金亮星,李小剛
(中南大學(xué)土木工程學(xué)院,湖南長(zhǎng)沙 410075)
在軟土地基沉降分析工程實(shí)踐中,地基沉降的計(jì)算方法有很多種,大致可以分為兩大類:一類是基于土體固結(jié)理論、結(jié)合各種土的本構(gòu)模型的理論計(jì)算方法;另一類是基于實(shí)測(cè)沉降資料的沉降預(yù)測(cè)方法。由于各種理論計(jì)算方法本身的局限性及工程條件的復(fù)雜性,純理論計(jì)算有時(shí)不精確,因此,工程技術(shù)人員常使用較為合理有效的沉降預(yù)測(cè)方法,根據(jù)前期實(shí)測(cè)沉降資料來預(yù)測(cè)后期地基沉降[1-2]。本文結(jié)合某填海造地道路地基處理工程實(shí)例,以軟基沉降監(jiān)測(cè)數(shù)據(jù)為依據(jù),采用泊松曲線法對(duì)軟土地基沉降進(jìn)行了預(yù)測(cè),并與雙曲線法、三點(diǎn)法預(yù)測(cè)結(jié)果及現(xiàn)場(chǎng)實(shí)測(cè)數(shù)據(jù)進(jìn)行了對(duì)比分析,探討了泊松曲線法在填海造地道路軟基沉降預(yù)測(cè)中的實(shí)用性。
在時(shí)間序列預(yù)測(cè)中,泊松曲線模型[3-6]的數(shù)學(xué)表達(dá)式為:
式中:yt為t時(shí)間的沉降預(yù)測(cè)值;t為時(shí)間;a,b和c為待定參數(shù)。
利用已知的時(shí)間序列數(shù)據(jù),求出上述3個(gè)待定參數(shù)即可建立泊松曲線模型方程,從而對(duì)yt進(jìn)行預(yù)測(cè)。
利用三段計(jì)算法求解泊松曲線方程中的3個(gè)待定參數(shù)a,b和c。它要求時(shí)間序列中的數(shù)據(jù)項(xiàng)數(shù)或者時(shí)間期數(shù)n是3的倍數(shù),把總項(xiàng)數(shù)分為3段,每段為r項(xiàng)(其中r=);自變量t的時(shí)間間隔相等,前后連續(xù),t取1,2,3,…,n。那么對(duì)應(yīng)時(shí)間序列的各項(xiàng)數(shù)分別為 y1,y2,y3…,yn。將其分為 3 段:
第1 段為 t=1,2,3,…,r,
第2 段為 t=r+1,r+2,r+3,…,2r,
第3 段為 t=2r+1,2r+2,2r+3,…,3r。
假設(shè)s1,s2和s3分別為以上3段內(nèi)各項(xiàng)數(shù)值的倒數(shù)之和,即
則可得出參數(shù)的求解表達(dá)式:
根據(jù)前期實(shí)測(cè)沉降數(shù)據(jù),利用上述公式求出參數(shù)a,b和c并代入式(1),即可得出泊松曲線沉降預(yù)測(cè)模型方程。
某填海造地道路地基處理工程位于福建省莆田市忠門半島東南湄洲灣畔,該工程中采用塑料排水板堆載預(yù)壓法對(duì)共計(jì)8條道路地基進(jìn)行了加固處理,其軟基處理方案為:場(chǎng)地標(biāo)高吹填到0 m—插打塑料排水板—場(chǎng)地標(biāo)高吹填到2.8 m—強(qiáng)夯—填筑道路路基材料到道路控規(guī)標(biāo)高—預(yù)壓(采用建筑區(qū)砂料)—卸載整平。排水板為正方形布置,間距為1.1 m,采用B型排水板,排水板打穿淤泥質(zhì)粉土層。地基土層分布及道路典型結(jié)構(gòu)型式如圖1所示。
圖1 地基土層分布及道路典型結(jié)構(gòu)型式Fig.12 Soil distribution of foundation and typical structure of road
施工期間,按每100 m布置1個(gè)觀測(cè)斷面,在路基斷面中間位置布置沉降盤進(jìn)行沉降觀測(cè),觀測(cè)點(diǎn)所埋設(shè)的沉降盤大樣圖見圖2所示。道路地基處理工程中,共布置了90個(gè)沉降觀測(cè)點(diǎn)進(jìn)行了近2 a的沉降監(jiān)測(cè),監(jiān)測(cè)頻率為:填筑期1次/2 d;靜壓期1次/5 d,獲得了大量的沉降觀測(cè)數(shù)據(jù)。
圖2 沉降盤大樣圖Fig.2 Detail drawing of settlement plate
本文根據(jù)某道路地基處理工程中的BHNK0+300和BHNK1+100兩斷面觀測(cè)點(diǎn)的實(shí)測(cè)沉降數(shù)據(jù),進(jìn)行泊松曲線沉降預(yù)測(cè)擬合,原始數(shù)據(jù)為按照靜壓期觀測(cè)頻率進(jìn)行監(jiān)測(cè)的實(shí)測(cè)沉降觀測(cè)值,可以取得良好的等時(shí)距效果。選取BHNK0+300和BHNK1+100兩斷面觀測(cè)點(diǎn)處于靜壓期40~180 d的實(shí)測(cè)沉降數(shù)據(jù)各總計(jì)15項(xiàng)數(shù),分為3段,每段為5項(xiàng),如表1所示。
表1 沉降觀測(cè)數(shù)據(jù)Table 1 Tested settlement data
根據(jù)實(shí)測(cè)沉降數(shù)據(jù),利用三段計(jì)算法求解泊松曲線方程中的3個(gè)待定參數(shù)a,b和c,如表2所示。
表2 泊松模型參數(shù)Table 2 Calculation parameters of Poisson model
由上述參數(shù)可確定BHNK0+300和BHNK1+100兩斷面觀測(cè)點(diǎn)的泊松曲線模型方程如下:
采用建立的泊松曲線模型分別對(duì)BHNK0+300和BHNK1+100兩斷面觀測(cè)點(diǎn)地基的沉降進(jìn)行預(yù)測(cè),并將預(yù)測(cè)沉降曲線與實(shí)測(cè)沉降曲線進(jìn)行比較分析,如圖3和圖4所示。
圖3 BHNK0+300斷面沉降預(yù)測(cè)與實(shí)測(cè)曲線比較Fig.3 Comparison between predicted settlement and measured settlement of BHNK0+300 section
圖4 BHNK1+100斷面沉降預(yù)測(cè)與實(shí)測(cè)曲線比較Fig.4 Comparison between predicted settlement and measured settlement of BHNK1+100 section
比較分析結(jié)果表明:泊松模型預(yù)測(cè)沉降曲線與實(shí)測(cè)曲線擬合較好,誤差較小;預(yù)測(cè)曲線后期收斂速度與實(shí)測(cè)沉降的收斂速度較接近。
三點(diǎn)法沉降預(yù)測(cè)模型表達(dá)式為[7]:
式中:st和s∞分別為t時(shí)間的沉降預(yù)測(cè)值及地基的最終沉降量;s1,s2和s3分別為恒載期間t1,t2和t3的實(shí)測(cè)沉降量,時(shí)間滿足Δt=t2-t1=t3-t2;α和β為與地基排水條件及地基土性質(zhì)有關(guān)的參數(shù),根據(jù)相關(guān)資料,α取,β按下式確定:
雙曲線法沉降預(yù)測(cè)模型表達(dá)式為[7-8]
式中:st和s0分別為t時(shí)間的沉降預(yù)測(cè)值及初始t0時(shí)間地基的沉降量;a和b為模型參數(shù),由實(shí)測(cè)沉降線性擬合確定。
根據(jù)表1所示BHN K0+300和BHN K1+100斷面的實(shí)測(cè)沉降數(shù)據(jù),分別采用三點(diǎn)法和雙曲線法進(jìn)行沉降預(yù)測(cè),其計(jì)算參數(shù)及相應(yīng)的預(yù)測(cè)模型方程分別見表3 和表 4[7-8]。
表3 預(yù)測(cè)模型計(jì)算參數(shù)Table 3 Calculation parameters of prediction model
表4 預(yù)測(cè)模型方程Table 4 The equations of prediction model
采用建立的三點(diǎn)法和雙曲線法沉降預(yù)測(cè)模型分別對(duì)BHNK0+300和BHNK1+100兩斷面觀測(cè)點(diǎn)地基的沉降進(jìn)行預(yù)測(cè),并將預(yù)測(cè)沉降曲線與泊松模型預(yù)測(cè)結(jié)果及實(shí)測(cè)沉降曲線進(jìn)行比較分析,如圖5和圖6所示。
圖5 BHNK0+300斷面3種模型沉降預(yù)測(cè)與實(shí)測(cè)曲線比較Fig.5 Comparison between predicted settlement by3 kinds of models and measured settlement of BHNK0+300 section
圖6 BHNK1+100斷面3種模型沉降預(yù)測(cè)與實(shí)測(cè)曲線比較Fig.6 Comparison between predicted settlement by3 kinds of models and measured settlement of BHNK1+100 section
比較分析結(jié)果表明:相對(duì)于三點(diǎn)法和雙曲線法沉降預(yù)測(cè)模型,泊松曲線模型預(yù)測(cè)所得的沉降結(jié)果與實(shí)測(cè)沉降曲線擬合較好,沉降曲線的發(fā)展趨勢(shì)基本一致,且沉降收斂速度與實(shí)測(cè)沉降的收斂速度較為接近,具有較高的預(yù)測(cè)精度。
(1)在填海造地道路地基處理工程中,通過軟基沉降監(jiān)測(cè),可以獲得大量的等時(shí)距沉降實(shí)測(cè)數(shù)據(jù),采用泊松曲線法對(duì)軟土地基沉降進(jìn)行預(yù)測(cè),具有較好的適用性。
(2)泊松曲線模型與三點(diǎn)法、雙曲線法沉降預(yù)測(cè)模型相比具有更高的預(yù)測(cè)精度,預(yù)測(cè)沉降曲線與實(shí)測(cè)曲線擬合較好,誤差較小,且預(yù)測(cè)曲線后期收斂速度與實(shí)測(cè)沉降的收斂速度較接近,是一種實(shí)用且精度較高的地基沉降預(yù)測(cè)方法,可為類似工程沉降預(yù)測(cè)提供借鑒。
[1]王麗琴,靳寶成,楊有海,等.黃土路基工后沉降預(yù)測(cè)模型對(duì)比研究[J].鐵道學(xué)報(bào),2008,30(1):43 -47.WANG Liqin,JIN Baocheng,YANG Youhai,et al.Loess subgrade settlement prediction model comparative study[J].Journal of the China Railway Society,2008,30(1):43-47.
[2]董川.填海造地工程中的軟基沉降預(yù)測(cè)研究[J].鐵道科學(xué)與工程學(xué)報(bào),2005,2(4):16 -20.DONG Chuan.Reclamation engineering in the soft foundation settlement prediction[J]Journal of Railway Science and Engineering,2005,2(4):16 -20.
[3]王偉,潘永清,張儀萍.路基沉降預(yù)測(cè)中泊松曲線模型參數(shù)的擬合方法[J].道路與交通,2004(109):7-8.WANG Wei,PAN Yongqing,ZHANG Yiping.Subgrade settlement prediction of poisson curve model parameter fitting method[J].The Roads and Traffic,2004(109):7 -8.
[4]宰金珉,梅國(guó)雄.全過程的沉降量預(yù)測(cè)方法研究[J].巖土力學(xué),2000,2l(4):322 -325.ZAI Jinmin,MEI Guoxiong.The whole process of settlement prediction methods[J].Rock and Soil Mechanics,2000,21(4):322-325.
[5]呂秀杰.軟土地基工后沉降預(yù)測(cè)模型的研究[J].巖土力學(xué),2009,30(7):2091 -2095,2113.LV Xiujie.Soft soil foundation settlement forecast model research[J].Rock and Soil Mechanics,2009,30(7):2091 -2095,2113.
[6]宇云飛,張文斌,張梅.泊松曲線在軟土路基沉降預(yù)測(cè)中的應(yīng)用研究[J].河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,27(4):96-99.YU Yunfei,ZHANGWenbin,ZHANGMei.Poisson curve to predict the settlement of soft soil roadbed application research[J].Journal of Agricultural University of Hebei,2004,27(4):96-99.
[7]肖長(zhǎng)生,王守林,金亮星.經(jīng)驗(yàn)分析法在軟基沉降預(yù)測(cè)中的應(yīng)用[J].鐵道科學(xué)與工程學(xué)報(bào),2012,9(3):72-76.XIAO Changsheng,WANG Shoulin,JIN Liangxing.The application of experience analysis method in the prediction of soft ground settlement[J].Journal of Railway Science and Engineering,2012,9(3):72 -76.
[8]鐘國(guó)坤,趙小芹.雙曲線法在高速公路軟基沉降預(yù)測(cè)中的應(yīng)用[J].科學(xué)技術(shù)與工程,2010,10(27):6804-6807.ZHONG Guokun,ZHAO Xiaoqin.Hyperbolic method in expressway soft foundation settlement prediction[J].Science Technology and Engineering.2010,10(27):6804 -6807.