朱祖昌,楊弋濤,吳旭煒,王 洪
(1.上海工程技術(shù)大學(xué),上海 201620;2.上海大學(xué),上海 200072;3.上海市機(jī)械制造工藝研究所有限公司,上海 200070)
研究材料韌性,易于設(shè)想的是位錯的塞積。在奧氏體晶體內(nèi)一滑移面上Frank-Read位錯源(簡稱F-R 源)受到切應(yīng)力 τ0,當(dāng) τ0> τp,則位錯源啟動。形成的位錯環(huán)先后在晶界處發(fā)生塞積,塞積位錯數(shù)n[131]為
式中:k為系數(shù),對螺位錯k=1,對刃位錯k=1-ν(ν為泊松比);τp為位錯移動的摩擦力(稱Peierls-Nabarro力),前已有指出;G為切變模量;b為布氏矢量;L為發(fā)生位錯塞積的距離。一般認(rèn)為F-R位錯源在晶粒中心時,L=D/2,D為奧氏體晶粒直徑。
由式(7-12)可知L(即D)減小,則塞積位錯數(shù)n減小。
位錯發(fā)生塞積后,塞積群的領(lǐng)先位錯前端存在很大的應(yīng)力集中τ,τ=nτ0,隨n增加至一定程度,位錯塞積會開啟另一奧氏體晶粒中的F-R源產(chǎn)生位錯運(yùn)動的傳播。按圖7-9,距塞積位錯前端r處的F-R源處受到的切應(yīng)力τ為式中,β為與圖中方向θ有關(guān)的系數(shù)。有文獻(xiàn)表明,當(dāng) θ=70.53°(70°31')時,應(yīng)力處于最大。顯然L(D/2)減小,τ應(yīng)力集中減小。為此,奧氏體晶粒細(xì)化,能減小塞積的位錯數(shù)n和應(yīng)力集中τ,亦即可以使材料承受更大的負(fù)荷。
圖7-9 晶界位錯發(fā)生塞積示意圖Fig.7-9 Schematic of dislocation pile-up before grain boundary
同時,尚要考慮晶粒細(xì)化后每單位體積中存在的奧氏體晶界表面積SV[132]。SV由測定的拋光表面上晶粒的平均截距長(μm)表示,其相應(yīng)的變化示于表7-3和圖7-10。當(dāng)晶粒由20 μm細(xì)化至2 μm,SV約提高10倍。SV的提高將明顯減小H、S、P、As和Sb等脆化雜質(zhì)在晶界上的偏聚,即能使獲得較潔凈的晶界,那么材料的斷裂機(jī)制隨晶粒細(xì)化將會由沿晶界斷裂變成穿晶斷裂(在室溫時),使材料的韌性提高。晶粒平均截距與晶粒直徑隨晶粒度增加而減小,它們之間的關(guān)系示于下表7-3中。
表7-3 晶粒度、晶粒直徑、SV和晶粒平均截距的關(guān)系Table 7-3 Relationship of grain size,grain diameter,SV and grain mean intercept length
表7-3 晶粒度、晶粒直徑、SV和晶粒平均截距的關(guān)系Table 7-3 Relationship of grain size,grain diameter,SV and grain mean intercept length
平均晶粒直徑/mm 0.510 0.360 0.250 0.180 0.125 0.090 0.065 0.045 0.032 0.220 0.160 0.011 0.008 0.006晶粒數(shù)/mm3 6.1 17.3 49.0 138 391 1105 3126 8842 25010 70700 200000 566000 1600000 4527000平均交截長度l/μm 320 226 160 113 80 56.6 40 28.3 20 14.1 10 7.07 5 SV/μm-1 -1 6.25 8.84 12.5 17.7 25 35.3 50 70.7 100 142 200 283 400
圖7-10 每單位體積中奧氏體晶界表面積SV和晶粒的平均截距長度的關(guān)系Fig.7-10 Relationship of grain boundary surface area per volume of austenite SVand mean intercept lengthl
圖7-11 工業(yè)用42CrMo鋼室溫沖擊斷口組織(a、b)和高潔凈42CrMoVNb鋼-192℃沖擊斷口組織(c、d)Fig.7-11 Fractograph of impact samples tested at room temperature for commercial steel 42CrMo(a,b)and tested at-192 ℃ for high purity steel 42CrMoVNb(c,d)
圖7-11(a)、7-11(b)表明了42CrMo鋼淬火和400℃回火后于20℃的沖擊斷口組織,圖7-11(c)、7-11(d)為高潔凈42CrMoVNb鋼淬火和600℃回火于-192℃的斷口組織[132]。相應(yīng)晶粒尺寸為22 μm(圖 7-11(a))、4.7 μm(圖 7-11(b))、8 μm(圖 7-11(c))和2 μm(圖7-11(d));相應(yīng)沖擊斷口組織為沿晶斷裂(圖7-11(a)),其余的均為穿晶斷裂,穿晶斷裂具有高的韌性數(shù)值??梢娨话愕?2CrMo鋼奧氏體晶粒細(xì)化至4.7 μm使常溫沖擊韌性提高了;高潔凈42CrMoVNb鋼在8 μm時也已具有高的低溫沖擊韌性??梢酝茢?奧氏體晶粒的細(xì)化不僅能提高強(qiáng)度,而且能阻止沿晶界微裂紋的產(chǎn)生和擴(kuò)展,從而也提高鋼的韌性。這與Benerje等對AISI4340鋼奧氏體晶粒尺寸在20~100 μm的結(jié)果相一致。
上面說明了奧氏體晶粒細(xì)化對韌性的影響。馬氏體板條束細(xì)化的工作按Maropoules等分析的韌脆轉(zhuǎn)折溫度與板條束d的關(guān)系,其公式為
50%FATT為50%斷裂形貌轉(zhuǎn)折溫度。顯然,對強(qiáng)度貢獻(xiàn)的σp和σd使韌性下降,束尺寸d的減小則有利于50%FATT的降低和韌性的提高。
還應(yīng)該特別注意的是,鋼中奧氏體晶粒尺寸細(xì)化也會改善馬氏體鋼的延遲斷裂DF阻力。延遲斷裂與鋼的塑性變形相關(guān)聯(lián)。在材料中含有氫,氫會促使位錯的發(fā)射和運(yùn)動,使材料即使在受到低于不含有氫時的臨界應(yīng)力條件下,就會在位錯塞積區(qū)域內(nèi)產(chǎn)生應(yīng)力集中,并逐漸積累達(dá)到由于與氫交互作用引起降低原子結(jié)合強(qiáng)度值,從而使裂紋在含氫的局部區(qū)域內(nèi)形核,最后產(chǎn)生延遲斷裂。鋼中奧氏體晶粒細(xì)化和晶界表面積SV的提高會減小晶界上氫的捕集量,明顯減少馬氏體鋼的延遲斷裂的發(fā)生。Tien計算了10 ppm含氫量當(dāng)晶粒尺寸自100 μm細(xì)化至10 μm,氫覆蓋區(qū)域從飽和條件減至1:10,從而有利于DF阻力的改進(jìn)[132]。顯然,對上述兩種鋼由于晶粒細(xì)化的延遲斷裂DF阻力也得以改進(jìn)。
Thomas和Krauss已經(jīng)提出,鋼中合金組成元素通過對Ms的影響改變著馬氏體的亞結(jié)構(gòu),從而影響它們的力學(xué)性能。Thomas更認(rèn)為,含碳結(jié)構(gòu)鋼的韌性降低是與相變出現(xiàn)孿晶馬氏體相關(guān)聯(lián)的。一般地講,鋼中孿晶馬氏體的出現(xiàn)除起一定的強(qiáng)化作用外,也降低韌性,已愈來愈被人們所接受。徐祖耀[5]指出,F(xiàn)e基合金中隨著碳及合金元素的增加,增加的孿晶馬氏體有附加強(qiáng)化的作用,但使韌性下降。下面主要對Fe-Cr-C、Fe-Ni-C和 Fe-Mn-C或Fe-Mn-Ni-C合金作一些說明。
7.4.1 Fe-Cr-C 鋼
McMahon 和 Thomas[137]1973 年設(shè)計經(jīng)濟(jì)的韌性高強(qiáng)度Fe-Cr-C鋼是十分有意義的。他們指出,Cr的固溶強(qiáng)化作用不明顯,見圖7-12(a),但會改變馬氏體的亞結(jié)構(gòu),從而設(shè)計出淬火狀態(tài)下的不同亞結(jié)構(gòu)鋼,鋼的主要成分(質(zhì)量分?jǐn)?shù))、Ms點和亞結(jié)構(gòu)數(shù)量列于表7-4。鋼的試樣號與含Cr量和含碳量有關(guān),孿晶馬氏體分?jǐn)?shù)n為0417合金的平均值,其它合金的孿晶馬氏體數(shù)量為與0417合金的相對比值。
對含碳0.17%的3個合金,孿晶馬氏體分?jǐn)?shù)較少,其中0417的含Cr量較低,Ms點最高,馬氏體亞結(jié)構(gòu)基本上為位錯;其他合金的含Cr量增加,孿晶馬氏體量增多。對含碳0.35%的2個合金,孿晶馬氏體數(shù)量增高相當(dāng)多,其中1235含最高合金元素量,Ms點最低,孿晶馬氏體分?jǐn)?shù)比最高17(n)。合金的屈服強(qiáng)度、平面應(yīng)變斷裂韌性KIC和孿晶馬氏體分?jǐn)?shù)的關(guān)系示于圖7-12。
圖7-12 淬火態(tài)Fe-Cr-C鋼力學(xué)性能和孿晶馬氏體相對數(shù)量的關(guān)系Fig.7-12 Relations of mechanical properties vs twin martensitic relative number of as-quenched Fe-Cr-C steels
表7-4 幾種Fe-Cr-C鋼主要成分、Ms點和馬氏體亞結(jié)構(gòu)Table 7-4 The composition,Ms,and martensitic substructure ofsome Fe-Cr-C steels
由圖7-12可知,含碳0.17%的3個合金鋼,隨著含Cr量增加,屈服強(qiáng)度保持不變,表明Cr不具有固溶強(qiáng)化作用;但隨著含Cr量增加至12%時,KIC從80降至70。對含碳量為0.35%的2個鋼,隨含Cr量由4%增至12%,強(qiáng)度由1654 MPa提高至2067 MPa。這里的強(qiáng)化是由于孿晶馬氏體數(shù)量增加所致,但是卻使KIC從減至20。他們提出:出現(xiàn)孿晶馬氏體的強(qiáng)化源于孿晶對位錯運(yùn)動的限制,但孿晶是bcc金屬中裂紋的形核源,從而使KIC下降。為此,對未回火的馬氏體組織如要獲得高的韌性,應(yīng)避免出現(xiàn)孿晶型馬氏體。
由圖7-12還可以明確:材料強(qiáng)度提高未必引起韌性的降低。以含4%Cr的0435試樣為例,淬火態(tài)強(qiáng)度比1217(含12%Cr)試樣的提高579 MPa,但具有相同的KIC值70。為此,可以通過調(diào)整碳和合金元素Cr的含量控制馬氏體的亞結(jié)構(gòu),使強(qiáng)度提高和不降低韌性。Thomas等設(shè)計的0435鋼與幾個商用超高強(qiáng)度鋼的比較示于圖7-13,其淬火態(tài)的性能與18Ni型馬氏體時效鋼相當(dāng),在200℃回火后的性能更有所提高,更優(yōu)于4340和300M鋼,而且具有價格低和處理工藝方便的特點。這種思路為高強(qiáng)高韌鋼的設(shè)計提供新途經(jīng)。
7.4.2 Fe-Ni-C 鋼
Chilton和 Kelly[138]1968年按馬氏體亞結(jié)構(gòu)形態(tài)和碳含量以及鎳含量(對應(yīng)于Ms差異)設(shè)計含24~32%Ni和不同含碳量的Fe-Ni-C合金,以獲取位錯型板條馬氏體和孿晶型馬氏體的組織;在室溫進(jìn)行拉伸和壓縮試驗,分別求得0.2%的拉伸屈服強(qiáng)度和壓縮屈服強(qiáng)度與含碳量(原子分?jǐn)?shù))平方根之間的直線關(guān)系,示于圖7-14和圖7-15中;相應(yīng)求得的拉伸應(yīng)力的斜率為G/6.5~G/6(對孿晶馬氏體)和G/7.5~ G/8.5(對板條馬氏體),前者比后者略大。相應(yīng)求得拉伸和壓縮試驗中孿晶馬氏體較位錯馬氏體的高出值為1.31和1.08(圖7-14中低碳范圍的2個值取自Speich等的數(shù)據(jù))。其它實驗得到的值為1.25 ~ 1.28[5]。在低碳范圍內(nèi)兩者的強(qiáng)度比則相差相當(dāng)小,隨含碳量增加,孿晶亞結(jié)構(gòu)的強(qiáng)化有所增加。
圖7-13 Fe-4Cr-0.35C鋼與一些商用超高強(qiáng)度鋼的拉伸強(qiáng)度和斷裂韌性比較Fig.7-13 The comparison of tensile strength and fracture toughness for Fe-4Cr-0.35C steel with some commercial ultra high strength steels
圖7-14 淬火態(tài)板條和孿晶馬氏體0.2%拉伸屈服強(qiáng)度與含碳量(原子分?jǐn)?shù))平方根之間的直線關(guān)系Fig.7-14 0.2%Linear relationship between yield strength(in 0.2%tension)and the square root of carbon content(atomic fraction)for as-quenched lath and twinned martensites
圖7-15 淬火態(tài)板條和孿晶馬氏體0.2%壓縮屈服強(qiáng)度與含碳原子分?jǐn)?shù)平方根之間的直線關(guān)系Fig.7-15 Linear relationship between yield strength(in 0.2%compression)and the square root of carbon content(atomic fraction)for as-quenched lath and twinned martensites
Kelly等[139]按后文 Sleeswyk模型,設(shè)定 Fe-Ni-C鋼中基體上的孿晶比為1:1,滑移面在基體上和孿晶中為{110},對孿晶馬氏體中位錯滑移運(yùn)動的分切應(yīng)力應(yīng)用電子計算機(jī)進(jìn)行模擬,結(jié)果預(yù)測孿晶馬氏體的強(qiáng)度比位錯馬氏體的高1.05~1.20倍,與上述的實驗測定值的比吻合。
7.4.3 Fe-Ni-Mn-C 鋼
1970 年 Huang 和 Thomas[140]建立了關(guān)于回火Fe-Ni-Mn-C鋼馬氏體亞結(jié)構(gòu)與力學(xué)性能之間的關(guān)系。在Fe-5Ni-C和Fe-C合金中增加Mn的量,Ms降低和增加孿晶馬氏體數(shù)量列于下表7-5中。805合金的顯微組織示于圖7-16(a)中,在位錯亞結(jié)構(gòu)板條馬氏體中偶爾出現(xiàn)一些孿晶馬氏體。該合金在204℃(400°F)回火2+2 h后顯示在板條束中出現(xiàn)的孿晶馬氏體的孿晶交界面上出現(xiàn)碳化物析出,相應(yīng)的明場和暗場組織示于圖7-16(b)和圖7-16(c)。
表7-5 Fe-Ni-Mn-C鋼的組成,馬氏體點和馬氏體亞結(jié)構(gòu)Table 7-5 The composition,Msand martensitic substructure of some Fe-Ni-Mn-C steels
圖7-16 805合金的顯微組織(a)as quenched;(b)、(c)bright and dark field for tempered at 204℃for 2+2 hFig.7-16 The microstructure of 805 alloy
含5%Ni的804、806鋼的強(qiáng)度和804~806三種鋼的CVN沖擊能與不含Ni的807、809鋼的強(qiáng)度和807~809三種鋼的CVN沖擊能分別示于圖7-17(a)和(d)中(試驗溫度在25℃)。由圖7-17(a)和(b)可見,在含Ni和不含Ni鋼中分別加入3.8% 和6.85%Mn均使回火抗力增加,但均使CVN值迅速下降,見圖7-17(c)和(d)。值得注意的是805合金中CVN的降低顯然與出現(xiàn)碳化物析出有關(guān)。結(jié)果明顯表明:孿晶馬氏體具有較高的強(qiáng)度,但使韌性降低。
圖7-17 Fe-Ni-Mn-C鋼回火溫度對強(qiáng)度和韌性的影響(a)、(c)804,805,806,(b)、(d)807,808,809Fig.7-17 The effect of tempering temperature on strength and toughness of some Fe-Ni-Mn-C steels
7.4.4 孿晶馬氏體的強(qiáng)化作用和對韌性的降低
1961 年 Sleeswyk 和 Verbraak[141]提出了 bcc 金屬中位錯滑移和孿晶“摻合過程(incorporation)”模型,來說明孿晶阻止位錯滑移起強(qiáng)化的效應(yīng)。
bcc金屬中,存在晶體學(xué)孿晶{112}<111>,通過晶體軸的轉(zhuǎn)動的矩陣計算可以得出4個對應(yīng)關(guān)系,其中(b)關(guān)系為,相應(yīng)下標(biāo)m和t為基體和孿晶。同時,孿晶界面上會存在一般孿晶位錯和互補(bǔ)(complementary)孿晶位錯,分別以符號┸、┰和表示,布氏矢量分別為
圖7-18 滑移位錯(布氏矢量為)滑移通過孿晶的過程(a→b→c)示意圖Fig.7-18 The sequence(a→b→c)shows a slip dislocation traversing a twin band
Klems等[142]1976年作了 Fe馬氏體的內(nèi)耗測定,采用Ms<35℃(以免除自回火影響)的19種Fe-Ni-C合金淬至-196℃獲得85%~95%的孿晶型{259}r慣習(xí)面馬氏體顯示160℃的內(nèi)耗峰,與Fe-C合金在室溫形成位錯型{111}r或位錯和孿晶型的{225}r馬氏體在250℃出現(xiàn)的位錯-間隙原子交互作用內(nèi)耗峰成鮮明對照。他們提出,160℃內(nèi)耗峰與碳原子在孿晶邊界的應(yīng)力誘發(fā)運(yùn)動有關(guān)。
另外,與Fe-Ni-Mn-C合金400°F(204℃)回火出現(xiàn)孿晶交界面上碳化物析出能說明C偏聚在孿晶交界面現(xiàn)象。為此,對Fe-C合金,由于Ms點較高,在馬氏體轉(zhuǎn)變完成后再發(fā)生這種C的偏聚和甚至導(dǎo)致碳化物析出的現(xiàn)象在近室溫時就可開始,導(dǎo)致增加孿晶馬氏體脆性是難以避免的。
基于上述位錯與孿晶摻合交互作用模型,Sleeswyk[143]又指出“分支(emissary)位錯反應(yīng)”模型:當(dāng)近40個一般孿晶位錯(┸)塞積,在每第三個{112}上按反應(yīng)產(chǎn)生分支(emissary)位錯,并發(fā)生滑移塞積;又按Cottrell位錯反應(yīng)(參見第二章)形成<100>立方位錯,12個孿晶面上的分支位錯交截,產(chǎn)生在bcc晶體解理面{100}晶帶面上的裂紋形核,相應(yīng)示意圖為圖7-19。成對分支位錯的反應(yīng)式為
作者還指出,這些反應(yīng)中有些是在拉應(yīng)力下發(fā)生的,將會成為解理裂紋源,從而就會使bcc金屬的韌性降低。
圖7-19 二套分支位錯形成<100>立方位錯的過程示意圖Fig.7-19 Schematic of a sequence of forming a <100 > cube dislocation from two sets of emissary dislocations
21世紀(jì)占主導(dǎo)地位的結(jié)構(gòu)材料仍然是鋼鐵材料。現(xiàn)在,沒有一種材料能夠全面代替鋼鐵。同時,現(xiàn)今社會的發(fā)展和經(jīng)濟(jì)建設(shè)仍需要新一代的鋼鐵材料。
馬氏體轉(zhuǎn)變是鋼鐵材料中最重要的一種相變,研究已愈來愈深入化。
主要參考 Nishiyama的“Martensitic Transformation”和徐祖耀的“馬氏體相變與馬氏體”;以及按上世紀(jì)80年代的兩本“金屬熱處理原理”的思路和框架對近二三十年來研究馬氏體轉(zhuǎn)變中所擁現(xiàn)的大量著作和論文進(jìn)行梳理、編輯、撰寫;並按自己多年從事教學(xué)工作經(jīng)驗和要求選取基材,進(jìn)行仔細(xì)切磋和精心編綴,這是我們寫作本文的初衷,從中也使自己獲得更多提高。但由于我們的水平有限,文章中難免會出現(xiàn)管窺之見和一定差錯,祈求賜教和斧正。
[1] 馮端,師昌儲,劉治國,材料科學(xué)導(dǎo)論[M].北京:化學(xué)工業(yè)出版社,2002.
[2] 馮端等.金屬物理學(xué);第二卷 相變[M].北京:科學(xué)出版社,1998.
[3] Aaronson HI,Enomoto M,Lee JK,Mechanisms of diffusional phase transformations in metals and alloys[M].CRC Press,Taylor& Francis Group,2010.
[4] Zlateva G,Martinova Z,Microstructure of Metals and Al-loys,An Atlas of Transmission Electron Microscopy Images[M].CRC Press,Taylor& Francis Group.2008.
[5] 徐祖耀.馬氏體相變與馬氏體[M].2版.北京:科學(xué)出版社,1999.
[6] The Institute of Metals,The Mechanism of Phase Transformations in Metals[M].London,1956.
[7] Porter DA,Easterling KE,Sherif MY.Phase Transformations in Metals and Alloys[M].3rded,CRC Press,Taylor&Francis Group,2009.
[8] Belin-Ferré E.Basics of Thermodynamics and Phase transitions in Complex Inter-metallics.[M].Book Series on Complex Metallic Alloys-Vol.1,World Scientific publishing Co.Pte.Ltd.,2008.
[9] Greninger AB,Troiano AR.The mechanism of martensite formation[J].Trans.AIME,1949,185:590.
[10] Nishiyama Z,Martensitic Transformation[M].Ed.Fine ME,Meshil M,Wayman CM.Academic Press,Inc.,New York,1978.(S.Sato等將日文譯為英文).
[11]柴田曉申,村上俊夫,森戶茂一,et al.レンズマルテンサィトのミドリブ[J].熱處理,2009,49(4):179.
[12]森戶茂一,巖見祐貴,古谷野有,et al.Fe-N合金ラスマルテンサィトの組織と結(jié)晶學(xué)[J].熱處理,2009,49(3):89.
[13]陳景榕,李承基.金屬和合金中的固態(tài)相變[M].北京:冶金工業(yè)出版社,1997.
[14]劉云旭,金屬熱處理原理[M].北京:機(jī)械工業(yè)出版社,1981.
[15] Durand-Charre M.La microstructure des aciers et des fonts[M].2003,英譯本:Microstructure of steels and Cast I-rons,Springer,2004.
[16] Magee CL.The Nucleation of Martensite,in Phase Transformation[M].American Society for Metals,Metals Park,Ohio,1970.
[17] 鄧永瑞.馬氏體轉(zhuǎn)變理論[M].北京:科學(xué)出版社,1993.
[18] Raghavan V,Cohen M.A nucleation model for martensitic transformations in Fe-base alloys[J].Acta Metallargica,1972,20,333 -338.
[19] Pfeiler W.Alloy Physics[M].A Comprehensive Reference,Wiley-VCH Verlag GmbH & Co,2009.
[20] Mills K,Vavis JR,et al.Metals Handbook[M].ASMMetals Park,Ohio,1985.
[21] Morito S,Tanaka H,Konishi R,et al.The morphology and crystallo-graphy of lath martensite in Fe-C alloys[J].Acta Materialia,2003,51:1789 -1799.
[22] Shibata S,Morito S,F(xiàn)urubara T,et al.Morphology and crystallography of martensite in Ferrous Alloys[R].International Conference on Solid-Solid Phase Transformations in Inorganic Materials(PTM2005),2005.
[23] Shibata S,Murakami T,Morito S,et al.The Origin of midrib in lenticular Martensite[J].Mater.Trans,JIM,2008,49(6):1242-1248.
[24]北原弘基,辻伸泰.FE-SEM/EBSP法による鋼のマルテンサィト結(jié)晶學(xué)の解析[J].熱處理,2010,50(3):186-193.
[25]戚正風(fēng).金屬熱處理原理[M].北京:機(jī)械工業(yè)出版社,1987.
[26]徐祖耀.鐵基合金馬氏體相變熱力學(xué)[J].材料科學(xué)進(jìn)展,1987,1(4):3 -11.
[27]徐祖耀,張鴻冰,羅守福.Fe-C合金Ms的熱力學(xué)計算及馬氏體相變驅(qū)動力[J].金屬學(xué)報,1984,20(3):A151-161.
[28]朱祖昌,徐祖耀.淬火應(yīng)力對鋼中相變的影響[J].金屬熱處理學(xué)報,1988,9(2):45 -51.
[29]朱祖昌,梁碧玲,陳瑞興,等.淬火空位對馬氏體相變的影響[D].上海:上海交通大學(xué),1964(未發(fā)表).
[30] Hsn TY(徐祖耀),Yan Lifab.J.Mater.Sci.1983,18:3213-3218.
[31] Banerjee S,Mnkhopadhyay P.Phase Transformations,Examples from Titanium and Zirconium Alloys[J].Elsevier,2007.
[32] Minfa Lin,Olson GB,Cohen M.Distributed-Activation Kinetics of Hetero-geneous Martensilic Nucleation[J].Metallurgical Transaction A,1992,23A:2987.
[33] Christion JW.The Theory of Transformation in Metal and Alloys,PartⅡ,Pergamon,Elsevier Science Ltd,2002.
[34]早川元造,玉木正紀(jì).マルテンサィト變態(tài)溫度の試料サイズ依存性より求めた核生成サィト密度[R].日本金屬學(xué)會講演概要,(第141回大會):2007,398.
[35] Murty VSR,et al.Structure and properties of engineering materials[M].Tata McGraw-Hill,2003.
[36] Cohen M.Martensitic Nucleation-Revisited[J].Materials Transaction,JIM,1992,33(3):178 -183.
[37] Olson GB,Cohen M.A perspective on martensitic nucleation[J].Ann.Rev.Mater.sic.,1981,11:1 -30.
[38] Ghosh G,Olson GB.Kinetics of F.C.C→B.C.C heterogeneous martensitic nucleation—1.the critical driving force for athermal nucleation[J].Acta Metal.Mater.1994,42(10):3361 -3370.
[39]馮瑞.金屬物理學(xué):第一卷 結(jié)構(gòu)與缺陷[M].北京:科學(xué)出版社,1998.
[40] Cayron C,Barcelo F,Carlan Y de.The mechanisms of the fcc-bcc martensitic transformation revealed by pole figures[J].Acta materilia,2010,58:1395 -1402.
[41] He Y,Godet S,Jonas J.Observations of the Gibeon metrorite and the inverse Greninger-Troiano orientation relationship[J].J.Appl.Cryst.,2006,39:72 -81.
[42]Wayman CM.馬氏體相變晶體學(xué)導(dǎo)論[M].陳業(yè)新,李箭,譯.徐祖耀,校.長沙:中南大學(xué)出版社,1989.
[43] Bowles JS,Mackenzie JK.The crystallography of martensite transformation,I,II,III[J].Acta metallurgica,1954(2):129 -148,224 -234.
[44] Wechsler MS,Lieberman DS,Reed TA.On the theory of the formation of martensite[J].Trans.AIME,1953,197:1503-1515.
[45] Bhadeshia HKDH.Martensite in steels[R].http://www.msm.cam.ac.uk/phase-trans/2002/martensite.html.
[46] 徐祖耀.相變原理[M].北京:科學(xué)出版社,1988.
[47]王世道.鐵基馬氏體相變位移機(jī)制[J].自然科學(xué)進(jìn)展,1994,4(6):726 -734.
[48]戚正風(fēng).固態(tài)金屬中的擴(kuò)散與相變[M].北京:機(jī)械工業(yè)出版社,1998.
[49]許長慶.鐵基合金馬氏體相變晶體學(xué)研究[D].天津:河北工業(yè)大學(xué)博士學(xué)位論文,2007.
[50]許長慶.馬氏體相變Bowles-Mackenzie理論的簡化計算[J].材料熱處理學(xué)報,2007,27(3):137 -140.
[51] Kitahara H,Ueda M,Tsuji N,et al.Variant selection of plate martensite in Fe-28.5at%Ni alloy [J].Materials Science Forum,2006,512:117 -122.
[52] Keto M.Invariant-plane and invariant-line deformation criteria and their application to interface crystallography[J].Materials Transactions,JIM,1992,33(2):89 -96.
[53] Totten GE.Steel heat treatment,metallurgy and technology[M].CRC Press,Taylor & Francis Group,2007.
[54]石德軻.材料科學(xué)基礎(chǔ)[M].2版.北京:機(jī)械工業(yè)出版社,2003.
[55] Brooks CR.Heat treatment structure and properties of nonferrous alloys[M].American Society for Metals,Metals Park,Ohio,1982.
[56]王心美,岳珠峰,王亞芳,等.NiTi合金的超彈性力學(xué)特性及其應(yīng)用[M].北京:科學(xué)出版社,2009.
[57] Smoluchowski R,Mayer JE,Weyl WA.Phase transformations in solids[M].John WIley & Sons,Inc.New York,1951.
[58] Kelly PM.Crystallography of lath martensite in steel[J].Materials Transactions,JIM,1992,33(3):235 -242.
[59] Sandvik BPJ,Wayman CM.Characteristics of lath martensite Part 1,Crystallo-graphic and substructural features[J].Metallurgical Transactions A,1983,14A:809 -822.
[60] Sandvik BPJ,Wayman CM.Characteristics of lath martensite Part 2,The martensite-Austenite interface[J].ibid,823-834.
[61] Sandvik BPJ,Wayman CM.Characteristics of lath martensite Part 3,Some theoreti-cal considerations[J].ibid,835 -844.
[62]顧新福,張文征.馬氏體相變晶體學(xué)的簡易矢量分析方法[J].金屬學(xué)報,2011,47(2):241-245.
[63] Ross NDH,Crocker AG.A generalized theory of martensite crystallography and its Application to transformations in steels[J].Acta metallurgica,1970,18:405 - 418.
[64] Wakasa K,Wayman CM.The relative orientation between adjacent martensite lathsin an Fe-20Ni-5Mn alloy[J].Scripta metallurgica,1980,14:261 -268.
[65] Acton AF,Bevis M.A generalized martensite crystallography theory[J].Materials Science and Engineering,1969/1970,5:29.
[66] Patterson RL,Wayman CM.The crystallography and growth of partially-twinned Martensite plates in Fe-Ni alloys[J].Acta metallurgica,1966,14:347 -369.
[67] Barsch G R.Landau theory of the displacive phase transformation in gold-cadmium and titanium-Nickel alloys[J].Materials Science Forum,2000,327/328:367 -376.
[68] Ren X,Taniwaki K,Otsuka K,et al.Elastic constants of Ti50Ni30Cu20 alloy prior to martensitic transformation[J].Philosophical Magazine A,1999,79(l):31 -41.
[69] Ren X,Otsuka K.The role of softening in elastic constant C44 in martensitic transformation[J].Scripta Materialia,1998,38(11):1669 -1675.
[70] Ren X,Miura N,Zhang J,et al.A comparative study of elastic constants of Ti-Ni-based alloys prior to martensitic transformation[J].Materials Science and Engineer,2001,A312:196-206.
[71] Shimizu K,Tadaki T.Recent studies on the precise crystal-structural analyses of martansitic transformation[J].Materials Transactions JIM,1992,33(3):165 -177.
[72]宮崎修一,佐久間俊雄,渉谷壽一.形狀記憶合金の応用展開[M].シ-エムシ-株式會社,2006.
[73] Otsuka K,Ren X.physical metallurgy of Ti-Ni-based shape memory alloys[J].Progress in Materials Science,205,50(5):511 -678.
[74] Watanabe K.Magnetic properties of Clb-type Mn base compounds[J].Trans.JIM,1976,17:220 -225.
[75] Kudoh V,Tokonami M.Crystal structure of the martensite in Ti-49.2at%Ni alloy analyzed by the single crystal X-ray diffraction method[J].Acta Metall,1985,33(11):2049 -2056.
[76] Kubo H,Shimizu K.Crystal structure of Cu30Au25Zn45 martensite[J].Trans.JIM,1976,17:330 -338.
[77] Schroeder TA,Wayman CM.Pseudoelastic effects in Cu-Zn single crystals[J].Actc Metallurgia,1979,27:405 -417.
[78] Otsuka K,Sakamoto H,Shimizu K.Successive stress-induced martensitic Transfor-mations and associates transformation pseudoelasticity in Cu-Al-Ni alloys[J].Acta Metallurgica,1979,27:585 -601.
[79] Miyazaki S,Otsuka K.Development of shape memory alloys[J].ISIJ International,1989,29(8):353 -377.
[80] Sakamoto H,Shimizu K.Effect of heat treatment on thermally formed martensite phases in mono-crystalline Cu-Al-Ni shape memory alloy[J].ibid,1989,29(5):395 -404.
[81]宮崎修一.Ti-Ni系形狀記憶合金の研究と開発経緯[J].まてりあ,2012,51(5):209 -215.
[82] Kagiwara S.Characteristic features of shape memory effects and related trans-formation behavior in Fe-based alloys[J].Materials Science and Engineering,1999,A273/275:67-88.
[83] Otsuka K,Ren X.Martensitic transformations in nonferrous shape memory alloys[J].ibid,1999:89 - 105.
[84] Kikuchi T,Kajiwara S.Shape memory effect and related transformation behavior in an Unausaged Fe-Ni-Co-Ti alloy[J].Mater.Trans.JIM,1993,34(10):907 -918.
[85] Ogawa K,Kajiwara S.HRTEM study of stress-induced transformation structures In an Fe-Mn-Si-Cr-Ni shape memory alloy[J].ibid,1993,34(12):1169 -1176.
[86] Maki T,F(xiàn)urutani.S,Tamura I.Shape memory effect related to thin plate marten-site with large thermal hysteresis in ausaged Fe-Ni-Co-Ti alloy[J].ISIJ International,1989,29(5):438 -445.
[87]徐祖耀.鐵基形狀記憶合金[J].上海金屬,1993,15(2):1-10;15(3):1-8.
[88]楊大智,吳明雄.NiTi形狀記憶合金在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用[M].北京:冶金工業(yè)出社,2003.
[89]楊杰,吳月華.形狀記憶合金及其應(yīng)用[M].合肥:中國科技大學(xué)出版社,1993.
[90]張春才,蘇佳燦.形狀記憶材料[M].上海:第二軍醫(yī)大學(xué)出版社,2003.
[91]徐祖耀,江伯鴻,楊大智,等,形狀記憶材料[M].上海:上海交通大學(xué)出版社,2000.
[92] 宮崎修一.Shape memory alloys for biomedical applications[M].Woodhead Publishing Ltd,2009.
[93] 宮崎修一.Shape memory and Superelastic alloys[M].Woodhead Publishing Ltd,2011.
[94] Miyazaki S,F(xiàn)u YQ,Huang WM.Thin film shape memory alloys[M].Cambridge University Press,2009.
[95] Manasa L.Ferromagnetic shape memory alloys[M].Trans Tech Publication Ltd,2007.
[96] Chen HR.Shape memory alloys:manufacture,properties and application[M].Nova Science publishers Inc.2010.
[97] Shimizu K.Effect of stress and magnetic fields on martensitic transformations[J].Transactions of Japan Institute of metals,1986,27(12):907 -922.
[98] Hara T,Ohba,T,Okumishi E,et al.Structural study of R-phase in Ti-50.23at%Ni And Ti-47.75%Ni-1.50%Fe alloys[J].Materials Transactions,JIM,1997,38(1):11 -17.
[99] Miyazaki S,Otsuka K,Wayman CM.Morphological changes associated with the R-phaseand martensitic transformations in Ti-Ni single crystals[J].ISIJ International,1989,29(5):423-429.
[100]Mazutani U.Hume-Rothery rules for structurally complex alloy phases[M].CRC Press,2011.
[101]ASTM International F2063-05,Standard specification for wrought Nickel-Titan ium shape memory alloys for medical devices and surgical implants[S].2012.
[102]Mabe JH,Calkins FT,Butler GW.Boeing's variable geometry chevron,morphing Aerostructure for jet noise reduction[R].AIAA Adaptive Structures Conference Newport R1 MAY 1st thru May 4th 2006,AAIA 2006 -2142.
[103]Adharapurapu RR,Jiang F,Vecchio KS.Aging effects on hardness and dynamic Compressive behavior of Ti-55Ni(at%)alloy[J].Materials Science and Engineering,2010,A527:665 -1676.
[104]吉見幸春,北春一浩.高Ni(55%Ni)のTi-Ni形狀記憶合金[J].金屬,2012,82(4):312 -316.
[105]Krauss G,Marder AR.The morphology of martensite in iron alloys[J].Metall.Trans,1971,2:2343 -2357.
[106]Thomas G.Electron microscopy investigations of ferrous martensite[J].ibid,1971,2373 -2385.
[107]Benerjee S,Vijayaker SJ,Krishnan R,Strength of zirconium-titanium marten-Sites and deformation behavior[J].Acta metall.,1978,26:1815 -1831.
[108]任頌贊,陳德華,葉儉.金相分析原理及技術(shù)[M].上海:上??茖W(xué)技術(shù)文獻(xiàn)出版社,2008.
[109]Ericksen RH,Taggart R,Polonis DH.The martensite transformation in Ti-Cr binary alloys[J].Acta metallurgica,1979,17:553 -564.
[110]Davis R,F(xiàn)lower HM,West DRF.martensitic transformation in Ti-Mo alloys[J].Journal of materials Science,1979,14:712 -722.
[111]Williams,Taggart R,Polonis DH.The morphology and substructure of Ti-Cu martensite[J].Metallurgical Transactions,1970,1:2265 -2270.
[112]Zangvil A,Yamamoto S,Murakami Y.Electron microscopic determination of orientation relationship and habit plane for Ti-Cu martensite[J].Metallurgical Transactions,1973,4:467-475.
[113]Mills K,Davis JH,Destefani JD,et al.Metals Handbook,V.9,9th ed.ASM,Metals Park,Ohio,1985.
[114]Davis JR,Allen P,Lampman SR,et al.Metals Handbook,V.2,10th ed.ASM Internation - al,661 -669,1990.
[115]王奇卓,潘婉儀.重水堆核電站譯文集[M].北京:原子能出版社,1983.
[116]Benerjee S,Krishnan R.Martensitic transformation in zirconium-niobium alloys[J].Acta metallurgica,1971,19:1317-1326.
[117]Srivastava D,Mukhopadhyay P,Benerjee S,et al,Morphology and substructure of lath martensites in dilute Zr-Nb alloys[J].Materials Science and Engineering,2000,A288:101-110.
[118]Tewari R,Srivastava D,Dey GK,et al.Microstructural evolution in zirconium Based alloys[J].Journal of Nuclear Materials,2008,383:153 -171.
[119]Neogy S,Srivastava D,Chakravartty JK,et al.Microstructural evolution in Zr-1Nb and Zr-1Nb-1Sn-0.1Fe alloys[J].Metallurgical and Materials Transactions,2007,38A:485-498.
[120]Srivastava D,Madangopal K,Benerjee S,et al.Self accommodation morphology of martensite variants in Zr-2.5wt%Nb alloy[J].Acta Metall.Mater.,1993,41(12):3445 -3454.
[121]Srivastava D,Dey GK,Benerjee S.Selection of lattice invariant shear in dilute Zr-Nb alloy for bcc-hcp martensitic transformation[M].Phase Transformation and Diffusion,Ed.Kale GB,Sundararaman M,Dey CK,et al.Trans.Tech.Publica-tions,Ltd.,2008:139 -146.
[122]Cohen M.The strengthening of steel[J].Transactions of the metallurgical socie-Ty of AIME,1962,224:638 -656,1962.
[123]大村孝仁,津崎兼彰.局所力學(xué)特性評価によるマルテンサィトの強(qiáng)化機(jī)構(gòu)解析の新展開[J].鐵と鋼,2006,32(5):295-309.
[124]森戶茂一,一ノ谷健太,大庭卓也,et al.中炭素鋼ラスマルテンサィトの三次元構(gòu)造[J].熱處理,2013,53(3):97-98.
[125]Krauss G.Martensite in steel:strength and structure[J].Materials Science and Engineering,1999,A273/275:40 -57.
[127]Leslie WC.The physical metallurgy of steels[M].McGraw-Hill Book Company,1981.
[128]Pickering.The optimisation of microstructure in steel and their relationship to mechanical properties,In Hardenability concepts with applications to steel,Eds Doane DV,Kirkaldy JS,179,1978.
[129]椿野晴繁.鐵鋼材料の強(qiáng)化因子と劣化因子[J].熱處理,1999,39(5):227 -232.
[130]Maropoulos S,Paul JDH,Ridley N.Microstructure-properties relationships in tempered low alloy Cr-Mo-3.5Ni-V steel[J].Materials Science and technology,1993,9:1014-1019.
[131]徐祖耀,李鵬興.材料科學(xué)導(dǎo)論[M].上海:上??茖W(xué)技術(shù)出版社,1986.
[132]Weng Yuqing.Ultra-fine grained steels[M].Metallurgical Industry Press Beijing and Springer-Verlag GemB,Berlin Heidelberg,2009.
[133]Baker TN.Yield,flow,and Fracture of polycrystals[M].Applied Science Publishers Ltd,1983.
[134]Norstrom LA.On the yield strength of quenched low-carbon lath martensite[J].Scandinavian Journal of Metallurgy,1976,5:159 -165.
[135]Young CH,Bhadeshia HKDH.Strength of mixture of bainite and martensite[J].Materials Science and technology,1994,10:209.
[136]Kelly A,Nicholson RB.Strengthening methods in crystals[M].Elsevier Publish-Ing Company Ltd.,1971.
[137]McMahon JA,Thmos G.Development of economic,tough,ultra-high-strength Fe-Cr-C Steels[M].Microstructure and design of steels,1973.
[138]Chilton JM,Kelly PM.The strength of ferrous martensite[J].Acta Metallurgica,1968,16:637 -656.
[139]Kelly PM,Pollard G.The movement of slip dislocation in internally twinned Martensite[J].Acta Metallurgica,1969,17:1005 -1008.
[140]Huang D H,Thmos G.Structure and mechanical properties of tempered martensite and lower bainite in Fe-Ni-Mn-C steels[J].Metallurgical Transactions,1971,2:1587 -1598.
[141]Sleeswyk AW,Verbraak GA.Incorporation of dislocation in mechanical twins-1[J].Acta metallurgica,1961,9:917 -927.
[142]Klem GJ,Miner RE,Hultgren FA,et al.Internal friction in ferrous martensites[J].Metallurgical Transactions A,1976,7A:839 -849,1976.
[143]Sleeswyk AW.Twinning and the origin of cleavage nuclei in α-iron[J].Metallurgical Transactions,1962,10:803 -812.
[144]Zackay VF.High-strength Materials[M].John Wiley &Sons,Inc.,1965.