀態(tài)時(shí)自發(fā)性高血壓大鼠(spontaneously hypertensive rat,SHR)VSMC內(nèi)的Ca2+濃度升高,由血管收縮劑誘導(dǎo)的 VSMC中Ca2+內(nèi)流增加[5-6]。
研究者們發(fā)現(xiàn)存在于SHR的VSMC膜上的L型Ca2+通道 (L-type Ca2+channel,LTCC),不僅表達(dá)程度比WKY高,而且敏感性也增強(qiáng),使用LTCC的阻斷劑后可以明顯減少Ca2+內(nèi)流[5,7]。Lawton 等[7]通過(guò)膜片鉗技術(shù)觀察到,不同周齡的SHR腸系膜動(dòng)脈VSMC的Ca2+內(nèi)流增加,利用Western blot的方法發(fā)現(xiàn)LTCC的α1c亞單位表達(dá)較對(duì)照組明顯增高。所以,SHR腸系膜動(dòng)脈VSMC收縮功能的增強(qiáng)可能是由于LTCC的密度增加、Ca2+通道的開放數(shù)量增多、以及LTCC對(duì)于觸發(fā)Ca2+內(nèi)流的各種因素的敏感性增強(qiáng),從而使Ca2+內(nèi)流增加,VSM收縮性增強(qiáng)。Santana等[8]研究表明,LTCC又稱Cav1.2通道,是由穿孔亞基 Cav1.2α1和修飾亞基β和α2δ-1亞基組成的三聚體,在SHR的動(dòng)脈VSMC膜上,LTCC表達(dá)的增加與修飾亞基α2δ-1的增加密切相關(guān)。Kharade等[9]用Ang-Ⅱ處理2周形成的高血壓C57BL/6小鼠進(jìn)行研究,發(fā)現(xiàn)在腸系膜動(dòng)脈VSMC膜上,LTCC表達(dá)上調(diào),其中,Cavβ3亞基是起關(guān)鍵作用的調(diào)節(jié)亞基。上述研究雖然均表明,在高血壓模型中,LTCC表達(dá)增高,但是具體是何種亞基起決定性作用,尚存在爭(zhēng)議。另外,Cox等[10]發(fā)現(xiàn),VSMC膜上的電壓依賴性Ca2+通道的失活特性在SHR和WKY中有差別,SHR的Ca2+通道失活的時(shí)間,以及從失活狀態(tài)恢復(fù)的時(shí)間較WKY明顯縮短。這也導(dǎo)致了SHR中電壓依賴性Ca2+通道活性增強(qiáng),Ca2+內(nèi)流增加。
VSMC膜上除了LTCC外,還存在瞬時(shí)受體電位通道(transient receptor potential channel,TRPC),以 TRPC 亞型為主,是一種非選擇性陽(yáng)離子通道。TRPC不僅可以直接介導(dǎo)Ca2+內(nèi)流,還可以通過(guò)引起細(xì)胞膜去極化從而激活LTCC,增加 LTCC 的 Ca2+內(nèi)流。近期研究發(fā)現(xiàn)[11-12,38],SHR 動(dòng)脈平滑肌上的TRPC表達(dá)比WKY多,米蘭高血壓大鼠的腸系膜VSMC膜上,TRPC6的表達(dá)增高,敲除TRPC基因或使用TRPC抑制劑均可以降低血壓。那么TRPC的上游信號(hào)分子具體是什么呢?Wenzel等[13]研究發(fā)現(xiàn),存在于基膜結(jié)構(gòu)中的一種稱之為層黏連蛋白九肽(laminin nonapeptide,LNP)的小分子肽具有較強(qiáng)的血管收縮作用,它通過(guò)激活非選擇性陽(yáng)離子通道,引起細(xì)胞膜去極化,進(jìn)而導(dǎo)致Ca2+內(nèi)流。由此推測(cè),LNP在高血壓的發(fā)生中可能起到了不可忽視的作用,但是尚未有充足的證據(jù)證實(shí)這一觀點(diǎn)。
2.2 細(xì)胞內(nèi)Ca2+庫(kù)釋放在高血壓中的改變 在高血壓模型SHR 中,肌漿網(wǎng) Ca2+庫(kù)的 Ca2+存儲(chǔ)能力增強(qiáng)[5-6]。此外,Nomura和 Asano等[14-15]在研究 SHR 和 WKY 肌漿網(wǎng)對(duì)Ca2+的緩沖功能時(shí)發(fā)現(xiàn),無(wú)論是在腸系膜動(dòng)脈還是在頸動(dòng)脈中,SHR的肌漿網(wǎng)對(duì)于外部Ca2+的重新攝取能力較WKY均有明顯提高。
Linde等[16]對(duì)米蘭高血壓大鼠模型的離體腸系膜動(dòng)脈的研究發(fā)現(xiàn),血管收縮劑誘導(dǎo)肌漿網(wǎng)鈣泵釋放增加,細(xì)胞內(nèi)Ca2+濃度與對(duì)照組相比明顯增高。這可能是由于肌漿網(wǎng)IP3受體I型數(shù)量增加,以及肌漿網(wǎng)鈣泵(SERCA2)表達(dá)增高。此外,他們還發(fā)現(xiàn)[17],內(nèi)源性毒毛花苷可以增強(qiáng)鹽敏感性高血壓大鼠的肌漿網(wǎng)膜上鈣泵的表達(dá),增加ATP誘導(dǎo)的肌漿網(wǎng)Ca2+釋放,提示內(nèi)源性毒毛花苷在鹽敏感性高血壓大鼠的鈣動(dòng)員改變中起重要作用。Yazawa等[18]分析了實(shí)驗(yàn)鼠骨骼肌細(xì)胞中的肌漿網(wǎng)后發(fā)現(xiàn),肌漿網(wǎng)的膜上有一種名為“TRIC”(trimeric intracellular cation)的通道。帶正電荷的K+可以經(jīng)由這種通道進(jìn)入肌漿網(wǎng),從而保證肌漿網(wǎng)能夠正常釋放Ca2+。他們培育出一種“TRIC”通道缺損的小鼠。結(jié)果發(fā)現(xiàn),這些實(shí)驗(yàn)鼠心肌細(xì)胞的肌漿網(wǎng)不能正常釋放Ca2+,導(dǎo)致肌漿網(wǎng)內(nèi)Ca2+蓄積,使小鼠出現(xiàn)重度心力衰竭。TRIC通道包括兩種亞型,TRIC-A和TRIC-B。Yamazaki等[19]研究發(fā)現(xiàn),TRIC-A基因的過(guò)表達(dá)可以使小鼠產(chǎn)生低血壓表型,相反,敲除TRIC-A基因則可以使小鼠發(fā)生自發(fā)性高血壓。上述研究表明,TRIC-A基因在調(diào)節(jié)血壓中起關(guān)鍵作用。此外,他們還發(fā)現(xiàn)[20],TRIC-A的單核苷酸多態(tài)性也大大增加了高血壓的風(fēng)險(xiǎn),限制了抗高血壓藥物的療效。
鈣敏感機(jī)制主要包括由ROCK和PKC兩種激酶介導(dǎo)的信號(hào)通路。高血壓時(shí),不僅VSM中Ca2+動(dòng)員發(fā)生改變,肌絲對(duì)于Ca2+的敏感性也發(fā)生改變。
3.1 ROCK在高血壓中的活性增強(qiáng) ROCK在高血壓模型和高血壓患者中均被激活[21-22]。Uehata 等[23]的研究首次提出,Rho相關(guān)激酶介導(dǎo)的鈣敏感性參與體內(nèi)血壓水平的調(diào)節(jié),且在3種高血壓大鼠模型中,Rho相關(guān)激酶介導(dǎo)的鈣敏感性均增強(qiáng)。Ryu等[24]研究顯示,在SHR模型的腸系膜動(dòng)脈中,由鞘氨醇磷脂膽堿(sphingosylphosphorylcholine,SPC)誘導(dǎo)的動(dòng)脈收縮幅度比WKY明顯增高,同時(shí)Rho相關(guān)激酶介導(dǎo)的鈣敏感性增強(qiáng)。Freitas等[25]通過(guò)對(duì)里昂高血壓大鼠(LH)的研究發(fā)現(xiàn),由α-腎上腺素受體激動(dòng)劑誘導(dǎo)的血管收縮過(guò)程中,ROCK介導(dǎo)的鈣敏感信號(hào)通路比正常血壓的大鼠強(qiáng),但是這一現(xiàn)象只存在于小動(dòng)脈中。且和其他高血壓模型不同的是,由ROCK誘導(dǎo)的LH小動(dòng)脈平滑肌的過(guò)度收縮性不依賴于MYPT1和CPI-17的磷酸化,提示ROCK介導(dǎo)的抑制并不影響LH小動(dòng)脈平滑肌的過(guò)度收縮性。Nunes等[26]發(fā)現(xiàn)在高血壓患者的白細(xì)胞中,ROCK的活性增強(qiáng),且ROCK抑制劑Y-27632或法舒地爾,以及一種新型的強(qiáng)選擇性Rho激酶抑制劑SAR407899,均可以劑量依賴性地降低SHR的血壓。
關(guān)于在高血壓模型和高血壓病人中,Rho/ROCK的活性增強(qiáng)的機(jī)制,Shi和馬明明等[27-28]認(rèn)為,這是 RAAS系統(tǒng)上調(diào)和活性氧自由基的產(chǎn)生增多的結(jié)果。這也許是高血壓的病理生理機(jī)制之一。此外,近年來(lái)關(guān)于ROCK基因多態(tài)性與高血壓發(fā)生關(guān)系的研究逐漸成為熱點(diǎn),且爭(zhēng)議頗多。Liu等[29]對(duì)中國(guó)漢族人口心血管疾病與ROCK基因多態(tài)性做了相關(guān)分析,發(fā)現(xiàn)二者之間的相關(guān)性不顯著。相反,Seasholtz等[30]則發(fā)現(xiàn)ROCK2的基因多態(tài)性與全身血壓的改變密切相關(guān)。另外,Yao等[31]利用基因敲除技術(shù)敲除高血壓小鼠的ROCK1或ROCK2基因,發(fā)現(xiàn),ROCK2基因?qū)τ谘獕旱恼{(diào)節(jié)起到了關(guān)鍵的作用。以上研究結(jié)果的差異,可能是由于物種及人群選擇的偏倚,研究方法的差異等所致。
3.2 PKC活性在高血壓中的改變 除了由ROCK介導(dǎo)的鈣敏感機(jī)制外,PKC也可以通過(guò)使CPI-17磷酸化,抑制MLCP,參與鈣敏感機(jī)制對(duì)VSM收縮的調(diào)節(jié)。在SHR的VSM中,PKC表達(dá)增高,活性增強(qiáng)。與WKY的主動(dòng)脈相比,SHR由NE誘導(dǎo)的主動(dòng)脈收縮反應(yīng)更容易被PKC的抑制劑H-7抑制[32]。PKC激動(dòng)劑PDBu促使PKC從細(xì)胞質(zhì)遷移至細(xì)胞膜,這種現(xiàn)象在SHR中比WKY明顯。PDBu可以引起持續(xù)的血管收縮和灌注壓升高,這種效應(yīng)可以被PKC抑制劑抑制,且對(duì)SHR的抑制效應(yīng)比WKY更為明顯[32]。說(shuō)明PKC能夠增強(qiáng)VSM收縮蛋白的鈣敏感性,并且在高血壓模型中被過(guò)度激活。PKC有很多亞型都參與了高血壓中VSM對(duì)于激動(dòng)劑的過(guò)度收縮反應(yīng)。比如,Ca2+依賴的PKC-α在高血壓時(shí)激活增高,且在VSM中過(guò)度表達(dá);非Ca2+依賴的PKC-ε在增加肌絲鈣敏感性中也起到關(guān)鍵作用,與高血壓時(shí)血管過(guò)度收縮有關(guān)[33]。
與之相反的是,近來(lái)也有報(bào)道稱[24],PKC抑制劑對(duì)于SPC誘導(dǎo)的SHR腸系膜動(dòng)脈的收縮幅度沒(méi)有影響,PKC在血管收縮劑誘導(dǎo)的SHR血管收縮過(guò)程中作用不大。Bal等[34]在SHR和WKY離體股動(dòng)脈中觀察到,PKC的抑制劑對(duì)于SHR的股動(dòng)脈收縮沒(méi)有影響,但是能減弱WKY股動(dòng)脈的收縮幅度,說(shuō)明PKC在血管收縮中的作用,WKY比SHR更明顯。Budzyn等[35]發(fā)現(xiàn)在SHR中,5-HT誘導(dǎo)的血管收縮反應(yīng)增強(qiáng),這與過(guò)氧化物離子水平增高以及NO的調(diào)節(jié)作用降低有關(guān),但是與高血壓時(shí)Rho激酶或PKC過(guò)度激活無(wú)關(guān),至少在高血壓早期與之無(wú)關(guān)。有研究表明[36],G蛋白信號(hào)途徑調(diào)節(jié)蛋白2(regulator of G protein signaling 2,RGS2)的表達(dá)水平與血壓密切相關(guān),Rgs2基因敲除的小鼠發(fā)生了高血壓。在Ang-Ⅱ誘導(dǎo)血管收縮的同時(shí),存在一條負(fù)反饋調(diào)節(jié)途徑,即PKC-iPLA2β-PKA通路,導(dǎo)致RGS2轉(zhuǎn)錄水平增高,從而降低血壓。由此可見(jiàn),PKC抑制劑對(duì)于高血壓模型的血管收縮效應(yīng)的抑制作用不明顯的研究結(jié)果,有可能是由于PKC介導(dǎo)的負(fù)反饋效應(yīng)部分抵消了其過(guò)度激活引起的縮血管效應(yīng)。
對(duì)于PKC在高血壓中過(guò)度激活的機(jī)制尚不十分明確,Touyz等[37]研究發(fā)現(xiàn),原發(fā)性高血壓患者的RAAS系統(tǒng)過(guò)度激活,導(dǎo)致活性氧自由基產(chǎn)生增多,氧化應(yīng)激水平較正常人明顯升高,這與高血壓中PKC活性增高密切相關(guān)。然而具體的機(jī)制還有待進(jìn)一步研究。
綜上所述,在高血壓發(fā)生發(fā)展過(guò)程中,VSMC的鈣動(dòng)員和肌絲對(duì)于Ca2+的敏感性均比正常明顯增強(qiáng),使用LTCC和TRPC的阻斷劑,敲除TRPC基因或肌漿網(wǎng)上TRIC-A基因,均可以降低高血壓 VSMC 中的鈣動(dòng)員程度[7,11,20],而使用ROCK和PKC的抑制劑則可以減弱肌絲對(duì)于Ca2+的敏感性[26-27,33]。這為治療原發(fā)性高血壓提供了新靶點(diǎn),即除了利用經(jīng)典的Ca2+阻斷劑治療高血壓外,還可以通過(guò)干擾細(xì)胞膜上TRPC的表達(dá),抑制肌漿網(wǎng)TRIC-A基因的轉(zhuǎn)錄與翻譯,以及通過(guò)抑制PKC和ROCK介導(dǎo)的鈣敏感通路上的某一信號(hào)分子,從而達(dá)到治療高血壓的目的。然而,在高血壓中,鈣動(dòng)員和鈣敏感的過(guò)度激活具體是如何產(chǎn)生的及其與基因多態(tài)性之間的關(guān)系,其上游信號(hào)通路有哪些,鈣動(dòng)員和鈣敏感相互之間有何種聯(lián)系,二者對(duì)高血壓時(shí)血管平滑肌過(guò)度收縮的貢獻(xiàn)大小,以及各通路抑制劑作用的分子靶點(diǎn)是什么,還有待進(jìn)一步研究。
[1]Pintérová M,Kune? J,Zicha J,et al.Altered neural and vascular mechanisms in hypertension[J].Physiol Res,2011,60(3):381-402.
[2]Khalil R A.Regulation of vascular smooth muscle function[M].San Rafael(CA):Morgan& Claypool Life Sciences,2010,2(1):1-62.
[3]He W Q,Qiao Y N,Zhang C H,et al.Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt-induced hypertension[J].Am J Physiol Heart Circ Physiol,2011,301(2):H584-91.
[4]Jarajapu Y P,Knot H J.Relative contribution of Rho kinase and protein kinase C to myogenic tone in rat cerebral arteries in hypertension[J].Am J Physiol Heart Circ Physiol,2005,289(5):H1917-22.
[5]Samain E,Pili-Floury S,Bouillier H,et al.Effect of propofol on vasoconstriction and calcium mobilization induced by angiotensin II differs in aortas from normotensive and hypertensive rats[J].Clin Exp Pharmacol Physiol,2004,31(3):163 -8.
[6]Uematsu N,Ogawa K,Tokinaga Y,et al.Sevoflurane inhibits angiotensin II-induced Rho kinase-mediated contraction of vascular smooth muscle from spontaneously hypertensive rat[J].J Anesth,2011,25(3):398-404.
[7]Lawton B K,Brown N J,Reilly C S,et al.Role of L-type calcium channels in altered microvascular responses to propofol in hypertension[J].Br J Anaesth,2012,108(6):929 -35.
[8]Santana L F,Mercado J L.Adding accessories for hypertension:α2δ-1 subunits upregulate Cav1.2 channels in arterial myocytes in a model of genetic hypertension[J].Hypertension,2012,60(4):894-5.
[9]Kharade S V,Sonkusare S K,Srivastava A K,et al.The β3subunit contributes to vascular calcium channel upregulation and hypertension in angiotensin II-infused C57BL/6 mice[J].Hypertension,2013,61(1):137-42.
[10]Cox R H,Lozinskaya I M.Ca2+channel inactivation in small mesenteric arteries of WKY and SHR[J].Am J Hypertension,2008,21(4):406-12.
[11]Pulina M V,Zulian A,Berra-Romani R,et al.Upregulation of Na+and Ca2+transporters in arterial smooth muscle from ouabaininduced hypertensive rats[J].Am J Physiol Heart Circ Physiol,2010,298(1):H263-74.
[12]Zulian A,Baryshnikov S G,Linde C I,et al.Upregulation of Na+/Ca2+exchanger and TRPC6 contributes to abnormal Ca2+homeostasis in arterial smooth muscle cells from Milan hypertensive rats[J].Am J Physiol Heart Circ Physiol,2010,299(3):H624-33.
[13]Wenzel D,Koch M,Matthey M,et al.Identification of a novel vasoconstrictor peptide specific for the systemic circulation[J].Hypertension,2012,59(6):1256-62.
[14]Asano M,Nomura Y.Ca2+buffering function of the sarcoplasmic reticulum is increased in the carotid artery from spontaneously hypertensive rats[J].Hypertens Res,2002,25(2):221 -30.
[15]Nomura Y,Asano M.Increased Ca2+buffering function of sarcoplasmic reticulum in small mesenteric arteries from spontaneously hypertensive rats[J].Hypertens Res,2002,25(2):231 - 9.
[16]Linde C I,Karashima E,Raina H,et al.Increased arterial smooth muscle Ca2+signaling,vasoconstriction,and myogenic reactivity in Milan hypertensive rats[J].Am J Physiol Heart Circ Physiol,2012,302(3):H611-20.
[17]Linde C I,Antos L K,Golovina V A,Blaustein M P.Nanomolar ouabain increases NCX1 expression and enhances Ca2+signaling in human arterial myocytes:a mechanism that links salt to increased vascular resistance[J]?Am J Physiol Heart Circ Physiol,2012,303(7):H784-94.
[18]Yazawa M,F(xiàn)errante C,F(xiàn)eng J,et al.TRIC channels are essential for Ca2+handling in intracellular stores[J].Nature,2007,448(7149):78-82.
[19]Yamazaki D.TRIC(trimeric intracellular cation)-A channels contribute to blood pressure maintenance in vascular smooth muscle[J].Yakugaku Zasshi,2012,132(9):1037 -43.
[20]Yamazaki D,Tao S,Takeshima H.TRIC channel and hypertension[J].Clin Calcium,2013,23(4):543 -50.
[21]Tsounapi P,Saito M,Kitatani K,et al.Fasudil improves the endothelial dysfunciton in the aorta of spontaneously hypertensive rats[J].Eur J Pharmacol,2012,691(1 -3):182 -9.
[22]Smith C J,Santhanam L,Alexander L M.Rho-kinase activity and cutaneous vasoconstriction is upregulated in essential hypertensive humans[J].Microvasc Res,2013,87:58 -64.
[23]Uehata M,Ishizaki T,Satoh H,et al.Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension[J].Nature,1997,389(6654):990 -4.
[24]Ryu S K,Ahn D S,Cho Y E,et al.Augmented sphingosylphosphorylcholine-induced Ca2+-sensitization of mesenteric artery contraction in spontaneously hypertensive rat[J].Naunyn Schmiedebergs Arch Pharmacol,2006,373(1):30 -6.
[25]Freitas M R,Eto M,Kirkbride J A,et al.Y27632,a Rho-activated kinase inhibitor,normalizes dysregulation in alpha1-adrenergic receptor-induced contraction of Lyon hypertensive rat artery smooth muscle[J].Fundam Clin Pharmacol,2009,23(2):169 - 78.
[26]Nunes K P,Rigsby C S,Webb R C.RhoA/Rho-kinase and vascular diseases:what is the link[J]?Cell Mol Life Sci,2010,67(22):3823-36.
[27]Shi J,Wei L.Rho kinases in cardiovascular physiology and pathophysiology:the effect of fasudil[J].J Cardiovasc Pharmacol,2013,62(4):341 -54.
[28]馬明明,關(guān)永源.Rho激酶在高血壓中的作用及其與容積調(diào)節(jié)性氯通道的關(guān)系[J].中國(guó)藥理學(xué)通報(bào),2012,28(6):741-4.
[28]Ma M M,Guan Y Y.Rho-kinase in hypertension and its relationship with volume regulated chloride channel[J].Chin PharmacolBull,2012,28(6):741 -4.
[29]Liu L,Cao Y,Cui G,et al.Association analysis of polymorphisms in ROCK2 with cardiovascular disease in a chinese population[J].PloS One,2013,8(1):e53905.
[30]Seasholtz T M,Wessel J,Rao F,et al.Rho kinase polymorphism influences blood pressure and systemic vascular resistance in human twins:Role of heredity[J].Hypertension,2006,47(5):937-47.
[31]Yao L,Chandra S,Toque H A,et al.Prevention of diabetes-induced arginase activation and vascular dysfunction by Rho kinase(ROCK)knockout[J].Cardiovasc Res,2013,97(3):509 -19.
[32]Salamanca D A,Khalil R A.Protein kinase C isoforms as specific targets for modulation of vascular smooth muscle function in hypertension[J].Biochem Pharmacol,2005,70(11):1537 -47.
[33]Khalil R A.Protein kinase C inhibitors as modulators of vascular function and their application in vascular disease[J].Pharmaceuticals,2013,6(3):407-39.
[34]Bal M S,Paulis L,Zicha J,et al.Effect of protein kinase C and protein kinase A inhibitors on contraction of isolated femoral arteries of SHR and wistar rats[J].Physiol Res,2009,58(6):793 -8.
[35]Budzyn K,Ravi R M,Miller A A,et al.Mechanisms of augmented vasoconstriction induced by 5-hydroxytryptamine in aortic rings from spontaneously hypertensive rats[J].Br J Pharmacol,2008,155(2):210-6.
[36]Xie Z,Liu D,Liu S,et al.Identification of a cAMP-response element in the regulator of G-protein signaling-2(RGS2)promoter as a key cis-regulatory element for RGS2 transcriptional regulation by angiotensin II in cultured vascular smooth muscles[J].J Biol Chem,2011,286(52):44646-58.
[37]Touyz R M,Schiffrin E L.Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients:role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways[J].J Hypertens,2001,19(7):1245-54.
[38]Pulina M V,Zulian A,Baryshnikov S G,et al.Cross talk between plasma membrane Na(+)/Ca(2+)exchanger-1 and TRPC/Orai-containing channels:key players in arterial hypertension[J].Adv Exp Med Biol,2013,961:365 -74.