伊順仁 黃藝珠 陳景容 福州大北農(nóng)生物技術(shù)有限公司 福州 350014
對于豬繁殖與呼吸障礙綜合征病毒免疫學(xué)方面的研究盡管還有許多令人期待的未知,但近年來的研究報(bào)道也有很多值得關(guān)注的內(nèi)容。文中針對豬繁殖與呼吸障礙綜合征病毒的特異性免疫應(yīng)答在保護(hù)性免疫中的作用、免疫調(diào)節(jié)及免疫逃避等內(nèi)容做一綜述,為臨床免疫的研究應(yīng)用提供借鑒。
1.1 體液免疫
1.1.1 PRRSV體液反應(yīng)動力學(xué)及ADE現(xiàn)象 健康豬感染PRRSV后可引發(fā)機(jī)體產(chǎn)生全身性的體液免疫應(yīng)答。體液免疫由胸腺依賴性抗原和非胸腺依賴性抗原(TI)誘發(fā)[1]。一些豬在感染 PRRSV 5~7 d就可檢測到抗體,到14 d時,所有豬的血清發(fā)生轉(zhuǎn)陽[2]。特異性IgM抗體在14 d時達(dá)到高峰,然后下降,到42 d時基本檢測不到。特異性IgG抗體在感染后21~49 d達(dá)到高峰[3]。但是,這些感染早期快速產(chǎn)生的IgM、IgG并沒有中和作用,其主要作用對象是GP5和N蛋白[4-5],結(jié)合在病毒粒子表面,可促進(jìn)病毒粒子進(jìn)入巨噬細(xì)胞。能迅速增強(qiáng)PRRSV在巨噬細(xì)胞中復(fù)制的能力,即所謂的抗體依賴性增強(qiáng)作用(Antibody-Dependent Enhancement,ADE)現(xiàn)象[4,6]。在肺泡巨噬細(xì)胞培養(yǎng)物中,加入一定效價的PRRSV抗體,可使PRRSV產(chǎn)量明顯增加,甚至?xí)岣?0~100倍。通過母源抗體獲得被動免疫的仔豬,一旦母源抗體水平下降至保護(hù)水平以下,PRRSV就會表現(xiàn)ADE現(xiàn)象,從而增加了仔豬的易感性。所以,亞中和水平的體液抗體反而能促進(jìn)PRRSV的感染。
Ne1son等(1994)研究了豬抗PRRSV美洲株的體液反應(yīng)動力學(xué),結(jié)果顯示:最早檢測到的抗體是抗N蛋白抗體,接著是抗M蛋白抗體,然后是抗GP5蛋白抗體[7]。另有研究顯示:非結(jié)構(gòu)蛋白2(Nsp2)包含一組非中和的B表位,可能是PRRSV的免疫活性蛋白[8-9]。目前大多數(shù)診斷檢測方法主要是針對N蛋白誘導(dǎo)產(chǎn)生的抗體,這些抗體出現(xiàn)在感染后第1周并持續(xù)幾個月,但抗體的滴度與保護(hù)力不相關(guān)。
1.1.2 PRRSV的中和抗體及其保護(hù)意義 中和抗體在抗PRRSV的保護(hù)性免疫反應(yīng)中起重要的作用。有人進(jìn)行了血清輸入實(shí)驗(yàn),證實(shí)單獨(dú)使用中和抗體可以完全防止PRRSV感染妊娠母豬。另外,無論是仔豬還是母豬,被動輸入的中和抗體可消除病毒血癥,對感染豬輸入中和抗體后,病毒分離和RTPCR等方法不能從這些豬的淋巴器官中檢測到病毒。同樣,中和抗體對幼豬也有保護(hù)作用,能夠100%保護(hù)易感動物抵抗PRRSV病毒血癥的最低抗體滴度是1:8[10]。但由于PRRSV感染后中和抗體的產(chǎn)生比較慢而且不規(guī)則,所以中和抗體在保護(hù)機(jī)體免受PRRSV感染中所起的作用也是有限的[11-12]。
通過被動免疫產(chǎn)生的中和抗體可以使易感動物受到暫時的保護(hù)[13]。在感染后一個月內(nèi),用常規(guī)病毒中和試驗(yàn)檢測不到中和抗體。添加新鮮的補(bǔ)體或延長病毒與血清的作用時間可以增加中和試驗(yàn)的敏感性,可在感染后9~12 d檢測到中和抗體[14]。另有研究顯示,補(bǔ)體可使中和試驗(yàn)提高一個滴度[12,15]。但是即使采用改良的病毒中和試驗(yàn),感染后42 d中和抗體滴度依然很低,僅為1:32~1:64。歐洲株和美洲株產(chǎn)生的中和抗體,都可在感染28 d后檢測到。
有報(bào)道顯示 M、GP2a、GP3、GP4 和 GP5 上都有病毒的中和表位[5,16-20]。但在誘導(dǎo)中和抗體產(chǎn)生方面GP5更加重要。用PRRSV GP5接種免疫豬后可誘導(dǎo)產(chǎn)生中等水平的中和抗體,盡管如此,當(dāng)用同種(或同源)毒株攻毒時,豬可被保護(hù),僅表現(xiàn)輕微發(fā)熱,用MARC-145細(xì)胞只能從肺和縱膈淋巴結(jié)回收到病毒,攻毒 2 周后,中和抗體滴度增加到1:128[21-22]。
無論是母豬還是仔豬,中和抗體在血清中的滴度與對豬抗PRRSV感染的免疫保護(hù)作用呈正相關(guān)。向懷孕母豬體內(nèi)輸入1:8或更高滴度的抗體,可阻止仔豬病毒血癥的出現(xiàn);輸入1:16滴度的抗體,可保護(hù)母豬免于繁殖障礙和胎盤感染;當(dāng)?shù)味冗_(dá)到1:32時,則可清除病毒感染[23]。這些結(jié)果表明,如果疫苗能夠誘導(dǎo)產(chǎn)生1:32的抗體滴度,則能有效地預(yù)防疾病,并且可在清除PRRSV中成為有力的手段。
1.2 細(xì)胞免疫 細(xì)胞免疫對于預(yù)防PRRSV感染具有十分重要的作用。Mo1itor等(1997)報(bào)道,PRRSV感染后不僅產(chǎn)生針對病毒多肽的以各種特異性抗體為特征的體液疫,而且還產(chǎn)生CD4+細(xì)胞增殖和遲發(fā)型變態(tài)反應(yīng)為特征的細(xì)胞免疫[24]。一般在外周血循環(huán)中CD4+T細(xì)胞的百分比與感染豬發(fā)病的嚴(yán)重程度有直接關(guān)系,CD4+比例愈小,感染豬越有可能發(fā)生嚴(yán)重癥狀。由此看出,豬感染疾病的臨床診斷在一定程度上建立于CD4+水平上。
PRRSV感染后第4周左右出現(xiàn)抗原特異性淋巴細(xì)胞的增生,第7周左右達(dá)到高峰,第11周左右開始下降,最多可以持續(xù)3個月[25]。此增殖性反應(yīng)可被由抗CD4+和MHC-Ⅱ類抗原產(chǎn)生的抗體所抑制,說明這種反應(yīng)是依賴CD4+和T淋巴細(xì)胞的[26]。
在自然感染PRRSV的豬體內(nèi)淋巴細(xì)胞亞群會發(fā)生變化,外周血中的CD4+/CD8+細(xì)胞的比例會顯著降低。但是PRRSV并非總是誘導(dǎo)這樣的變化,由于毒株的來源及毒力的差異,有的甚至?xí)a(chǎn)生相反的結(jié)果[27]。Bruin等(2000)通過淋巴細(xì)胞增生試驗(yàn)和病毒特異性干擾素產(chǎn)生的細(xì)胞試驗(yàn)比較了PRRSV野毒接種豬、偽狂犬病病毒 (PRV)疫苗接種豬及PRRSV疫苗接種豬的細(xì)胞免疫反應(yīng)情況,結(jié)果發(fā)現(xiàn),PRRSV野毒接種豬可產(chǎn)生長期而強(qiáng)烈的細(xì)胞免疫反應(yīng),與PRV疫苗接種豬的細(xì)胞免疫反應(yīng)相當(dāng)。而PRRSV減毒活疫苗接種豬的細(xì)胞免疫反應(yīng)與保護(hù)性極好的PRV疫苗誘導(dǎo)的細(xì)胞免疫反應(yīng)效果相差甚遠(yuǎn)[28]。
PRRSV 的 GP2a、GP3、GP4、GP5、M、N 蛋白都能刺激T淋巴細(xì)胞的增生[29]。但是,N蛋白的作用最弱,M蛋白的作用最強(qiáng)。各種蛋白的誘導(dǎo)作用和該蛋白的濃度呈正相關(guān)。這表明M蛋白在細(xì)胞免疫中居主要地位。
2.1 干擾素 PRRSV可以引起繼發(fā)感染,通過阻斷一種抗病毒蛋白的激活或抑制豬體內(nèi)α干擾素(IFN-α)的活性是PRRSV免疫逃避的防御機(jī)制之一。A1bina等(1998)發(fā)現(xiàn)PRRSV在肺泡巨噬細(xì)胞中復(fù)制,而巨噬細(xì)胞和PBMC都不產(chǎn)生IFN-α[30]。Góm ez-Laguna等(2010)發(fā)現(xiàn)PRRSV可誘導(dǎo)產(chǎn)生少量IFN-α,但它在血清中的出現(xiàn)較晚,與病毒血癥的消退相吻合[31]。PRRSV感染可能干擾維甲酸誘導(dǎo)基因-Ⅰ(RIG-Ⅰ)、To11樣受體 3(TLR3)和 IPS-1(IFN-β啟動刺激因子1)信號轉(zhuǎn)導(dǎo)來抑制IFN-β啟動子活性及IFN-β產(chǎn)生,減少IFN-α表達(dá)量,從而減弱固有免疫應(yīng)答,繼而影響獲得性免疫應(yīng)答(包括延緩產(chǎn)生IFN-γ和中和抗體),并最終引起病毒血癥和持續(xù)性感染[32-34]。
另有體外的研究結(jié)果表明IFN-α和IFN-β在凈化PRRSV中起重要作用。重組豬IFN-α(rpIFN-α)可以抑制PRRSV在巨噬細(xì)胞中的復(fù)制并誘導(dǎo)其他抗 PRRSV 介質(zhì)因子的轉(zhuǎn)錄[30,34-35]。用含有豬IFN-β(swIFN-β)表達(dá)的細(xì)胞上清液孵育M arc-145細(xì)胞后再接種PRRSV,結(jié)果未出現(xiàn)細(xì)胞病變。而用不含swIFN-β的細(xì)胞培養(yǎng)液孵育M arc-145細(xì)胞,則在病毒感染后出現(xiàn)細(xì)胞病變。此外用swIFN-β培養(yǎng)液孵育分離于PRRSV陰性豬的支氣管肺泡灌肺泡巨噬細(xì)胞后再接種PRRSV,用Rea1time RT-PCR測定發(fā)現(xiàn)病毒RNA載量顯著減少;這些研究結(jié)果充分表明,Ⅰ型IFN在干預(yù)PRRSV感染方面有很大潛力。
2.2 細(xì)胞因子 IFN-γ是Th1類細(xì)胞因子的典型代表,并且是促進(jìn)細(xì)胞免疫應(yīng)答的效應(yīng)因子,可抑制PRRSV在巨噬細(xì)胞中的復(fù)制,其作用機(jī)制是能阻斷病毒蛋白的正常合成,還能增強(qiáng)巨噬細(xì)胞產(chǎn)生超氧負(fù)離子的能力。提示IFN-γ可以抑制PRRSV對巨噬細(xì)胞的感染。但是,低水平的IFN-γ不能消除PRRSV[36],且在病毒感染期間影響機(jī)體免疫系統(tǒng)[37],可以說,PRRSV持續(xù)性感染與機(jī)體有效細(xì)胞免疫應(yīng)答低下有關(guān)。
IL-1是致炎性細(xì)胞因子,參與免疫防御抗感染。Van Reeth等(2000)研究發(fā)現(xiàn)接種PRRSV后第3~10 d,感染豬肺臟產(chǎn)生高水平的 IL-1[38]。Góm ez-Laguna等(2010)發(fā)現(xiàn)感染PRRSV后,豬肺臟損傷程度、巨噬細(xì)胞數(shù)量與IL-1α表達(dá)量顯著相關(guān)[31]。Labarque等(2003)發(fā)現(xiàn)在感染后第9 d IL-1產(chǎn)量達(dá)到峰值,而未感染PRRSV的細(xì)胞凋亡數(shù)量急劇上升[39]。因此,IL-1可能介導(dǎo)PRRSV感染后的病理發(fā)生。
IL-2是調(diào)節(jié)細(xì)胞介導(dǎo)免疫應(yīng)答的主要細(xì)胞因子之一。Rompato等(2006)用IL-2表達(dá)質(zhì)粒作為PRRSV ORF7DNA疫苗佐劑給豬免疫,經(jīng)過二免后攻毒發(fā)現(xiàn),IL-2能明顯提高T細(xì)胞增殖[40]。Xue等(2004)用IL-2作為PRRSV ORF5和ORF7疫苗的佐劑一起免疫豬,然后用同型PRRSV攻毒,發(fā)現(xiàn)豬血清、PAM和淋巴組織中病毒載量明顯減少[41]??梢?,應(yīng)用IL-2作為PRRSV疫苗佐劑有非常不錯的前景。
IL-6與豬的細(xì)胞免疫可能有關(guān)。Liu等(2009)發(fā)現(xiàn)8周齡的豬感染PRRSV后第7 d,豬肺泡巨噬細(xì)胞產(chǎn)生大量 IL-6[42]。A1bina等(1998)報(bào)道,8 周齡的豬感染PRRSV后第3周,CD8+T細(xì)胞和IgM顯著增多[30]。CD8+T細(xì)胞能殺傷表達(dá)抗原的靶細(xì)胞,它是抗病毒感染的重要效應(yīng)細(xì)胞。IL-6誘導(dǎo)CD8+細(xì)胞大量增殖,對于清除PRRSV感染有潛在作用。
IL-8是病毒急性感染后免疫防御機(jī)制的一部分。Aasted等(2002)發(fā)現(xiàn)經(jīng)子宮感染PRRSV的小母豬在2~6周時,血液中檢測不到IL-8,且巨噬細(xì)胞減少;這可能是由于PRRSV復(fù)制導(dǎo)致巨噬細(xì)胞功能受損,使生成IL-8水平降低。因而血液循環(huán)中的IL-8水平可能反映巨噬細(xì)胞的功能狀態(tài)[43]。Ait-A1i等(2007)研究發(fā)現(xiàn)感染PRRSV 2 h后,長白豬和皮特蘭豬的肺泡巨噬細(xì)胞中IL-8水平急劇升高,隨后IL-8水平穩(wěn)步升高。進(jìn)一步研究發(fā)現(xiàn),累積高水平IL-8能使PRRSV減少或延遲復(fù)制[44]。由此可見,IL-8參與豬機(jī)體抵御PRRSV感染過程。
IL-10對PRRSV的免疫應(yīng)答調(diào)節(jié)起很重要的作用。不論是感染PRRSV歐洲株還是美洲株,豬外周血單核細(xì)胞(PBMCs)中IL-10的mRNA水平均得到了提高,且支氣管肺泡灌洗液中IL-10的濃度也增加了[45]。某些歐洲株能夠在陰性豬的PBMCs中誘導(dǎo)產(chǎn)生強(qiáng)烈的IL-10反應(yīng),表明這是一種非記憶特性的[15]。接種IL-10誘導(dǎo)型毒株的豬,其特異性IFN-γ的分泌頻率要低于接種非IL-10誘導(dǎo)型毒株的豬,這表明IL-10的產(chǎn)生可能是PRRSV感染后體液免疫受到一定抑制的原因之一[46]。給PRRSV血清陰性豬接種PRRSV之前轉(zhuǎn)染IL-10 mRNA,PBMCs內(nèi)IL-10和IL-12 mRNA顯著減少,而IFN-γmRNA升高,TNF-α和IL-4 mRNA沒有變化。這表明外源的IL-10 mRNA可以干擾PRRSV感染后IL-10 mRNA 的表達(dá)[47]。
PRRSV感染后對IL-12表達(dá)的影響,目前相關(guān)文獻(xiàn)的研究結(jié)果并不一致。有研究結(jié)果指出,PRRSV能刺激機(jī)體產(chǎn)生少量IL-12,但表達(dá)水平很弱[48-51]。
體外研究結(jié)果也發(fā)現(xiàn),不論在mRNA還是在蛋白水平,PBMCs感染PRRSV后表達(dá)的IL-12量也非常少[52]。但PRRSV感染豬的樹突狀細(xì)胞(DCs)中IL-12水平增高[53],感染PRRSV后第48 h,豬DCs中IL-12的濃度大約是紫外線滅活PRRSV處理的DCs中IL-12濃度的2.7倍,提示PRRSV對不同組織細(xì)胞內(nèi)的IL-12的影響不同。
IL-18能在免疫活性細(xì)胞中誘導(dǎo)IFN-γ、GMCSF、TNF-α和IL-1等細(xì)胞因子,其中以刺激產(chǎn)生IFN-γ的能力最為顯著,它和IL-12共同協(xié)調(diào)刺激釋放IFN-γ。近來的研究結(jié)果發(fā)現(xiàn),IL-18有潛在促進(jìn)PRRSV免疫的作用。Shen等(2007)給小豬接種rFPV-IL-18后攻擊PRRSV,接種rFPV-IL-18的小豬產(chǎn)生的中和抗體水平、IFN-γ量和T淋巴細(xì)胞免疫增殖反應(yīng)高于對照組,這表明IL-18在某種程度上能有效提高機(jī)體產(chǎn)生PRRSV特異的體液免疫和細(xì)胞免疫[54];但目前沒有內(nèi)源性IL-18參與PRRS免疫調(diào)節(jié)的研究結(jié)論。
GM-CSF可促進(jìn)DCs、中性白細(xì)胞和巨噬細(xì)胞成熟,活化成熟粒細(xì)胞和單核吞噬細(xì)胞,調(diào)節(jié)單核細(xì)胞衍生的DCs、郎格罕氏細(xì)胞和抗原遞呈細(xì)胞。Wang等(2009)構(gòu)建出融合表達(dá)PRRSV GP3及GP5與GM-CSF的重組腺病毒,給豬免疫rAd-GF35(含 GM-CSF)后所產(chǎn)生的 PRRSV GP3/GP5 的特異抗體水平明顯高于無GM-CSF組對照豬,PBMCs中PRRSV增殖指數(shù)明顯高于對照組[48]。提示GM-CSF能明顯增強(qiáng)豬體針對PRRSV的體液免疫和細(xì)胞免疫。
TNF-α是活化的巨噬細(xì)胞、DC和T細(xì)胞早期分泌產(chǎn)生的細(xì)胞因子,可協(xié)同IFN-γ抵抗病毒感染細(xì)胞,但它在PRRSV感染后處于受抑制狀態(tài)。Murtaugh等(2002)發(fā)現(xiàn)感染PRRSV后,豬肺臟中TNF-α表達(dá)受抑制或表達(dá)量明顯減少,并且抑制病毒復(fù)制的能力減弱,導(dǎo)致宿主針對PRRSV的免疫應(yīng)答減弱,使呼吸道出現(xiàn)PRRS亞臨床癥狀,還能引起機(jī)體持續(xù)感染 PRRSV[33]。Subramaniam 等(2010)研究發(fā)現(xiàn),在體外感染PRRSV后,PBMCs的TNF-α轉(zhuǎn)錄被抑制,細(xì)胞內(nèi)也未測到TNF-α蛋白[55]。TNF-α的表達(dá)與病毒復(fù)制呈明顯的負(fù)相關(guān),感染后12h病毒復(fù)制達(dá)到高峰,而TNF-α水平最低。TNF-α表達(dá)水平低可能是PRRSV逃逸宿主免疫應(yīng)答的機(jī)制之一[31],因此,促進(jìn)內(nèi)源性TNF-α的表達(dá)有助于豬體抗PRRSV感染。
TNF-β的表達(dá)水平可能與PRRSV致病力有一定相關(guān)性。有報(bào)道指出,豬接種PRRSV美洲株2周后PBMCs中TNF-β和IL-10基因表達(dá)提高[52],而豬感染PRRSV歐洲株后,PBMC中TNF-β水平無顯著變化,但是IL-10水平提高[12]。同樣,在感染PRRSV歐洲株的DCs中未能檢測到TNF-β,而感染美洲株的DCs中TNF-βmRNA表達(dá)提高[56]。由于美洲型PRRSV株的致病力一般高于歐洲型毒株,上述2個研究小組的發(fā)現(xiàn),提示TNF-β與PRRSV病理發(fā)生有一定的相關(guān)性,PRRSV的致病力對TNF-β的影響仍待進(jìn)一步深入研究。
2.3 抗原提呈 PRRSV可能會干擾正確的抗原提呈和T淋巴細(xì)胞的活化。PRRSV能下調(diào)樹突細(xì)胞(DCs)中主要組織相容性復(fù)合體MHC-Ⅰ的表達(dá),不過這與混合型白細(xì)胞反應(yīng)中增值反應(yīng)的減弱無關(guān)[35]。當(dāng)PRRSV感染激活單核細(xì)胞衍生的樹突細(xì)胞時,CD11b/c、CD14、CD80/86、MHC-Ⅰ、MHC-Ⅱ的表達(dá)均下調(diào)[57-58],用滅活的PRRSV時則沒有下調(diào)。同時,當(dāng)受感染的樹突細(xì)胞與同源的或同種異體的淋巴細(xì)胞配套使用時,增值反應(yīng)減弱,由此表明受感染的樹突細(xì)胞抗原提呈能力下降[58]。PRRSV能夠通過改變樹突狀細(xì)胞和巨噬細(xì)胞的細(xì)胞因子類型,以及通過改變參與抗原提呈的分子的表達(dá),從而減弱獲得性免疫應(yīng)答。
2.4 GP5的誘騙表位和糖基化位點(diǎn) GP5蛋白胞外結(jié)構(gòu)域氨基端高度糖基化,并與M蛋白形成異原二聚體[59-60],用反向免疫法和其他涉及重疊蛋白的研究證實(shí)GP5主要中和位點(diǎn)與中和抗體的活動相關(guān),這個位點(diǎn)的最小抗原區(qū)域在33~47位氨基酸,已被確認(rèn)是中和表位的核心區(qū)域[13,61-63],這個核心區(qū)域被稱做B位點(diǎn),此中和位點(diǎn)在糖基化位點(diǎn)的側(cè)面。GP5的另一個優(yōu)勢顯性表位A位點(diǎn),位于GP5氨基末端的胞外域(第27~31位氨基酸處),具有誘騙表位的特性,與人HIV-1中的Decoy相似[13]。Decoy位點(diǎn)是導(dǎo)致中和位點(diǎn)免疫反應(yīng)性降低的毗鄰于中和位點(diǎn)的位點(diǎn)??刮稽c(diǎn)A的抗體在PRRSV感染早期被誘導(dǎo)產(chǎn)生,而在感染后前30 d不能檢測到抗 B 位點(diǎn)的抗體[63-64]。
因此,認(rèn)為A位點(diǎn)與中和B位點(diǎn)的同時出現(xiàn)將抑制對中和位點(diǎn)B的反應(yīng)??怪泻臀稽c(diǎn)B的抗體的延遲產(chǎn)生可以解釋早期研究者所描述的無中和抗體產(chǎn)生的原因,因此,中和抗體延緩產(chǎn)生是PRRSV逃逸免疫監(jiān)視的主要機(jī)制,也是PRRSV感染的主要特征。
但是,誘騙表位不是PRRSV逃避體液免疫的唯一方式。GP5蛋白含有4個糖基化位點(diǎn),這些位點(diǎn)位于或靠近中和位點(diǎn)內(nèi)。在受感染豬中,上游高變區(qū)缺失糖基化位點(diǎn)的美洲分離株與下游N-44位缺失糖基化位點(diǎn)的毒株相比,產(chǎn)生中和抗體的能力快速而且強(qiáng)烈[65]。西班牙分離株在1991-2005年的進(jìn)化過程中呈現(xiàn)出一個趨勢,即N-46(相當(dāng)于美洲株的N-44位置)糖基化位點(diǎn)逐漸消失,而在側(cè)面(N-37和N-53)保持或獲得新的糖基化位點(diǎn),這與誘導(dǎo)較弱的中和抗體毒株是一致的[66]。
[1] Frai1e L,Ca1samig1ia M,Mateu E,et a1.Preva1ence of in fection with porcine circovirus-2 (PCV-2)and porcine reproductive and respiratory syndrome virus(PRRSV)in an integrated swine production system experiencing postweaning mu1tisystemic wasting syndrome [J].Can J Vet Res,2009,73(4):308-312.
[2] Yoon K J,Zimmerman JJ,Swenson SL,et a1.Characterizati on of the humora1 mimune response to porcine reproductive and respiratory syndrome (PRRS)virus infection[J].JVet DiagnInvest,1995,7(3):305-312.
[3] Vezina SA,Loemba H,F(xiàn)ournier M,et a1.Antibody producti on and b1astogenic response in pigs experimenta11y infected with porcine reproductive and respiratory syndrome virus [J].Canadian Journa1 of Veterinary Research,1996,60:94-99.
[4] Yoon KJ,Wu L L,Zimmerman JJ,et a1.Antibody-dependent enhancement(ADE)of porcine reproductive and respiratory syndrome virus (PRRSV)infection in pigs[J].Vira1 Immuno1ogy,1996,9:51-63.
[5] Cance1-Tirado SM,Evans RB,Yoon K J,et a1.Monoc1ona1 antibody ana1ysis of porcine reproductive and respiratory syndrome virus epitopes associated with antibodydependent enhancement and neutra1ization of virus infection[J].Veterinary Immuno1ogy and Immunopatho1ogy,2004,102:249-262.
[6] Yoon K J,Wu L L,Zimmerman JJ,et a1.Fie1d iso1ates of porcine reproductive and respiratory syndrome virus(PRRSV)vary in their susceptibi1ity to antibody dependent enhancement(ADE)of infection[J].Veterinary Microbio1ogy,1997,55:277-287.
[7] Ne1son E A,Christopher-Hennings J,Benfie1d D A,et a1.Serum immune responses to the proteins of porcine reproductive and respiratory syndrome(PRRS)virus[J].Journa1 of Veterinary Diagnostic Investigation,1994(6):410-415.
[8] O1eksiewicz M B,Botner A,Toft P,et a1.Epitope mapping porcine reproductive and respiratory syndrome virus by phage disp1ay:the nsp2 fragment of the rep1icase po1yprotein contains a c1uster of B-ce11 epitopes[J].Journa1of Viro1ogy,2001,75:3277-3290.
[9] Lima M D,Pattnaik A K,F(xiàn)1ores E F,et a1.Sero1ogic marker candidates identified among B-ce11 1inear epitopes of Nsp2 and structura1 proteins of a North American strain of porcine eproductive and respiratory syndrome virus[J].Viro1ogy,2006,353:410-421.
[10] Gorcyca D E,Sch1esinger K,Ch1adek D,et a1.A summary of experimenta1 and fie1d studies eva1uating the safety and efficacy of RespPRRS/Repro for the contro1of PRRS-induced reproductive disease[J].Vet,1995,11:102-107.
[11] Murtaugh M P,Xiao Z,Johnson C R,et a1.Porcine immunity to porcine reproductive and respiratory syndrome virus(PRRSV):systemic and 1oca1response in acute and persistent infection[J].Proceedings of the IX Internationa1 Sym posium on Nidoviruses(Arteriviruses and Coronaviruses),2003(7):61.
[12] Diaz I,Darwich L,Pappaterra G,et a1.Immune responses of pigs after experimenta1infection with a European strain of porcine reproductive and respiratory syndrome virus[J].Journa1of Genera1Viro1ogy,2005,86:1943-1951.
[13] Ostrowski M,Ga1eota J A,Jar A M,et a1.Identification of neutra1izing and nonneutra1izing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain [J].Journa1 of Viro1ogy,2002,76:4241-4250.
[14] Takikawa N,Kobayashi S,Ide S,et a1.Detection of antibodies against porcine reproductive and respiratory syndrome(PRRS)virus in swine sera by enzyme-1inked immunosorbent assay[J].Journa1of Veterinary Medica1 Science,1996,58:355-357.
[15] Diaz I,Darwich L,Pappaterra G,et a1.Different European-type vaccines against porcine reproductive and respiratory syndrome virus have different immuno1ogica1 properties and confer different protection to pigs[J].Viro1ogy,2006,351:249-259.
[16] Kim W I,Yoon K J.Mo1ecu1ar assessment of the ro1e of enve1op eassociated structura1proteins in cross neutra1ization among different PRRS viruses [J].Virus genes,2008,37:380-391.
[17] P1agemann P G.Neutra1izing antibody formation in swine infected with seven strains of porcine reproductive and respiratory syndrome virus as measured by indirect ELISA with peptides containing the GP5 neutra1-ization epitope[J].Vira1Immuno1,2006,19:285-293.
[18] Ansari I H,Kwon B,Osorio F A,et a1.Inf1uence of N-1inked g1ycosy1ation of porcine reproductive and respiratory syndrome virus GP5 on virus infectivity,antigenicity,and abi1ity to induce neutra1izing antibodies[J].JViro1,2006,80:3994-4004.
[19] Van Nieuwstadt A P,Meu1enberg J J,van Essen-Zanbergen A,et a1.Proteins encoded by open reading frames 3 and 4 of the genome of Le1ystad virus(Arteriviridae)are structura1 proteins of the virion [J].J Viro1,1996,70:4767-4772.
[20] Yang L,F(xiàn)rey M L,Yoon K J,et a1.Categorization of North American porcine reproductive and respiratory syndrome viruses:epitopic profi1es of the N,M,GP5 and GP3 proteins and susceptibi1ity to neutra1ization[J].Arch Viro1,2000,145:1599-1619.
[21] Pirzadeh B,Dea S.Immune response in pigs vaccinated with p1asmid DNA encoding ORF5 of porcine reprodu ctive and respiratory syndrome virus[J].Gen Viro1,1998,79:989-999.
[22] Qiu H J,Tian Z J,Tong G Z,et a1.Protective immunity induced by a recombinant pseudorabies virus expres sing the GP5 of porcine reproductive and respiratory syndrome virus in pig1ets[J].Vet Immuno1Immun opatho1,2005,106(3/4):309-319.
[23] Osorio F A,Ga1eota J A,Ne1son E,et a1.Passive transfer of virusspecific antibodies confers protection against reproductive fai1ure induced by a viru1ent strain of porcine reproductive and respiratory syndrome virus and estab1ishes steri1izing immunity [J].Viro1ogy,2002,302:9-20.
[24] Mo1it T W,Bautist E M,Choi C S.Immunity to PRRSV:Doub1e edged sword[J].Vet Microbio1,1997,55:265-267.
[25] Rossow K D,Co11ins JE,Goya1SM,et a1.Pathogenesis of porcine reproductive and respiratory syndrome virus infection in gnotobiotic pigs [J].Vet Patho1,1995,32(4):361-373.
[26] Saa1mu11er A,Aasted B,Cana1s A,et a1.Ana1yses of mAb reactive with porcine CD8[J].Vet Immuno1immunopatho1,1994,43(1/3):249-254.
[27] Ro1and R R,Rpbinson B,Stefanick J ,et a1.Inhibition of porcine reproductive and respiratory syndrome virus by interferon-gamma and recover of virus rep1ication with 2-aminopurine[J].Arch Viro1,2001,146(3):539-555.
[28] De Bruin M G M,Samsom J N,Voermans J J M,et a1.Effects of a porcine reproductive and respiratory syndrome virus infection on the deve1opment of the immune response against pseudorabies virus [J].Veterinary Immuno1ogy and Immunopatho1ogy,2000,76:125-135.
[29] Bautista E M,Suarez P,Mo1itor T W.T ce11responses to the structura1 po1ypeptides of porcine reproductive and respiratory syndrome virus[J].Arch Viro1,1999,144(1):117-134.
[30] A1bina E,Carrat C,Char1ey B.Interferon-a1pha response to swine arterivirus(PoAV),the porcine reproductive and respiratory syndrome virus[J].JInterf Cytok Res,1998,18:485-490.
[31] Gómez-Laguna J,Sa1guero F J,Barranco I,et a1.Cytokine expression by macrophages in the 1ung of pigs infected with the porcine reproductive and respiratory syndrome virus[J].JComppath,2010,142(1):51-60.
[32] Luo R,Xiao S,Jiang Y,et a1.Porcine reproductive and respiratory syndrome virus(PRRSV)suppresses in-terferon-beta production by interfering with RIG-I signa1ing pathway[J].Mo1Immuno1,2008,45(10):2839-2846.
[33] Murtaugh M P,Xiao Z,Zuckermann F.Immuno1ogica1 responses of swine to porcine reproductive and respiratory syndrome virus infection [J].Vira1 Immuno1,2002,15(4):533-547.
[34] Overend C,Mitche11 R,He D,et a1.Recombinant swine beta interferon protects swine a1veo1ar macrophages and Marc-145 ce11s from infection with porcine reproductive and respiratory syndrome virus[J].JGen Viro1,2007,88:925-931.
[35] Loving C L,Brockmeier S L,Sacco R E.Differentia1 type I interferon activation and susceptibi1ity of dendritic ce11 popu1ations to porcine arterivirus[J].Immuno1ogy,2007,120(2):217-229.
[36] Suradhat S,Thanawongnuwech R,Poovorawan Y.Upregu1ation of IL-10 gene expression in porcine in porcine periphera1 b1ood mononuc1ear ce11s by porcine reproductive and respiratory syndrome virus[J].JGen Viro1,2003,84:453-459.
[37] Row1and R R,Robinson B,Stefanick J,et a1.Inhibition of porcine reproductive and respiratory syndrome virus rep1ication with 2-aminopurine [J].Arch Viro1,2001,146(3):539-555.
[38] Van Reeth K,Nauwynck H.Proinf1ammatory cytokines and vira1 respiratory disease in pigs [J].Vet Res,2000,1(2):187-213.
[39] Labarque G,Van Gucht S,Nauwynck H,et a1.Apoptosis in the 1ungs of pigs infected with porcine reproductive and respiratory syndrome virus and associations with the production of apoptogenic cytokines[J].Vet Res,2003,34(3):249-260.
[40] Rompato G,Ling E,Chen Z,et a1.Positive inductive effect of IL-2 on virus-specific ce11u1ar responses e1icited by a PRRSV-ORF7 DNA vaccine swine[J].Vet Immuno1immunop,2006,109(1/2):151-160.
[41]Xue Q,Zhao Y G,Zhou Y J,et a1.Immune responses of swine fo11owing DNA immunization with p1asmids encoding porcine reproductive and respiratory syndromevirus ORFs 5 and 7,and porcine IL-2 and IFN-γ [J].Veterinary Immuno1ogy and Immunopatho1ogy,2004,102:291-298.
[42] Liu C,Chaung H,Chang H,et a1.Expression of To11-1ike receptor mRNA and cytokines in pigs infected with porcine reproductive and respiratory syndrome virus[J].Vet Micobio1,2009,136(3/4):266-276.
[43] Aasted B,Bach P,Nie1sen J,et a1.Cytokine profi1es in periphera1 b1ood mononuc1ear ce11s and 1ymph node ce11s from pig1ets in utero with porcine reproductive and respiratory syndrome virus[J].C1in Diagn Lab Immun,2002,9(6):1229-1234.
[44] Ait-Ait T,Wi1son A D,Westcott D G,et a1.Innate immune responses to rep1ication of porcine reproductive and respiratory syndrome virus iso1ated swine a1veo1ar macrophage[J].Vira1Immuno1,2007,20(1):105-118.
[45] Suradhat S,Thanawongnuwech R,Poovorawan Y.Upregu1ation of IL-10 gene expression in porcine periphera1 b1ood mononuc1ear ce11s by porcine reproductive and respiratory syndrome virus[J].Journa1of Genera1 Viro1ogy,2003,84:453-459.
[46] Charerntantanaku1 W,P1att R,Roth J A.Effects of porcine reproductive and respiratory syndrome virusinfected antigen-presenting ce11s on T ce11 activation and antivira1cytokine production[J].Vira1Immuno1ogy,2006,19:646-661.
[47] Charerntantanaku1 W,Kasinrerk W.Inter1eukin-10 antisense o1igodeoxynuc1eotide suppresses IL-10 expression and effects on proinf1ammatory cytokine responses to porcine reproductive and respiratory syndrome virus[J].Vira1Immuno1,2010,23(4):425-435.
[48] Wang X,Li J,Jiang P,et a1.GM-CSF fused with GP3 and GP5 of porcine reproductive and respiratory syndrome virus increased the immune responses and protective efficacy against viru1ent PRRSV chan11enge[J].Virus Res,2009,143(1):24-32.
[49] Thanawongnuwech R,Young T F,Thacker B J,et a1.Differentia1 production of proinf1ammatory cytokines:in vitro PRRSV and Mycop1asma hyopneumoniae co-infection mode1[J].Vet Immuno1Immunop,2001,79(1/2):115-127.
[50] Chung H K,Chae C.Expression of inter1eukin-10 and inter1eukin-12 in pig1ets experimenta11y infected with porcine reproductive and respiratory syndrome virus(PRRSV)[J].JComp Path,2003,129(2/3):205-212.
[51] Xiao Z,Batista L,Dee S,et a1.Immune responses of swine fo11owing DNA immunization with p1asmids encoding porcine reproductive and respiratory syndrome virus ORFs 5 and 7,and porcine IL-2 and IFN-gamma[J].Vet Immuno1 immunop,2004,102(3):291-298.
[52] Royaee A R,Husmann R J,Dawson H D,et a1.Deciphering the invo1vement of innate immune factors in the deve1opment of the host response to PRRSV vaccination[J].Vet Immuno1Immunop,2004,102(3):199-216.
[53] Park J Y,Kim H S,Seo SH.Characterization of interaction between porcine reproductive and respiratory syndrome virus and porcine dendritic ce11s[J].J Microbio1Biotechno1,2008,18(10):1709-1716.
[54] Shen G,Jin N,Ma M,et a1.Immune responses of pigs inocu1ated with a recombinant fow1pox virus coexpressing GP5/GP3 of porcine reproductive and respiratory syndrome virus and swine IL-18[J].Vaccine,2007,25(21):4193-4202.
[55] Subramaniam S,Kwon B,Beura L K,et a1.Porcine reproductive and respiratory syndrome virus non-structura1 protein 1 suppresses tumor necrosis factor-a1pha promoter activation by inhibiting NF-κB and Sp1[J].Viro1ogy,2010,406(2):270-279.
[56] Si1va-Campa E,Cordoba L,F(xiàn)rai1e L,et a1.European genotype of porcine reproductive and respiratory syndrome (PRRSV)infects monocyte-derived dendritic ce11s but does not induce Treg ce11s [J].Viro1ogy,2010,396(2):264-271.
[57] Genini S,De1putte PL,Ma1inverni R,et a1.Genomewide transcriptiona1 response of primary a1veo1ar macrophages fo11owinginfection with porcine reproductive and respiratory syndrome virus.J Gen Viro1,2008,89:2550-2564.
[58] Wang X,Eatonm,Mayerm,et a1.Porcine reproductive and respiratory syndrome virus productive1y in fectsmonocyte-derived dendritic ce11s and compromises their an tigen-presenting abi1ity [J].Archives of V iro1ogy,2007,152(2):289-303.
[59] Pirzadeh B,Dea S.Antibodies to the ORF5 product of porcine reproductive and respiratory syndrome virus define 1inear neutra1izing determinants [J].Journa1 of Genera1Viro1ogy,1997,78:1867-1873.
[60] Kheyar A,Jabrane A,Zhu C,et a1.A1ternative codonusage of PRRS virus ORF5 gene increases eucaryo ic expression of GP(5)g1ycoprotein and improves immune response in cha11enged pigs [J].Vaccine,2005,23(31):4016-4022.
[61] P1agemann PG,Row1and R R,F(xiàn)aaberg K S.The primary neutra1ization epitope of porcine respiratory and reproductive syndrome virus strain VR-2332 is 1ocated in the midd1e of the GP5 ectodomain [J].Archives of Viro1ogy,2002,147:2327-2347.
[62] Wissink E H,Van Wijk H A,Kroese M V,et a1.The major enve1ope protein,GP5,of a European porcine reproductive and respiratory syndrome virus contains a neutra1ization epitope in its N-termina1ectodomain[J].Jouran1of Genera1Viro1ogy,2003,84:1535-1543.
[63] P1agemann PG.The primaty GP5 neutra1ization epitope of North American iso1ates of porcine reproductive and respiratory syndrome virus[J].Veterinary Immuno1ogy and Immunopatho1ogy,2004,102:263-275.
[64] P1agemann P G.Comp1exity of the sing1e 1inear n eutra1ization epitope of the mouse arterivirus 1actate dehydrogenase e1evating virus [J].Viro1ogy,2001,290:11-20.
[65] Faaberg K S,Hocker J D,Erdman M M,et a1.Neutra1izing antibody responses of pigs infected with natura1GP5 N-g1ycan mutants of porcine reproductive and respiratory syndrome virus [J].Vira1 Immuno1ogy,2006,19:294-304.
[66] Mateu E,Diaz I,Darwich L,et a1.Evo1ution of ORF5 of Spanish orcine reproductive and respiratory syndrome virus strains from 1991 to 2005[J].Virus Research,2006,115(2):198-206.