国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

華夏陸塊古元古代A型流紋斑巖的發(fā)現(xiàn)及其地質(zhì)意義

2013-06-25 07:40:06陳志洪邢光福匡福祥
大地構(gòu)造與成礦學(xué) 2013年3期
關(guān)鍵詞:流紋陸塊斑巖

陳志洪,邢光福,姜 楊,匡福祥

(南京地質(zhì)礦產(chǎn)研究所,江蘇 南京 210016)

華夏陸塊是中國(guó)東部大陸重要的組成部分之一,了解其早期的形成與演化對(duì)充分認(rèn)識(shí)中國(guó)大陸地殼的形成、構(gòu)造格局的演變乃至全球構(gòu)造事件均具有重要意義(舒良樹,2006;于津海等,2007;鄭永飛和張少兵,2007)。經(jīng)過(guò)長(zhǎng)期的研究積累,特別是近十年來(lái),隨著同位素測(cè)年技術(shù)(SHRIMP和LA-ICP-MS)迅猛發(fā)展,對(duì)華夏陸塊變質(zhì)基底的地層、構(gòu)造、巖石、同位素年代學(xué)及陸殼深部結(jié)構(gòu)等研究取得了很大的進(jìn)展,提供了更多可靠“古陸塊”存在的證據(jù)(Li et al.,2000,2005;Wan et al.,2007;Xu et al.,2007;Xia et al.,2012;Yu et al.,2008,2009,2012;Chen and Xing,in press)。但是,由于區(qū)域前寒武紀(jì)地質(zhì)構(gòu)造的復(fù)雜性,以及顯生宙以來(lái)歷次構(gòu)造事件的疊加改造,制約了對(duì)早期構(gòu)造巖漿熱事件性質(zhì)的深入理解。因此,尋找相關(guān)事件記錄的地質(zhì)體就是破解這一難題的關(guān)鍵。筆者最近在對(duì)出露于北武夷淡竹地區(qū)前寒武紀(jì)基底巖石進(jìn)行的專題研究中,首次識(shí)別出了古元古代 A型流紋斑巖,這為深入研究華夏陸塊基底物質(zhì)組成和早期構(gòu)造演化提供了新的資料。

1 區(qū)域地質(zhì)概況與樣品特征

研究區(qū)地處武夷地塊北部的浙西南地區(qū)(圖1)。區(qū)域上出露的前寒武紀(jì)變質(zhì)巖系大致可以劃分為上、下兩套巖石地層單元:下部為古元古代的八都群,主要巖性為黑云斜長(zhǎng)片麻巖、變粒巖、黑云片巖和斜長(zhǎng)角閃巖,經(jīng)歷了角閃巖相的中高溫區(qū)域變質(zhì)作用和較強(qiáng)烈的混合巖化作用(胡雄健等,1992;甘曉春等,1995;Yu et al.,2012);上部為新元古代的龍泉群,主要巖性為變粒巖、云母片巖、綠簾斜長(zhǎng)角閃巖、含鐵石英巖和大理巖等,經(jīng)歷了高綠片巖相到低角閃巖相的區(qū)域變質(zhì)作用(金文山等,1992;陳正宏等,2008;Li et al.,2010)。

圖1 浙西南-閩西北地質(zhì)簡(jiǎn)圖(底圖據(jù)Li et al.,2005;Wan et al.,2007)Fig.1 Geological sketch map of SW Zhejiang and NW Fujian provinces (modified from Li et al.,2005;Wan et al.,2007)

本次研究新發(fā)現(xiàn)的流紋斑巖位于浙江省仙居縣淡竹鄉(xiāng)龍竹村,與八都群變質(zhì)巖呈侵入接觸關(guān)系(圖2a);流紋斑巖主要零星(小于 0.01 km2)出露于龍竹村旁的一條河溝內(nèi),呈肉紅色,斑狀結(jié)構(gòu),具片狀-片麻狀的變形特征。斑晶總量約10%~15%,主要為熔蝕的高溫石英,普遍有較寬的反應(yīng)邊且波狀消光(圖2b,d);另有少量斜長(zhǎng)石斑晶(碳酸鹽化和絹云母化)和褐簾石化的黑云母(圖2c)。基質(zhì)具有霏細(xì)結(jié)構(gòu),未能辨析其礦物組成(圖2d)。

2 分析方法

鋯石用人工重砂方法選出,然后在雙目鏡下挑純,選出晶形較好、具代表性的鋯石粘貼在環(huán)氧樹脂表面,拋光后將待測(cè)鋯石進(jìn)行陰極發(fā)光(CL)圖像分析。CL照相在中國(guó)科學(xué)院地質(zhì)與地球物理研究所電子探針實(shí)驗(yàn)室完成。鋯石U-Pb測(cè)年和微量元素分析在合肥工業(yè)大學(xué)資源與環(huán)境工程學(xué)院完成,采用的儀器型號(hào)為 Agilent 7500a,激光剝蝕系統(tǒng)為Coherent Inc公司生產(chǎn)的ComPex102 ArF準(zhǔn)分子激光剝蝕系統(tǒng)。分析時(shí)激光束斑直徑為32 μm,激光脈沖重復(fù)頻率為6 Hz。應(yīng)用Nist610玻璃作為微量元素外標(biāo),鋯石標(biāo)樣 91500進(jìn)行同位素分餾校正,鋯石標(biāo)樣Mud Tank作為同位素監(jiān)控樣,實(shí)驗(yàn)原理和詳細(xì)的測(cè)試方法見(jiàn)閆峻等(2012)。ICP-MS的分析數(shù)據(jù)通過(guò) ICPMSDataCal程序計(jì)算獲得同位素比值、年齡和誤差(Liu et al.,2008,2010)。普通鉛校正采用Andersen (2002)的方法進(jìn)行,校正后的結(jié)果用ISOPLOT程序(ver 2.49)完成年齡計(jì)算和諧和圖的繪制(Ludwig,2001)。

鋯石Hf同位素分析在中國(guó)地質(zhì)科學(xué)院礦產(chǎn)資源研究所實(shí)驗(yàn)室Thermo Fisher Neptune多接收電感耦合等離子質(zhì)譜和New Wave UP213激光剝蝕系統(tǒng)上進(jìn)行。激光剝蝕直徑為 44 μm,激光脈沖重復(fù)頻率為 8 Hz。測(cè)定時(shí)采用鋯石國(guó)際標(biāo)樣GJ-1作為參考物質(zhì),儀器的運(yùn)行條件及詳細(xì)的分析流程見(jiàn)Wu et al.(2006)和候可軍和袁順達(dá)(2010)。分析過(guò)程中GJ-1的176Hf/177Hf加權(quán)平均值為(0.282012±12)(2SD,n=15),與推薦值(候可軍和袁順達(dá),2010)在誤差范圍內(nèi)完全一致。εHf(t)的計(jì)算利用176Lu的衰變常數(shù)為1.865×10-11/a(Scherer et al.,2001),球粒隕石現(xiàn)今值176Hf/177Hf=0.282772和176Lu/177Hf=0.0332(Blichert-Toft and Albarede,1997);虧損地幔 Hf模式年齡計(jì)算采用當(dāng)前虧損地幔值176Hf/177Hf=0.28325和176Lu/177Hf=0.0384(Griffin et al.,2000);二階段 Hf模式年齡采用上地殼平均值176Lu/177Hf=0.015(Griffin et al.,2002)。

圖2 淡竹流紋斑巖的野外地質(zhì)及鏡下特征Fig.2 Photos and microphotographs for the rhyolitic porphyries in the Danzhu region

全巖主量元素在南京地質(zhì)礦產(chǎn)研究所實(shí)驗(yàn)測(cè)試中心采用荷蘭Panalytical公司生產(chǎn)的Axios型波長(zhǎng)色散X射線熒光光譜儀測(cè)定,分析精度優(yōu)于5%。微量元素在南京地質(zhì)礦產(chǎn)研究所實(shí)驗(yàn)測(cè)試中心采用 Finnigan ELEMENT2型電感耦合等離子質(zhì)譜(ICP-MS)測(cè)定,分析精度優(yōu)于5% (Rudnick et al.,2004)。

3 結(jié) 果

3.1 鋯石LA-ICP-MS U-Pb年齡和稀土元素

對(duì)淡竹流紋斑巖(樣品ZJ-11-1)中的25顆鋯石共計(jì)完成了25個(gè)測(cè)點(diǎn)的LA-ICP-MS分析,U-Pb同位素組成列于表1。標(biāo)定的測(cè)年鋯石大部分為長(zhǎng)柱狀,長(zhǎng)/寬比為 2∶1~3∶1,顆粒大小約100~300 μm。樣品鋯石普遍受到了后期變質(zhì)作用改造而發(fā)生重結(jié)晶,發(fā)育一定的核邊結(jié)構(gòu),具核部較黑且環(huán)帶結(jié)構(gòu)不清晰(圖3a)。測(cè)年結(jié)果顯示,23顆鋯石分析點(diǎn)的Th(77×10-6~ 433×10-6)和U(108×10-6~2024×10-6)含量相對(duì)較高,相應(yīng)的Th/U比值范圍為0.25~1.62,屬于典型的巖漿鋯石(吳元保和鄭永飛,2004),給出的207Pb/206Pb的年齡范圍為1902~1776 Ma。在諧和圖上,23個(gè)分析點(diǎn)構(gòu)成一條很好的不一致線,上下交點(diǎn)的年齡分別為 1844±26 Ma和157±650 Ma(MSWD=0.91)。23個(gè)分析點(diǎn)給出的207Pb/206Pb年齡加權(quán)平均值為(1819±16 Ma)(MSWD=0.91),代表了流紋斑巖的成巖年齡(圖3b)。另外 2顆鋯石的 Th(12×10-6~15×10-6)和U(134× 10-6~186×10-6)的含量較低,Th/U比值變化于 0.08~0.09,可能代表變質(zhì)成因(吳元保和鄭永飛,2004),給出的206Pb/238U年齡分別為240±6 Ma(5號(hào)分析點(diǎn))和238±6 Ma(6號(hào)分析點(diǎn))。

23個(gè)巖漿型鋯石測(cè)點(diǎn)在進(jìn)行U-Pb同位素分析時(shí),同步原位測(cè)定了鋯石稀土元素的含量(表2)。結(jié)果顯示,該類鋯石具有較高的 REE總量(∑REE=309×10-6~1112×10-6),在鋯石稀土元素球粒隕石標(biāo)準(zhǔn)化配分圖解上(圖3c),該類鋯石極度富集 HREE,呈左傾型,并具明顯的正Ce異常(Ce/Ce*=6.8~90.6)和負(fù) Eu異常(Eu/Eu*=0.02~0.24),符合一般巖漿鋯石的稀土元素特征(Belousova et al.,2002)。另外2個(gè)變質(zhì)鋯石的測(cè)點(diǎn),由于當(dāng)時(shí)儀器運(yùn)行狀態(tài)不佳,未能獲得其理想數(shù)據(jù)。

3.2 全巖元素地球化學(xué)特征

4組流紋斑巖樣品的全巖主量、微量與稀土元素的成分見(jiàn)表3。它們與典型的A型花崗巖在地球化學(xué)組成上非常類似(Whalen et al.,1987),具高 Si(SiO2=67.0%~72.1%),富堿(Na2O+K2O=8.1%~9.0%),富 Fe(FeOT=2.9%~5.8%),顯著貧 Mg(MgO=0.19%~0.42%)和鈣(CaO=0.97%~1.7%)的特征。在 K2O-SiO2圖解中,全部樣品落入鉀玄巖系列中(圖略)。它們的Al2O3含量為13.2%~14.0%,A/CNK值為0.99~1.08,顯示出準(zhǔn)鋁質(zhì)-弱過(guò)鋁的特征。流紋斑巖的稀土元素總量較高,∑REE =626×10-6~765×10-6,輕重稀土之間分異明顯(圖4a),(La/Yb)N=14.3~28.1,Eu虧損強(qiáng)烈,Eu/Eu*為0.29~0.42。微量元素方面,流紋斑巖的 Ga含量較高(22.1×10-6~28.9×10-6),10000Ga/Al值為 3.0~4.1;HFSE元素組合(Zr+Nb+Ce+Y)的值也很高,為 880×10-6~999×10-6。在原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖上(圖4b),所有樣品均表現(xiàn)為明顯的Rb、Th、U和Pb峰以及Ba、Sr、Nb、Ta和(Ti+Eu)谷的分布特征。

表1 淡竹流紋斑巖的鋯石U-Pb同位素分析數(shù)據(jù)Table1 LA-ICP-MS zircon U-Pb results for the rhyolitic porphyry in the Danzhu region

圖3 淡竹流紋斑巖的鋯石CL圖像(a),鋯石U-Pb年齡諧和圖(b)和稀土元素球粒隕石配分曲線圖(c)(內(nèi)圈(小)為L(zhǎng)A-ICP-MS靶位,外圈(大)為Hf同位素激光剝蝕靶位;球粒隕石值取自Sun and McDonough,1989)Fig.3 Cathodoluminescence (CL) images of the representative zircons from the Danzhu rhyolitic porphyry(a) (with small and large white circles showing areas for U–Pb and Lu–Hf isotope analysis,respectively),U-Pb concordia diagram for zircons from the Danzhu rhyolitic porphyry(b) and chondrite-normalized REE patterns for zircons from the Danzhu rhyolitic porphyry(c) (chondrite and primitive mantle values are from Sun and McDonough (1989))

3.3 鋯石Hf同位素組成

在U-Pb年齡的基礎(chǔ)上,選擇15個(gè)巖漿鋯石分析點(diǎn)進(jìn)行了 Hf同位素測(cè)定,結(jié)果列于表4。鋯石176Lu/177Hf比值介于 0.000345~0.000817之間,176Hf/177Hf比值介于 0.281405~0.281588,單階段鋯石Hf模式年齡tDM為2.31~2.55 Ga,兩階段鋯石Hf模式年齡t2DM為2.46~2.76 Ga。鋯石Hf同位素初始比值εHf(t)為-8.4~-2.2。

4 討 論

4.1 巖石類型與成因

最早Loiselle and Wones(1979)將A型花崗巖定義為堿性(alkaline)、貧水(anhydrous)和非造山(anorogenic)的花崗巖,它一般是堿過(guò)飽和而鋁不飽和。但近年來(lái)的研究表明,A型花崗巖不僅包括堿性巖類,還擴(kuò)大到鈣堿性、弱堿、準(zhǔn)鋁、弱過(guò)鋁甚至強(qiáng)過(guò)鋁質(zhì)巖石(吳福元等,2007)。同時(shí),一些流紋巖也顯示出A型花崗巖的特征,通常認(rèn)為它們是A型花崗巖噴出相的產(chǎn)物(Li et al.,2005)。淡竹流紋斑巖具有A型花崗巖的地球化學(xué)特征:(1)高Si富堿,高K貧Al、Ca和Mg,巖石的FeOT/MgO值(13.8~15.1)明顯高于I、S和M型花崗巖的平均值,與典型的A型花崗巖一致(~13.4) (Whalen et al.,1987);(2)富集大離子親石元素(Rb、Th、U)和高場(chǎng)強(qiáng)元素Zr和Hf,虧損 Ba、Sr、Eu和Ti(圖4b),富 Ga,10000Ga/Al值為3.0~4.1,接近全球A型花崗巖的平均值(~3.75)(Whalen et al.,1987),在 10000Ga/Al和(Na2O+K2O)/CaO 對(duì)(Zr+Nb+Ce+Y)的判別圖解里(圖5),淡竹流紋斑巖均落入 A型花崗巖區(qū)域,而與分異的 I或 S型花崗巖相區(qū)別。根據(jù)Watson and Harrison(1983)的公式,用巖石主量元素及其Zr含量計(jì)算得到流紋斑巖的鋯石飽和溫度在881~912 °C之間,顯示其接近于A型而明顯高于I和S型花崗巖的原始巖漿溫度。綜上所述,巖石學(xué)、地球化學(xué)特征及巖漿形成溫度都表明淡竹流紋斑巖屬于典型的A型流紋斑巖。

表3 淡竹流紋斑巖的主量元素(%)和微量元素組成(×10-6)Table3 Major (%) and trace element (×10-6) concentrations of the rhyolitic porphyries in the Danzhu region

圖4 淡竹流紋斑巖的稀土元素球粒隕石標(biāo)準(zhǔn)化配分圖解(a)和原始地幔標(biāo)準(zhǔn)化的微量元素圖解(b)(球粒隕石與原始地幔值取自Sun and McDonough,1989)Fig.4 Chondrite-normalized REE patterns(a) and primitive mantle-normalized spidergrams(b) of the Danzhu rhyolite porphyries(chondrite and primitive mantle values are from Sun and McDonough (1989))

表4 淡竹流紋斑巖的鋯石Hf同位素組成Table4 LA-MC-ICP-MS zircon Lu-Hf isotope results for the rhyolitic porphyries in the Danzhu region

已有研究表明,A型花崗巖(流紋巖)的成因有如下幾種可能:(1)幔源玄武質(zhì)巖漿的結(jié)晶分異作用(Mushkin et al.,2003);(2)深部地殼巖石的部分熔融(Clemens et al.,1986;Whalen et al.,1987;King et al.,1997;Wu et al.,2002);(3)殼幔巖漿混合(Yang et al.,2006)。首先,研究區(qū)和相鄰地區(qū)缺乏同時(shí)代的大規(guī)?;曰鸪蓭r這一事實(shí),可以排除本區(qū)流紋斑巖由基性巖漿分離結(jié)晶作用所成的可能性。此外,A型花崗巖(流紋巖)具有富堿、貧水的晶體粥特性,說(shuō)明它們也不可能通過(guò)較大規(guī)模的分離結(jié)晶作用所形成(吳福元等,2007)。另外,淡竹流紋斑巖中尚未發(fā)現(xiàn)有中基性的暗色包體,也可以排除巖漿混合的成因模式。那么,深部陸殼巖石部分熔融可能是形成淡竹流紋斑巖較理想的成巖模式。流紋斑巖具有明顯的Pb的正異常和Nb的負(fù)異常,也表明巖石熔融的源巖可能以陸殼物質(zhì)為主。顯著的Sr及Eu的負(fù)異常,則進(jìn)一步說(shuō)明長(zhǎng)英質(zhì)巖石在其源區(qū)可能占主導(dǎo)(吳福元等,2007)。此外,流紋斑巖的兩階段Hf模式年齡t2DM(2.46~2.76 Ga)為新太古代,在εHf(t)-t圖解上,其落入華夏陸塊古老基底(八都群)演化域內(nèi)(圖6)。因此,華夏陸塊深部古老基底巖石(類似八都群)的部分熔融可能是淡竹流紋斑巖的巖漿物質(zhì)的主要來(lái)源。

4.2 構(gòu)造意義

眾所周知,一系列重要的地質(zhì)事件發(fā)生于古元古代已經(jīng)成為共識(shí),如全球性的碰撞造山事件和Columbia超級(jí)大陸的形成(Rogers and Santosh,2002;Zhao et al.,2002,2004,2009)、大陸地殼的快速生長(zhǎng)(Condie,1998,2000)、超級(jí)地幔柱活動(dòng)(Condie et al.,2001)等。中國(guó)東部的華北陸塊(Zhao et al.,2002,2004,2009;Wang et al.,2007;Hou et al.,2008;Peng et al.,2008;He et al.,2009)和揚(yáng)子陸塊(Zhang et al.,2006;Sun et al.,2008;Wu et al.,2008;Zhao et al.,2010)同樣有著與 Columbia超大陸聚合和裂解有關(guān)的古元古代大規(guī)模構(gòu)造-巖漿作用的響應(yīng)。在華夏陸塊,越來(lái)越多古元古代構(gòu)造-熱事件近年來(lái)陸續(xù)被發(fā)現(xiàn)(Li,1997;Li et al.,2000;Xiang et al.,2008;Liu et al.,2009;Xia et al.,2012;Yu et al.,2009,2012;Chen and Xing,in press),但目前對(duì)這些地質(zhì)事件性質(zhì)還存在認(rèn)識(shí)上的分歧。如,基于對(duì)武夷地塊古元古代的S型(1888~1875 Ma)和A型(1867~1855 Ma)花崗巖及裂谷型基性巖(天井坪組)(1760 Ma)的研究(Li,1997;Li et al.,2000),Yu et al.(2009)提出華夏陸塊可能存在一個(gè)與Columbia超大陸匯聚有關(guān)的造山旋回:同造山-后造山期(1.89~1.83 Ga)和非造山(裂谷)期(1.80~1.76 Ga);然而,Xiang et al.(2008)強(qiáng)調(diào)板內(nèi)基性-超基性的巖漿活動(dòng)早在~1.85 Ga就已開始;Xia et al.(2012)則認(rèn)為武夷地塊北部古元古代A和S型花崗巖(1.89~1.85 Ga)同樣形成于板內(nèi)裂谷環(huán)境;最近,在武夷地塊中部還發(fā)現(xiàn)有~1.84 Ga過(guò)鋁質(zhì) S型花崗巖,其成因機(jī)制也與板內(nèi)伸展環(huán)境有關(guān)(Chen and Xing,in press)。我們注意到,武夷地塊出露的古元古代 S和A型花崗巖(流紋斑巖),其實(shí)是在相隔很短的時(shí)間內(nèi)(1.89~1.83 Ga)形成,暗示它們可能是同一構(gòu)造-熱事件背景下的產(chǎn)物。

圖5 淡竹流紋斑巖的(Na2O+K2O)/CaO-(Zr+Nb+Ce+Y)圖解(a)和(Zr+Nb+Ce+Y)-10000×Ga/Al圖解(b) (底圖據(jù)Whalen et al.,1987)Fig.5 (Na2O+K2O)/CaO vs (Zr+Nb+Ce+Y) (a) and (Zr+Nb+Ce+Y) vs 10000×Ga/Al (b) plots for the Danzhu rhyolitic porphyries (after Whalen et al.,1987)

圖6 淡竹流紋斑巖的鋯石εHf(t)-t圖解(八都群、古元古代S和A型花崗巖的鋯石Hf同位素?cái)?shù)據(jù)來(lái)自Liu et al.(2009),Yu et al.(2009,2012)和Xia et al.(2012))Fig.6 εHf(t) vs 207Pb/206Pb age plot for the Danzhu rhyolitic porphyries(The zircon Hf-isotope data of the Badu Group and Paleoproterozoic S- and A-type granites are from Liu et al.,(2009);Yu et al.,(2009,2012);Xia et al.,(2012))

武夷地塊~1.82 Ga的A型流紋斑巖的發(fā)現(xiàn)和確證,為深入理解華夏陸塊的基底性質(zhì)和早期構(gòu)造格局的演化提供了新的地質(zhì)內(nèi)容,同時(shí)表明武夷地塊的S和A型花崗巖(流紋斑巖)的成巖年齡并無(wú)明顯的規(guī)律性。另外,武夷地塊的A型花崗巖(流紋斑巖)形成于1.87~1.82 Ga,至少還說(shuō)明~1.87 Ga之后區(qū)域上一直處于板內(nèi)伸展環(huán)境。一般認(rèn)為,花崗巖(流紋巖)的地球化學(xué)成分取決于其源巖的礦物組成和化學(xué)成分、熔融時(shí)的物理化學(xué)條件(包括溫度、壓力和揮發(fā)份)和其后巖漿的演化(如分離結(jié)晶作用、巖漿混合作用、同化混染作用等),因此大部分花崗巖(流紋巖)的地球化學(xué)組成與構(gòu)造背景可能無(wú)直接的對(duì)應(yīng)關(guān)系(吳福元等,2007)。但是需要指出的是,學(xué)術(shù)界對(duì)A型花崗巖(流紋巖)的構(gòu)造指示意義還是有較統(tǒng)一的認(rèn)識(shí),認(rèn)為它們的產(chǎn)出通常與伸展構(gòu)造環(huán)境有關(guān)(Whalen et al.,1987;Clemens et al.,1986;Barbarin,1999)。因此,結(jié)合區(qū)域地質(zhì)資料,我們傾向于認(rèn)為北武夷淡竹A型流紋斑巖可能是板內(nèi)伸展背景下巖漿活動(dòng)的產(chǎn)物,也正是由于這種拉張作用的機(jī)制,促使了軟流圈地幔上涌、巖石圈地幔減壓熔融生成基性巖漿底侵,導(dǎo)致地殼深熔作用形成了中-北武夷地區(qū)的古元古代花崗巖(流紋斑巖)。如前所述,流紋斑巖具有較高的形成溫度和負(fù)的εHf(t)值,表明淡竹流紋斑巖的成巖過(guò)程中幔源巖漿可能僅提供了熱量而缺乏物質(zhì)的輸入。另外,區(qū)域上未發(fā)現(xiàn)有大規(guī)模同期的雙峰式火山巖,也暗示這種伸展環(huán)境可能僅處于板內(nèi)拉張作用的初級(jí)階段,尚未進(jìn)入板內(nèi)裂谷期。

淡竹流紋斑巖中印支期變質(zhì)年齡信息的發(fā)現(xiàn)和厘定,還說(shuō)明它與區(qū)域上出露的其它古元古代 S和A型花崗巖一樣,共同經(jīng)歷了一次變質(zhì)事件的改造(Xiang et al.,2008;Yu et al.,2009;Xia et al.,2012)。事實(shí)上,華南及其鄰區(qū)在二疊紀(jì)-三疊紀(jì)時(shí)處于地質(zhì)構(gòu)造的活躍期,如 Sibumasu(中緬?cǎi)R蘇)地塊向印支-華南板塊增生(Carter et al.,2001)、印支板塊與華南板塊開始碰撞(Lepvrier et al.,2004)以及華南板塊與華北板塊的碰撞等(Ames et al.,1993;Li et al.,1993;Jahn,1998;Zheng et al.,2006)。最近,Li and Li(2007)提出華夏陸塊晚二疊世-三疊紀(jì)(251~233 Ma)強(qiáng)烈的板內(nèi)造山作用,可能還與中生代太平洋板塊平俯沖到華南板塊有關(guān)。盡管,目前對(duì)華南印支造山事件的認(rèn)識(shí)還存在分歧,但是都認(rèn)同這期重要的造山作用直接導(dǎo)致了中-北武夷地區(qū)基底巖石發(fā)生了強(qiáng)烈的變質(zhì)變形作用(達(dá)角閃巖相)。同時(shí),也造成包括淡竹流紋斑巖在內(nèi)的大部分古元古代花崗巖中的鋯石發(fā)生了不同程度的Pb丟失,并促使這些鋯石發(fā)生不同程度的重結(jié)晶作用或形成新生的變質(zhì)鋯石(或增生邊)(Yu et al.,2009,2012;Xia et al.,2012)。

5 結(jié) 論

(1) 獲得華夏陸塊北武夷淡竹流紋斑巖的LA-ICP-MS 鋯石U-Pb年齡為1819±16 Ma,為古元古代巖漿活動(dòng)的產(chǎn)物,并受到印支期一定的變質(zhì)改造作用影響。

(2) 元素地球化學(xué)組成和鋯石Hf同位素特征表明,~1.82 Ga的淡竹流紋斑巖具有典型的A型花崗巖(流紋巖)的特征,來(lái)自華夏陸塊基底新太古代陸殼物質(zhì)的再造重熔,形成于板內(nèi)伸展環(huán)境。

致謝:研究工作得到了包志偉研究員、王孝磊博士、余明剛、趙希林和李亮等工程師的指導(dǎo)和幫助,論文初稿承蒙李武顯研究員的審閱并提出寶貴意見(jiàn),在此一并向他們表示感謝。

陳正宏,李寄嵎,謝佩珊,曾雯,周漢文.2008.利用EMP獨(dú)居石定年法探討浙閩武夷山地區(qū)變質(zhì)基底巖石與花崗巖的年齡.高校地質(zhì)學(xué)報(bào),14(1):1–15.

甘曉春,李惠民,孫大中,金文山,趙風(fēng)清.1995.浙西南古元古代花崗質(zhì)巖石的年代.礦物巖石學(xué)雜志,14(1):1–8.

侯可軍,袁順達(dá).2010.寧蕪盆地火山-次火山巖的鋯石U-Pb年齡、Hf同位素組成及其地質(zhì)意義.巖石學(xué)報(bào),26(3):888–1002.

胡雄健,許金坤,童朝旭.1992.浙西南前寒武紀(jì)地質(zhì).北京:地質(zhì)出版社:1–278.

金文山,莊建民,楊傳夏.1992.福建前加里東區(qū)域變質(zhì)巖系的巖石學(xué)、地球化學(xué)和變質(zhì)作用特征.福建地質(zhì),11:241–251.

舒良樹.2006.華南前泥盆紀(jì)構(gòu)造演化:從華夏地塊到加里東期造山帶.高校地質(zhì)學(xué)報(bào),12(4):418–431.

吳福元,李獻(xiàn)華,楊進(jìn)輝,鄭永飛.2007.花崗巖成因研究的若干問(wèn)題.巖石學(xué)報(bào),23(6):1217–1238.

吳元保,鄭永飛.2004.鋯石成因礦物學(xué)研究及其對(duì)U-Pb年齡解釋的制約.科學(xué)通報(bào),49(16):1589–1604.

閆峻,彭戈,劉建敏,李全忠,陳志洪,史磊,劉曉強(qiáng),姜子朝.2012.下?lián)P子繁昌地區(qū)花崗巖成因:鋯石年代學(xué)和Hf-O 同位素制約.巖石學(xué)報(bào),28(10):3209–3227.

于津海,O’Reilly S Y,王麗娟,Griffin W L,蔣少涌,王汝成,徐夕生.2007.華夏地塊古老物質(zhì)的發(fā)現(xiàn)和前寒武紀(jì)地殼的形成.科學(xué)通報(bào),52(1):11–18.

鄭永飛,張少兵.2007.華南前寒武紀(jì)大陸地殼的形成和演化.科學(xué)通報(bào),52(1):1–10.

Ames L,Tilton G R and Zhou G.1993.Timing of collision of the Sino-Korean and Yangtse cratons:U-Pb zircon dating of coesite-bearing eclogites.Geology,21:339–342.

Andersen T.2002.Correction of common lead in U-Pb analyses that do not report204Pb.Chemical Geology,192:59–79.

Barbarin B.1999.A review of the relationships between granitoid types,their origins and their geodynamic environments.Lithos,46:605–626.

Belousova E A,Griffin W L,O’Reilly S Y and Fisher N I.2002.Igneous zircon:Trace element composition as an indicator of source rock type.Contributions to Mineralogy and Petrology,143:602–622.

Blichert–Toft J and Albarède F.1997.The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system.Earth and Planetary Science Letters,148:243–258.

Carter A,Roques D,Bristow C and Kinny P.2001.Understanding Mesozoic accretion in Southeast Asia:Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam.Geology,29(3):211–214.

Chen Z H and Xing G F.Petrogenesis of a Paleoproterozoic S-type granite,central Wuyishan terrane,SE China:Implications for crustal evolution of the Cathaysia Block.International Geology Review,doi.org/10.1080/00206814.2013.779065,in press.

Clemens J D,Holloway J R and White A J R.1986.Origin of an A-type granite:Experimental constraints.American Mineralogist,71:317–324.

Condie K C.1998.Episodic continental growth and supercontinents:A mantle avalanche connection?Earth Planet Sci Let,163:97–108.

Condie K C.2000.Episodic continental growth models:Afterthoughts and extensions.Tectonophysics,322:153–162.

Condie K C,Des Marais D J and Abbott D.2001.Precambrian superplumes and supercontinents:A record in black shales,carbon isotopes,and paleoclimates?Precambrian Res,106:239–260.

Griffin W L,Pearson N J,Elusive E,Jackson S E,Van A E,O’Reilly,S Y and She S R.2000.The Hf isotope composition of carbonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites.Geochimica et Cosmochimica Acta,64:133–147.

Griffin W L,Wang X,Jackson S E,Pearson N J,O’Reilly S Y,Xu X S and Zhou X M.2002.Zircon chemistry and magma mixing,SE China:In-situanalysis of Hf isotopes,Tonglu and Pingtan igneous complexes.Lithos,61(3-4):237–269.

He Y H,Zhao G C,Sun M,and Xia X P.2009.SHRIMP and LA-ICP-MS zircon geochronology of the Xiong’er volcanic rocks:Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton.Precambrian Research,168:213–222.

Hou G,Santosh M,Qian X,Lister G S and Li J.2008.Configuration of the Late Paleoproterozoic supercontinent Columbia:insights from radiating mafic dyke swarms.Gondwana Research,14:395–409.

Jahn B M.1998.Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen:Implications for continental subduction and collisional tectonics // Hacker B R and Liou J G.When Continental Collide:Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks,Kluwer Academic Publishers,Netherlands:203–239.

King P L,White A J R,Chappell B W and Allen C M.1997.Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt,Southeastern Australia.Journal of Petrology,38:371–391.

Lepvrier C,Maluski H,Van T V,Leyreloup A,Phan T T and Nguyen V V.2004.The Early Triassic Indosinian Orogeny in Vietnam (Truong Son Belt and Kontum Massif):Implications for the geodynamic evolution of Indochina.Tectonophysics,393(1–4):87–118.

Li S G,Xiao Y L,Liou D L,Chen Y Z,Ge N J,Zhang Z Q,Sun S S,Cong B,Zhang R Y,Hart S R and Wang S S.1993.Collision of the North China and Yangtse blocks and formation of coesite-bearing eclogites:Timing and processes.Chem Geol,109(1–4):89–111.

Li W X,Li X H and Li Z X.2005.Neoproterozoic bimodal magmatismin the Cathaysia Block of South China and its tectonic significance.Precambrian Research,136:51–66.

Li X H.1997.Timing of the Cathaysia Block formation:Constraints from SHRIMP U-Pb zircon geochronology.Episodes,20:188–192.

Li X H,Sun M,Wei G J,Liu Y,Lee C Y and Malpas J.2000.Geochemical and Sm-Nd isotopic study of amphibolites in the Cathaysia Block,southeastern China:Evidence for an extremely depleted mantle in the Paleoproterozoic.Precambrian Research,102:251–262.

Li Z X and Li X H.2007.Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A fiat-slab subduction model.Geology,35(2):179–182.

Li Z X,Li X H,Wartho J A,Clark C,Li W X,Zhang C L and Bao C.2010.Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny,southeastern South China:New age constraints and pressure-temperature conditions.Geological Society of America Bulletin,122:772–793.

Liu R,Zhou H,Zhang L,Zhong Z,Zeng W,Xiang H,Jin S,Lu X and Li C.2009.Paleoproterozoic reworking of ancient crust in the Cathaysia Block,South China:Evidence from zircon trace elements,U-Pb and Lu-Hf isotopes.Chinese Science Bulletin,54:1543–1554.

Liu Y,Gao S,Hu Z,Gao C,Zong K and Wang D.2010.Continental and oceanic crust recycling-induced meltperidotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths.Journal of Petrology,51:537–571.

Liu Y S,Hu Z C,Gao S,Günther D,Xu J,Gao C G and Chen H H.2008.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257:34–43.

Loiselle M C and Wones D R.1979.Characteristics of anorogenic granites.Geological Society of America Abstracts with Programs,11:468.

Ludwig K R.2001.ISOPLOT 2.49:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Centre,Special Publication,1:1–58.

Mushkin A,Navon O,Halicz L,Hartmann G and Stein M.2003.The petrogenesis of A-type magmas from the Amram Massif,Southern Israel.Journal of Petrology,44(5):815-832.

Peng P,Zhai M G,Richard E E,Guo J H,Liu F and Hu B.2008.A 1.78 Ga large igneous province in the North China craton:The Xiong’er Volcanic Province and the North China dyke swarm.Lithos,101:260–280.

Rogers J J W and Santosh M.2002.Configuration of Columbia,a Mesoproterozoic supercontinent.Gondwana Research,5:5–22.

Rudnick R L,Gao S,Ling W L,Liu Y S and McDonough W F.2004.Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia,North China craton.Lithos,77:609–637.

Scherer E,Munker C and Mezger K.2001.Calibration of the lutetium-hafnium clock.Science,293:683–687.

Sun M,Chen N,Zhao G,Wilde S A,Ye K,Guo J,Chen Y and Yuan C.2008.U-Pb Zircon and Sm-Nd isotopic study of the Huangtuling granulite,Dabie-Sulu belt,China:Implication for the Paleoproterozoic tectonic history of the Yangtze Craton.American Journal of Science,308:69–483.

Sun S S and McDonough W F.1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes //Saunder A D and Norry M J.Magmatism in the ocean basins.Geological Society Special Publications,42:313–345.

Wan Y S,Liu D Y,Xu M H,Zhuang J,Song B,Shi Y and Du L.2007.SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian,Cathaysia Block,China:Tectonic implications and the need to redefine lithostratigraphic units.Gondwana Research,12:166–183.

Wang Y J,Zhao G C,Fan W M,Peng T P,Sun L H and Xia X P.2007.LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province:Implications for back-arc basin magmatism in the Eastern Block,North China Craton.Precambrian Research,154:107–124.

Watson E B and Harrison T M.1983.Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types.Earth and Planetary Science Letters,64:295–304.

Whalen J B,Currie K L and Chappell B W.1987.A-type granites:Geochemical characteristics,discrimination and petrogenesis.Contributions to Mineralogy and Petrology,95:407–419.

Wu F Y,Sun D Y,Li H M,Jahn B M and Wilde S.2002.A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis.Chemical Geology,187:143–173.

Wu F Y,Yang Y H and Xie L W.2006.Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology.Chemical Geology,234:105–126.

Wu Y B,Zheng Y F,Gao S,Jiao W F and Liu Y S.2008.Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen.Lithos,101:308–322.

Xia Y,Xu X S and Zhu K Y.2012.Paleoproterozoic S- and A-type granites in southwestern Zhejiang:Magmatism metamorphism and implications for the crustal evolution of the Cathaysia basement.Precambrian Research,216-219:177–207.

Xiang H,Zhang L,Zhou H W,Zhong Z Q and Zeng W.2008.Geochronology and Hf isotopes of zircon from mafic-ultramafic basement rocks of southwestern Zhejiang:Response to the Indosinian orogeny of the metamorphic basement of the Cathaysia Block.Science in China(Series D–Earth Sciences),51:788–800.

Xu X S,O’Reilly S Y,Griffin W L,Wang X L,Pearson N J and He Z Y.2007.The crust of Cathaysia:Age,assembly and reworking of two terranes.Precambrian Research,158:51–78.

Yang J H,Wu F Y,Chung S L,Wilde S A and Chu M F.2006.A hybrid origin for Qianshan A-type granite,Northeast China:Geochemical and Sr-Nd-Hf isotopic evidence.Lithos,89:89–106.

Yu J H,O’Reilly S Y,Griffin W L,Zhou M F and Wang L J.2012.U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex,Southeastern China:Implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block.Precambrian Research,222-223:424–449.

Yu J H,O’Reilly S Y,Wang L J,Griffin W L,Zhang M,Wang R C,Jiang S Y and Shu L S.2008.Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons.Precambrian Research,164:1–15.

Yu J H,Wang L J,Griffin W L,O’Reilly S Y,Zhang M,Li C Z and Shu L S.2009.A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant (Wuyishan terrane),eastern Cathaysia Block,China.Precambrian Research,174:347–363.

Zhang S B,Zheng Y F,Wu Y B,Zhao Z F,Gao S and Wu F Y.2006.Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China.Precambrian Research,151:265–288.

Zhao G C,Cawood P A,Wilde S A and Sun M.2002.A review of the global 2.1–1.8 Ga orogens:Implications for a pre-Rodinian supercontinent.Earth Science Reviews,59:125–162.

Zhao G C,He Y H and Sun M.2009.The Xiong’er volcanic belt at the southern margin of the North China Craton:Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent.Gondwana Research,16:170–181.

Zhao G C,Sun M,Wilde S A and Li S Z.2004.A Paleo-Mesoproterozoic supercontinent:Assembly,growth and breakup.Earth Science Reviews,67:91–123.

Zhao X F,Zhou M F,Li J W,Sun M,Gao J F,Sun W H and Yang J H.2010.Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan,SW China:Implications for tectonic evolution of the Yangtze Block.Precambrian Research,182:57–69.

Zheng J P,Griffin W L,O’Reilly S Y,Zhang M and Pearson N.2006.Zircons in mantle xenoliths record the Triassic Yangtze-North China continental collision.Earth and Planetary Science Letters,247 (1–2):130–142.

猜你喜歡
流紋陸塊斑巖
極薄規(guī)格熱鍍鋅帶鋼鋅流紋控制技術(shù)
自然流紋藝術(shù)釉的研制
氧化還原作用對(duì)鈾成礦的意義——以相山西部流紋英安巖鈾礦為例
New Zealand
斑巖型礦床含礦斑巖與非含礦斑巖鑒定特征綜述
甘肅龍首山多金屬成礦帶地質(zhì)構(gòu)造特征研究
巖型礦床含礦斑巖與非含礦斑巖鑒定特征綜述
印度克拉通前寒武紀(jì)地質(zhì)特征
煌斑巖的研究進(jìn)展
相山流紋英安巖和流紋英安斑巖地球化學(xué)特征及意義
洛南县| 当涂县| 长阳| 玉环县| 云霄县| 开封县| 哈尔滨市| 白水县| 建阳市| 牙克石市| 博客| 盐边县| 北川| 婺源县| 陇南市| 平度市| 陆丰市| 仁布县| 泰安市| 榆中县| 和硕县| 鄂伦春自治旗| 津南区| 逊克县| 沛县| 绥芬河市| 海伦市| 曲周县| 青海省| 墨竹工卡县| 合阳县| 县级市| 淄博市| 赤城县| 辰溪县| 巩留县| 庆安县| 龙陵县| 舟曲县| 科尔| 栾城县|