劉 鵬,陳素梅,房偉民,蔣甲福,管志勇,陳發(fā)棣
(南京農(nóng)業(yè)大學(xué)園藝學(xué)院,南京 210095)
32個(gè)切花菊品種的耐低磷特性
劉 鵬,陳素梅,房偉民,蔣甲福,管志勇,陳發(fā)棣*
(南京農(nóng)業(yè)大學(xué)園藝學(xué)院,南京 210095)
利用砂培試驗(yàn)對(duì)32個(gè)切花菊品種進(jìn)行了苗期耐低磷篩選和鑒定。結(jié)果表明,供試切花菊品種耐低磷能力存在明顯的基因型差異,表現(xiàn)在幼苗相對(duì)干重(低磷脅迫/正常供磷)、相對(duì)磷含量和相對(duì)磷積累量存在較大的基因型間變異(CV分別為12.14%、20.99%和26.41%),相對(duì)干重、相對(duì)磷含量和相對(duì)磷積累量之間均呈極顯著正相關(guān)(Plt;0.01)。通過聚類分析可將32份供試品種的耐低磷脅迫能力分為極強(qiáng)、強(qiáng)、中等、弱、極弱5個(gè)級(jí)別,南農(nóng)銀山對(duì)低磷的忍耐能力最強(qiáng),屬耐低磷能力極強(qiáng)的品種;南農(nóng)紅楓、南農(nóng)香檳和優(yōu)香對(duì)低磷脅迫的忍耐能力最差,屬耐低磷能力極弱的品種。相對(duì)干重、相對(duì)磷含量和相對(duì)磷積累量可作為切花菊耐低磷特性的篩選指標(biāo),為切花菊育種、栽培管理、磷營養(yǎng)學(xué)研究提供參考。
切花菊;基因型差異; 低磷脅迫;篩選指標(biāo)
花卉種植業(yè)是精細(xì)農(nóng)業(yè)的代表,植物營養(yǎng)調(diào)控作為精細(xì)農(nóng)業(yè)的重要組成部分,開發(fā)高效營養(yǎng)型的花卉品種將會(huì)有助于花卉精準(zhǔn)栽培的實(shí)現(xiàn)。同時(shí)控制肥料用量也成為花卉取得國際認(rèn)證、打入國際市場的保證[1]。切花菊是世界四大切花之一,在花卉種植業(yè)中占據(jù)重要地位[2],因此研究切花菊的營養(yǎng)利用能力十分必要。
磷是植物最重要營養(yǎng)元素之一,植物體內(nèi)的絕大部分代謝都離不開磷的參與。磷礦作為一種不可再生的資源,預(yù)計(jì)在不久的將來將會(huì)耗竭[3]。另外,施入土壤的磷肥極易被土壤吸附或固定,磷肥的當(dāng)季利用率僅為10%—25%,未被利用的磷素長期或暫時(shí)滯留在土壤中,造成磷素資源的浪費(fèi)和土壤次生鹽漬化,加大淋溶損失所造成的污染風(fēng)險(xiǎn)[4]。切花菊一般采用設(shè)施栽培且復(fù)種指數(shù)高,為維持高產(chǎn)優(yōu)質(zhì)需要大量施用化肥,導(dǎo)致肥料浪費(fèi)和土壤連作障礙,造成的環(huán)境污染也較大田更為嚴(yán)重[5- 6]。
利用作物對(duì)土壤營養(yǎng)元素吸收和利用的遺傳性差異,篩選或培育能提高土壤磷利用率的耐低磷品種是經(jīng)濟(jì)、環(huán)保的有效方法[7]。為了在較大范圍內(nèi)對(duì)切花菊的磷利用狀況進(jìn)行評(píng)價(jià),篩選出磷高效利用品種和磷低效利用品種,并為切花菊的栽培、磷營養(yǎng)學(xué)研究和品種選育工作提供參考和依據(jù),本文在借鑒大田作物篩選方法的基礎(chǔ)上,結(jié)合切花菊特點(diǎn),探討切花菊苗期耐低磷種質(zhì)的篩選方法。
1.1 試驗(yàn)材料
供試材料為南京農(nóng)業(yè)大學(xué)中國菊花品種資源保存中心保存的32份切花菊品種(表1)。
1.2 方法
1.2.1 篩選體系
2010年進(jìn)行預(yù)實(shí)驗(yàn)確定篩選體系與合適的篩選壓力,2011年進(jìn)行正式試驗(yàn)。試驗(yàn)選用石英砂作為培養(yǎng)基質(zhì),石英砂按毛達(dá)如等的方法處理[8]。設(shè)全磷(KH2PO4300 μmol/L)、低磷(KH2PO415 μmol/L,用KCl使鉀鹽濃度與正常供磷一致)2個(gè)處理。營養(yǎng)成分配方參照荷蘭花卉研究所巖棉滴灌用配方[9],取其1/3用量。除磷酸鹽外的各成分分別為:KNO31.67 mmol/L,MgSO4250 μmol/L,K2SO4300 μmol/L,CaCl2750 μmol/L,F(xiàn)e-EDTA 15 μmol/L,H3BO345 μmol/L,MnCl24.5 μmol/L,ZnSO41 μmol/L,H2MoO40.13 μmol/L,CuSO40.16 μmol/L。全部營養(yǎng)液pH調(diào)至5.8。
1.2.2 試驗(yàn)處理
選取長勢一致的切花菊插穗扦插于生根基質(zhì)(1∶1的蛭石和珍珠巖),15d后插穗生根形成扦插苗。將洗凈基質(zhì)的扦插苗置于全磷營養(yǎng)液中預(yù)培養(yǎng)3d,然后定植于砂培槽中,澆入相應(yīng)的營養(yǎng)液,各處理每個(gè)品種20株,7d換1次營養(yǎng)液,換營養(yǎng)液前從砂面澆蒸餾水淋洗1次,每天視光照和氣溫調(diào)整灌溉次數(shù)以補(bǔ)充水分消耗,防止萎蔫,每隔2—3d調(diào)節(jié)pH 1次。處理20d后各品種間出現(xiàn)明顯差異,進(jìn)行數(shù)據(jù)采集。
1.2.3 數(shù)據(jù)采集與分析
測量的指標(biāo)包括株高、干重、磷含量、磷積累量。植物材料置于105℃殺青0.5h,80℃烘干至恒重后測干重。材料經(jīng)濃H2SO4和H2O2消煮后用鉬銻抗法測磷含量[10]。磷積累量(吸磷量)=生物量×磷含量。為了消除不同品種間固有生物學(xué)差異,采用相對(duì)耐性指數(shù),如:相對(duì)株高、相對(duì)干重等綜合指標(biāo)來衡量不同品種間的耐低磷脅迫能力。相對(duì)耐性指數(shù) = (低P處理的測定值/完全培養(yǎng)液的測定值)×100%,包括相對(duì)株高(RPH)、相對(duì)總生物量(RPW)、相對(duì)磷含量(PPC)、相對(duì)磷積累量(RPA)。試驗(yàn)結(jié)果利用Excel和SPSS軟件進(jìn)行統(tǒng)計(jì)分析。
2.1 低磷脅迫下切花菊品種的生物學(xué)性狀差異
低磷脅迫下,32個(gè)供試品種均出現(xiàn)生長變緩、根冠比變大、部分品種下部葉片黃化,整體上與全磷處理組呈顯著性差異,如磷含量(t=21.95gt;gt;t0.01)、干重(t=14.55gt;gt;t0.01)均達(dá)到極顯著差異。
表1中的數(shù)據(jù)顯示,供試切花菊品種間在磷利用能力上存在差異,其中差異最大的是相對(duì)磷積累量(RPA),變異系數(shù)達(dá)到26.41%。相對(duì)株高(RPH)、相對(duì)總生物量(RPW)、相對(duì)磷含量(PPC)的變異系數(shù)也較大,分別為12.66%、12.14%和20.99%,這表明切花菊品種的耐低磷能力存在明顯的基因型差異。
表1 32個(gè)切花菊品種在低磷脅迫下的生物學(xué)性狀統(tǒng)計(jì)
續(xù)表
編號(hào)No.品種Variety相對(duì)株高/%Relativeplantheight相對(duì)干重/%Relativeplantdryweightincludingshootandroot相對(duì)磷含量/%Relativephosphoruscontent相對(duì)磷積累量/%Relativephosphorusaccumulation25T110281.72gh86.55bc68.67ab59.43b2670372.49jk77.24h—k59.47d—f45.93e—g27蒙黃MonalisaYellow78.52hi75.83h—k41.30no31.32kl28蒙粉MonalisaRosy75.14ij75.91h—k48.44k—m36.77ij29Noa80.47h84.08b—d61.63c—e51.82cd30NoaYellow74.46ij85.92b—d44.60mn38.32ij31Tiona101.77a78.65g—j58.08e—g45.68fg32Wimbledon86.44ef81.97d—g65.42bc53.62c平均數(shù)Mean84.3876.2056.2742.83標(biāo)準(zhǔn)差SD10.689.2511.8111.31變異系數(shù)CV/%12.6612.1420.9926.41
同一列中數(shù)據(jù)后跟相同小寫字母者表示在1%水平差異不顯著
2.2 篩選指標(biāo)的建立
由表2可知,相對(duì)株高(RPH)、相對(duì)干重(RPW)、相對(duì)磷含量(PPC)和相對(duì)磷積累量(RPA)兩兩之間均呈正相關(guān),其中相對(duì)磷積累量(RPA)與相對(duì)干重(RPW)、相對(duì)磷含量(PPC)之間呈極顯著正相關(guān)(Plt;0.01),相關(guān)系數(shù)分別達(dá)到0.7391和0.8258。
表2 低磷脅迫條件下不同切花菊各篩選指標(biāo)間的相關(guān)系數(shù)
*Plt; 0. 05 ; **Plt; 0. 01
部分切花菊品種在低磷脅迫下株高出現(xiàn)反?,F(xiàn)象,如南農(nóng)金蝶植株表現(xiàn)為又細(xì)又高,即較高的株高、較低的干物質(zhì)積累和磷含量,因此相對(duì)株高(RPH)只能作為鑒定切花菊耐低磷特性的輔助指標(biāo)。相對(duì)干重、相對(duì)磷含量和相對(duì)磷積累量反映切花菊對(duì)磷素的吸收及同化能力,這些指標(biāo)在各品種間差異顯著且變異系數(shù)較大(表1),且各指標(biāo)間呈顯著正相關(guān)(表2),可作為切花菊耐低磷特性的評(píng)價(jià)指標(biāo)。根據(jù)這3個(gè)評(píng)價(jià)指標(biāo)計(jì)算耐低磷指數(shù),耐低磷指數(shù)= (RPW+ RPC+RPA)/3,見表3。
表3 32個(gè)切花菊品種耐低磷指數(shù)
2.332個(gè)切花菊品種耐低磷特性的評(píng)價(jià)結(jié)果
圖1 32個(gè)切花菊品種耐低磷性的聚類圖 Fig.1 Cluster tree of tolerance to low phosphorus of 32 cultivars of cut chrysanthemum
以耐低磷指數(shù)為變量,將數(shù)據(jù)在0—1標(biāo)準(zhǔn)化,采用系統(tǒng)聚類法,當(dāng)類間距離為5時(shí)可將32份供試品種的耐低磷脅迫能力分為極強(qiáng)、強(qiáng)、中等、弱、極弱5個(gè)級(jí)別(圖1),其中耐低磷能力極強(qiáng)(1份):南農(nóng)銀山;耐低磷能力強(qiáng)(4份):T1102、南農(nóng)玉盤、南農(nóng)功勛、南農(nóng)白雪;耐低磷能力中等(14份):南農(nóng)紅袖、南農(nóng)雪峰、南農(nóng)皇冠、南農(nóng)金輪、南農(nóng)紫星、南農(nóng)舞風(fēng)車、南農(nóng)紅荷、綠安娜、希望之光、Tiona、月黃、Wimbledon、703、Noa; 耐低磷能力弱(10份):南農(nóng)玉珠、黃寒菊、蒙黃、蒙粉、Noa Yellow、南農(nóng)金絨、南農(nóng)金蝶、南農(nóng)紫唇、南農(nóng)月桂、神馬;耐低磷能力極弱(3份):南農(nóng)紅楓、南農(nóng)香檳、優(yōu)香。
植物在營養(yǎng)元素利用能力上存在基因型差異[11- 12]。由于磷元素參與沉積循環(huán),磷礦是一種不可再生的資源,存儲(chǔ)量有限,選育耐低磷的作物品種是一種比單純施用磷肥更為持續(xù)有效地解決作物對(duì)磷素需求的方法[13]。
由于作物耐低磷脅迫的生理生化和遺傳機(jī)制非常復(fù)雜,因而與之有關(guān)的性狀指標(biāo)也非常多,采用合適的評(píng)價(jià)指標(biāo)才能對(duì)作物的耐低磷特性進(jìn)行準(zhǔn)確評(píng)價(jià)。相對(duì)地上部干重、相對(duì)分蘗數(shù)是水稻耐低磷種質(zhì)篩選的指標(biāo)[7, 14- 17],相對(duì)根長、相對(duì)根表面積、相對(duì)根體積可為玉米耐低磷基因型的篩選指標(biāo)[18]。喬振江等[19]的研究發(fā)現(xiàn)隨著土壤磷素水平的增加,大豆植株的生物量和葉片葉綠素含量顯著增加,根冠比則顯著下降。磷素對(duì)切花菊的生長影響很大,缺磷會(huì)導(dǎo)致切花菊的一系列反應(yīng),如下部葉片出現(xiàn)黃斑、生長變緩、根冠比增大等。姜貝貝[20]等指出不同切花菊苗期干物質(zhì)重的差異在一定程度上能反應(yīng)它對(duì)養(yǎng)分的吸收、轉(zhuǎn)運(yùn)和利用效率的差異。本研究發(fā)現(xiàn),利用植株相對(duì)干重、相對(duì)磷含量和相對(duì)磷積累量來綜合評(píng)價(jià)切花菊的磷利用效率較為有效。
本研究發(fā)現(xiàn)切花菊品種間在幼苗階段磷利用能力上存在差異,這為不同切花菊品種的差異化施磷和精準(zhǔn)栽培體系的建立提供了依據(jù)。但是,由于切花菊的營養(yǎng)調(diào)節(jié)最終要?dú)w結(jié)到切花的品質(zhì),因此需進(jìn)一步深入研究低磷脅迫對(duì)切花菊全生育期和切花生產(chǎn)的影響。研究還發(fā)現(xiàn)切花菊品種南農(nóng)銀山是典型的耐低磷品種,該品種在低磷環(huán)境中能維持較高的干物質(zhì)積累量和磷含量,這說明該品種具有磷高效吸收、轉(zhuǎn)運(yùn)的遺傳學(xué)基礎(chǔ)。人們正試圖從這些磷高效利用品種中找到磷高效利用基因[21],揭示切花菊磷高效利用的分子生物學(xué)機(jī)制,進(jìn)而利用分子生物學(xué)手段改良現(xiàn)有的主栽切花菊品種。
[1] Wang Y, Wu D. The impact of flower certification on the development of Chinese floral industry. Forest Research, 2007, 20(6): 763- 767.
[2] Ministry of Agriculture. Flower industry statistics in 2010. China Flowers amp; Horticulture, 2011, 13: 22.
[3] Oelkers E, Valsami J E. Phosphate mineral reactivity and global sustainability. Elements, 2008, 4: 83- 88.
[4] liu Y, Chen J N, Mol A P. Comparative analysis of phosphorus use with national and local economies in china. Resoures, Conservation and Recycling, 2007, 51: 454- 474.
[5] Yu H Y, Li T X, Zhang X Z. Nutrient budget and soil nutrient status in greenhouse system. Agricultural Sciences in China, 2010, 43(3): 514- 522.
[6] Wang X M, Hou Y l. Phosphorus Fractions and Its Vertical Distribution in a Soil of Vegetable Field under Solar Greenhouse in Suburb of Anyang City. Journal of Agro-environmental Science, 2004, 23 (1): 72- 75.
[7] Guo Z H, He L Y, Huang W, Xu C G. Screening of rice for tolerance to low phosphorus stress. Plant Nutrition and Fertilizer Science, 2006, 12 (5): 642- 648.
[8] Mao R D, Shen J B. Plant nutrition esearch methods. Beijing: China Agricultural University Press, 2005: 25- 29.
[9] Guo S R, Wang X F. Science of soilless culture. Beijing: China Agriculture Press, 2003: 113.
[10] Bao S D. Analysis of soil agrochemical. Beijing: China Agriculture Press, 1999: 268- 270.
[11] Wissuwa M. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant physiology, 2003, 133: 1947- 1958.
[12] Rose T J, Pariasca T J, Rose M T, Fukuta Y, Wissuwa M. Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crops Research, 2010, 119: 154- 160.
[13] Wissuwa M, Ae N. Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breeding, 2001, 120: 43- 48.
[14] Liu Y, Li Z C, Mi G H, Zhang H L, Mu P, Wang X K. Screening and identification for tolerance to low phosphorus stress of rice germplasm (OryzasativaL.). Acta Agronomica Sinica, 2005, 31(2): 238- 242.
[15] Song A M, Huang X P, Sun S B, Zhang Y L, XU G H. Screening and identification of rice cultivars with relatively high nitrogen use efficiency for tolerance to phosphorus deficiency at seedling stage. Chinese Journal of Rice Science, 2010, 24(5): 479- 486.
[16] Li Y F, Luo A C, Wang W M, Yang C D, Yang X E. An approach to the screening index for low phosphorus tolerant rice genotype. Chinese journal of applied ecology, 2005, 16(1): 119- 124.
[17] Zang Y W, Du J, Pu X Y, Zhang H, Zhou G H, Yang S M, Yang X J. Characterstics of nitrogen and phosphorus efficiency of core collection for rice landraces in Yunnan, China. Acta Ecologica Sinica, 2008, 28(12): 6355- 6363.
[18] Zhang J H, Gao S B, Yang K C, Zhang Z M, Lin H J,Huang N, Zheng M, Xu K C, Cheng Y X, Pan G T. Screening and identi fication for tolerance to low phosphorus stress of maize germplasm resources. Journal of Plant Genetic Resources, 2008, 9(3): 335- 339.
[19] Qiao Z J, Cai K Z, Luo S M. Interactive effects of low phosphorus and drought stress on dry matter accumulation and phosphorus efficiency of soybean plants. Acta Ecologica Sinica, Acta Ecologica Sinica, 2011,31(19): 5578- 5587.
[20] Jang B B, Fang W M, Chen F D, Gu J J. Effects of N, P and K ratio on the growth and development of cut chrysanthemum ‘Jinba’. Journal of Zhejiang Aamp;F University, 2008, 25(6): 692- 697.
[21] Nussaume L, Kanno S, Javot H, Marin E, Nakanishi T M, Thibaud M C. Frontiers: Phosphate import in plants: focus on the PHT1 transporters. Frontiers in Plant Traffic and Transport, 2011, 2: 1- 12.
參考文獻(xiàn):
[1] 王雁, 吳丹. 花卉認(rèn)證對(duì)我國花卉產(chǎn)業(yè)發(fā)展的影響. 林業(yè)科學(xué)研究, 2007, 20(6): 763- 767.
[2] 農(nóng)業(yè)部. 2010年全國花卉業(yè)統(tǒng)計(jì)數(shù)據(jù). 中國花卉園藝, 2011, 13: 22.
[5] 余海英, 李廷軒, 張錫洲. 溫室栽培系統(tǒng)的養(yǎng)分平衡及土壤養(yǎng)分變化特征. 中國農(nóng)業(yè)科學(xué), 2010, 43(3): 514- 522.
[6] 王新民, 侯彥林. 日光溫室土壤磷素形態(tài)及其空間分布特性研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2004, 23(1): 72- 75.
[7] 郭再華, 賀立源, 黃魏, 徐才國. 耐低磷水稻篩選與鑒定. 植物營養(yǎng)與肥料學(xué)報(bào), 2006, 12(5): 642- 648.
[8] 毛達(dá)如, 申建波. 植物營養(yǎng)研究方法. 北京: 中國農(nóng)業(yè)大學(xué)出版社, 2005: 25- 29.
[9] 郭世榮, 王秀峰. 無土栽培學(xué). 北京: 中國農(nóng)業(yè)出版社, 2003: 113.
[10] 鮑士旦. 土壤農(nóng)化分析. 北京: 中國農(nóng)業(yè)出版社, 1999: 268- 270.
[14] 劉亞, 李自超, 米國華, 張洪亮, 穆平, 王象坤. 水稻耐低磷種質(zhì)的篩選與鑒定. 作物學(xué)報(bào), 2005, 31(2): 238- 242.
[15] 宋愛梅, 黃新朋, 孫淑斌, 張亞麗, 徐國華. 氮高效水稻品種苗期耐低磷種質(zhì)的篩選與鑒定. 中國水稻科學(xué), 2010, 24(5): 479- 486.
[16] 李永夫, 羅安程, 王為木, 楊長登, 楊肖娥. 耐低磷水稻基因型篩選指標(biāo)的研究. 應(yīng)用生態(tài)學(xué)報(bào), 2005, 16(1): 119- 124
[17] 曾亞文, 杜娟, 普曉英, 張浩, 周國華, 楊樹明, 楊曉娟. 云南地方稻核心種質(zhì)氮磷高效性. 生態(tài)學(xué)報(bào), 2008, 28(12): 6355- 6363.
[18] 張吉海, 高世斌, 楊克誠, 張志明, 林海建, 黃寧, 鄭溟, 徐克成, 陳義軒, 潘光堂. 玉米耐低磷種質(zhì)資源的篩選與鑒定. 植物遺傳資源學(xué)報(bào), 2008, 9(3): 335- 339.
[19] 喬振江, 蔡昆爭, 駱世明. 低磷和干旱脅迫對(duì)大豆植株干物質(zhì)積累及磷效率的影響. 生態(tài)學(xué)報(bào), 2011, 31(19): 5578- 5587.
[20] 姜貝貝, 房偉民, 陳發(fā)棣, 顧俊杰. 氮磷鉀配比對(duì)切花菊‘神馬’生長發(fā)育的影響. 浙江林學(xué)院學(xué)報(bào), 2008, 25(6): 692- 697.
Preliminaryevaluationontolerancetophosphorousdeficiencyof32cultivarsofcutchrysanthemum
LIU Peng, CHEN Sumei, FANG Weimin, JIANG Jiafu, GUAN Zhiyong, CHEN Fadi*
CollegeofHorticulture,NanjingAgriculturalUniversity,Nanjing210095,China
Cut chrysanthemum(Chrysanthemum×moriflorumRamat.) is one of the most important ornamental plants in cut flower market all over the world. Phosphorus is a principal limited factor for plant growth, more than 90% of the added fertilizer phosphorus may rapidly be transformed to phosphorus forms that are not easily available to plants. Due to low natural phosphorus and high fixation capacity, a heavy dose of phosphorus is needed to achieve high production. Developing cultivars with tolerance to phosphorus deficiency may represent a more sustainable solution than sole reliance on fertilizer application. The possibility of exploiting genotypic differences in absorption and utilization of phosphorus to improve efficiency of phosphorus fertilizer use or to obtain higher productivity on phosphorus deficient soils has
considerable attention in recent years. In this study, to assess genotypic variation of cut chrysanthemum for tolerance to phosphorus deficiency, 32 cultivars of cut chrysanthemum were screened and evaluated for tolerance to low phosphorus using sand culture at seedling stage with two treatments of low phosphorus(15 μmol/L) and normal phosphorus(300 μmol/L) in the Chrysanthemum Germplasm Resource Preserving Centre, Nanjing Agricultural University, China. The results showed that there existed evident genotype differences in different cultivars of cut chrysanthemum in tolerant ability to low phosphorus stress. Among all the characters studied, relative plant dry weight (low phosphorus supply / normal phosphorus supply), relative phosphorus content and relative phosphorus accumulation demonstrated significant genotypic variation (the CV was 12.14%, 20.99% and 26.41%, respectively). Moreover, correlation analysis showed that there were significant positive correlations between relative plant dry weight and relative phosphorus content, between relative plant dry weight and relative phosphorus accumulation, and between relative phosphorus content and relative phosphorus accumulation (Plt;0.01), the correlative coefficients are 0.3067, 0.7391 and 0.8258 respectively. Therefore, relative plant dry weight, relative phosphorus content and relative phosphorus accumulation were suggested as screening indexes of cut chrysanthemum on tolerance to low phosphorus stress. A comprehensive evaluation of low phosphorus tolerance of 32 cultivars was made by using hierarchical clustering analysis. Clustering analysis showed that 32 cultivars could be divided into extremely low phosphorus tolerant, low phosphorus tolerant, moderately low phosphorus tolerant, low phosphorus sensitive and extremely low phosphorus sensitive group respectively. Among 32 tested materials, the tolerant ability to low phosphorus stress of Nannongyinshan is higher than other cultivars, belonging to extremely low phosphorus tolerant cultivar; T1102, Nannongyupan, Nannonggongxun and Nannongbaixue are low phosphorus tolerant cultivars; Nannongyuzhu, Nannongjinrong, Nannongjindie, Nannongzichun, Nannongyuegui, huanghanju, Monalisa Yellow, Noa Yellow, Monalisa Rosy and Jinba are low phosphorus sensitive cultivars; the tolerant ability to low phosphorus stress of Nannonghongfeng, Nannongxiangbin and Youxiang are lower than other cultivars, these cultivars are extremely low phosphorus sensitive genotypes; the others are moderately low phosphorus tolerant cultivars. Efficient genotypes with the desirable characteristics can be used directly in advance field trials or in breeding programs to cope phosphorus deficiency.
cut chrysanthemum; genotypic differences; low phosphorus stress; screening index
江蘇省科技支撐計(jì)劃資助項(xiàng)目(BE2011325);國家農(nóng)業(yè)科技成果轉(zhuǎn)化資助項(xiàng)目(2010GB2360063);863計(jì)劃資助項(xiàng)目(2011AA100208);教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃資助項(xiàng)目(NCET-10-0492);江蘇省高??蒲谐晒a(chǎn)業(yè)化推進(jìn)資助項(xiàng)目(JHB2011-8);國家自然科學(xué)基金資助項(xiàng)目(31272202)
2012- 07- 17;
2012- 10- 26
*通訊作者Corresponding author.E-mail: chenfd@njau.edu.cn
10.5846/stxb201207171016
劉鵬,陳素梅,房偉民,蔣甲福,管志勇,陳發(fā)棣.32個(gè)切花菊品種的耐低磷特性.生態(tài)學(xué)報(bào),2013,33(21):6863- 6868.
Liu P, Chen S M, Fang W M, Jiang J F, Guan Z Y, Chen F D.Preliminary evaluation on tolerance to phosphorous deficiency of 32 cultivars of cut chrysanthemum.Acta Ecologica Sinica,2013,33(21):6863- 6868.