聶彩云
(吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南吉首 416000)
一個(gè)較為精確的半離散Mulholland’s不等式加強(qiáng)*
聶彩云
(吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南吉首 416000)
利用Jensen-Hadmamard’s不等式及加強(qiáng)的H?lder不等式,對(duì)半離散的Mulholland’s不等式作了改進(jìn),建立了一些新的不等式.
Mulholland’s不等式;權(quán)系數(shù);算子表述;H?lder不等式
(1)式稱(chēng)為Hardy-Hilbert積分不等式,它在分析學(xué)中有重要的應(yīng)用.
文獻(xiàn)[1]建立了如下一個(gè)新的較精確的半離散Mulholland不等式:
筆者利用改進(jìn)的H?lder不等式對(duì)(2)式進(jìn)行加強(qiáng),從而建立一些新的不等式.
為了方便起見(jiàn),先介紹一些符號(hào):
證明見(jiàn)文獻(xiàn)[2-3].
引理2 若λ1>0,0<λ2≤1,λ1+λ2=λ,α≥,定義權(quán)函數(shù)
即(3)式成立.
下面討論Ra的表達(dá)式.選取由(4)式所定義的權(quán)函數(shù)(x,n),有由引理1,有
注1 (3)式即為(2)式的改進(jìn)式.
[1] YANG Bi-cheng.On a More Accurate Half-Discrete Mulholland’s Inequality and Extension[J].Journal of Inequalities and Aplications,2012,Doi:10.1186/1029-242X-2012-70.
[2] HE Le-ping,GAO Ming-zhe,JIA Wei-jian.On a New Strengthened Hardy-Hilbert’s Inequality[J].Journal of Mathematical Research and Exposition,2006,26(2):276-282.
[3] HE Le-ping,JIA Wei-jian,GAO Ming-zhe.A Hardy-Hilbert’s Type Inequality with Gamma Function and Its Applications[J].Integral Transforms and Special Functions,2006,17(5):355-363.
[4] HE Le-ping,GAO Ming-zhe.A Hilbert Integral Inequality with Hurwitz Zeta Function[J].Journal of Mathematical Inequalities,2013,7(3):377-387.
(責(zé)任編輯 向陽(yáng)潔)
A More Accurate Strengthend Half-Discrete Mulholland’s Inequality
NIE Cai-yun
(College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China)
By means of Jensen-Hadmamard’s inequality and a sharpened H?lder’s inequality,the half-discrete Mulholland’s is improved,and some new inequalities are established.
Mulholland’s inequality;weight coefficient;operator expression;H?lder inequality
O178
A
10.3969/j.issn.1007-2985.2013.06.003
1007-2985(2013)06-0009-03
2013-06-19
聶彩云(1963-),女,湖南永順人,吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院副教授,主要從事函數(shù)論及應(yīng)用研究.