龔顏,王鍵綜述,魏勁松審校
(廣東醫(yī)學(xué)院附屬醫(yī)院骨科,廣東湛江524000)
·綜述·
骨質(zhì)疏松與骨髓間充質(zhì)干細(xì)胞分化調(diào)控的研究進(jìn)展
龔顏,王鍵綜述,魏勁松審校
(廣東醫(yī)學(xué)院附屬醫(yī)院骨科,廣東湛江524000)
骨質(zhì)疏松是臨床上常見的老年性疾病,其發(fā)病機制尚未完全明確。骨髓間充質(zhì)干細(xì)胞在骨髓中可分化為成骨細(xì)胞和成脂細(xì)胞,其分化平衡紊亂目前被認(rèn)為是骨質(zhì)疏松發(fā)病機制之一。了解轉(zhuǎn)錄水平基因調(diào)控骨髓間充質(zhì)干細(xì)胞的分化方向的機理,為骨質(zhì)疏松的藥物和干細(xì)胞治療提供新思路。
骨質(zhì)疏松;骨髓間充質(zhì)干細(xì)胞;轉(zhuǎn)錄因子
骨質(zhì)疏松癥(Osteoporosis,OP)是以骨量減少、骨的微觀結(jié)構(gòu)退化為特征的,致使骨脆性增加而易發(fā)生骨折的一種全身性骨骼疾病。臨床磁共振波譜分析發(fā)現(xiàn)骨質(zhì)疏松患者與骨髓脂肪組織增多有關(guān)[1]。骨髓腔中成骨細(xì)胞和脂肪細(xì)胞都起源于同一多潛能分化的干細(xì)胞—骨髓間充質(zhì)干細(xì)胞(Bone marrow-derived mesenchymal stem cells,MSCs)。骨髓脂肪有害增多導(dǎo)致骨丟失的原因被認(rèn)為是成骨和成脂細(xì)胞的祖細(xì)胞MSCs分化平衡紊亂[2]。多種分子及信號通路在MSCs定向分化過程中起調(diào)節(jié)作用。轉(zhuǎn)錄水平上MSCs成骨細(xì)胞或是成脂細(xì)胞定向分化的基因調(diào)控機制是國內(nèi)外研究的熱門領(lǐng)域。
1.1 成骨分化與轉(zhuǎn)錄因子RUNX2 RUNX2 (Runt-related transcription factor-2)也被稱作CBFα1 (Core-binding factorα1),是轉(zhuǎn)錄因子(RUNT)家族成員之一,其含有一個RUNT結(jié)構(gòu)域(DNA結(jié)合區(qū))、一個富含脯氨酸-絲氨酸-蘇氨酸C末端(轉(zhuǎn)錄激活區(qū)),它還含有兩個區(qū)別于其他RUNT相關(guān)蛋白的氨基末端。RUNX2及其下游基因是干細(xì)胞向成骨細(xì)胞分化及成熟過程中所必需的[3],它通過特異性結(jié)合含有核心序列(PuCCPuCA)的增強子結(jié)合區(qū)從而直接激活成骨細(xì)胞相關(guān)轉(zhuǎn)錄因子基因表達(dá),如骨鈣素、Ⅰ型膠原、骨橋蛋白和Ⅲ型膠原酶基因[4]。如果找到一條能選擇性地促使MSCs向成骨細(xì)胞系分化的途徑,那么在骨重建中就能更好地利用MSCs的多向分化能力。RUNX2基因轉(zhuǎn)染小鼠MSCs后,RUNX2蛋白在轉(zhuǎn)錄后1 d開始增多,成骨標(biāo)志物(ALP、鈣結(jié)節(jié))mRAN表達(dá)與RUNX2平行增多。轉(zhuǎn)染RUNX2的MSCs可以明顯提高治療顱蓋骨缺損的效果,還能增加骨量及骨礦物質(zhì)密度。該研究表明轉(zhuǎn)染RNUX2基因可能是增強MSCs成骨分化的潛力和成骨相關(guān)基因表達(dá)的一種有效途徑[5]。各種信號通路參與MSCs分化方向的調(diào)節(jié),RUNX2基因表達(dá)可以被多種信號傳導(dǎo)途徑激活,如BMP、Wnt、Notch、Hedgehog和FGFs,RUNX2就是各種信號通路集合的焦點[6]。
1.2 成骨分化與轉(zhuǎn)錄因子Osterix Osterix因與先前發(fā)現(xiàn)的Sp基因家族成員Sp1~Sp6同源,故又被稱作Sp7(Special protein),其蛋白結(jié)構(gòu)特點是其羧基末端有三個鋅指結(jié)構(gòu)的DNA結(jié)合域。Osterix是MSCs成骨細(xì)胞分化過程中又一個或不可缺的轉(zhuǎn)錄因子,是膜內(nèi)成骨和軟骨成骨過程的重要調(diào)節(jié)因子。Osterix基因敲除小鼠模型中,胚胎發(fā)育過程中長骨骨髓腔和骨小梁形成明顯延遲,骨骼生長也伴隨減少[7]。來源于小鼠顱蓋骨的MSCs因高表達(dá)Osterix而有更強的成骨分化能力,但是成脂分化減弱[8]。Kurata等[9]在培養(yǎng)Osterix基因修飾的干細(xì)胞過程中發(fā)現(xiàn)Osterix超表達(dá)刺激骨橋蛋白和ALP的表達(dá),但是成骨分化晚期標(biāo)志物骨鈣素基因的表達(dá)未上調(diào)。說明Osterix雖在干細(xì)胞成骨分化中起促進(jìn)作用,但不能刺激干細(xì)胞分化為成熟的成骨細(xì)胞。在體外培養(yǎng)的hMSCs用麥考酚酸處理后,RUNX2和Osterix表達(dá)都下調(diào),MSCs成骨相關(guān)基因骨橋蛋白和BMP-2表達(dá)受到抑制[10]。因此MSCs分化為成熟的成骨細(xì)胞是一個復(fù)雜的過程,需要Runx2和Osterix等多因子的參與。
2.1 成脂分化與轉(zhuǎn)錄因子PPARγPPARγ(Peroxisome proliferator-activated receptor γ)是細(xì)胞核受體PPAR家族成員中的一種轉(zhuǎn)錄因子,含有DNA結(jié)合區(qū)、配體結(jié)合區(qū)和輔因子復(fù)合物等結(jié)構(gòu)域,存在PPARγ1和PPARγ2兩種主要亞型,在成脂分化過程中起重要作用[11-12]。噻唑烷二酮類藥物是PPARγ激活劑,臨床上服用噻唑烷二酮類(TZDs)藥物的糖尿病患者骨量減少,發(fā)生骨折的風(fēng)險度增加[13]。噻唑烷二酮類藥物羅格列酮可導(dǎo)致大鼠骨量丟失,成骨細(xì)胞數(shù)量減少,骨形成速率降低,還能使MSCs成骨分化受到抑制[14]。體外實驗用PPARγ拮抗劑GW9662處理并成骨誘導(dǎo)hMSCs,其成骨早期標(biāo)志物、ALP、OPG表達(dá)增強;將處理后MSCs移植到小鼠顱蓋骨缺損部位可以增強干細(xì)胞修復(fù)骨缺損的能力[15]。近年研究發(fā)現(xiàn)不管羅格列酮PPARγ激活劑還是PPARγ超表達(dá)都可以促進(jìn)成骨分化。相反,PPARγ基因敲除減弱了成骨分化。但是,羅格列酮隨后會增強成骨系細(xì)胞的活性氧族蓄積和調(diào)亡。與此不同的是,羅格列酮抑制了成脂系細(xì)胞的活性氧族蓄積和調(diào)亡。因此,當(dāng)PPARγ的激活時,成骨系細(xì)胞對氧化應(yīng)激和凋亡更敏感。這與臨床上服用TZDs的患者骨髓脂肪生成更多、骨形成減少和骨折風(fēng)險增加并不矛盾[16]。也有研究表明,在BMPs誘導(dǎo)下,PPARγ2超表達(dá)不僅促進(jìn)了MSCs成脂分化,也能增強成骨分化。然而PPARγ2敲除后MSCs表現(xiàn)為成脂和成骨能力都下降[17]。因此,PPARγ可能在MSCs成骨和成脂分化中都起重要作用。PPARγ影響干細(xì)胞分化方向時可被多種分子信號調(diào)節(jié),如BMP[17]、hedgehog信號[18]和經(jīng)典Wnt信號通路[19]等,都可以調(diào)節(jié)干細(xì)胞中PPARγ的作用。
2.2 成脂分化與轉(zhuǎn)錄因子C/EBP(CCAAT/enhancer-binding protein alpha)C/EBP屬于含有bZIP蛋白的一類轉(zhuǎn)錄因子,其bZIP結(jié)構(gòu)域由富含堿性氨基酸鏈連接一個亮氨酸拉鏈的二聚體組成。C/EBP亞型主要有α、β和δ蛋白三種,由C/EBP相關(guān)基因編碼,具有相似的DNA結(jié)合專一性和親和力,并表達(dá)于脂肪、肝和腸組織[20]。C/EBPβ和δ在成脂分化早期表達(dá),而C/EBPα在成脂分化晚期才大量表達(dá),它們在脂肪細(xì)胞最終分化過程中起級聯(lián)調(diào)節(jié)作用[21]。超表達(dá)外源性C/EBPsα和β,不管是體外培養(yǎng),還是體內(nèi)移植都能增強hMSCs成脂分化[22]。近年研究發(fā)現(xiàn),STAT3 (Signal transducer and activator of transcription 3)能結(jié)合C/EBPβ啟動子遠(yuǎn)側(cè)區(qū),調(diào)節(jié)C/EBPβ基因表達(dá),從而促進(jìn)早期的成脂分化[23]。吲哚美辛促進(jìn)MSCs成脂分化是因為同時增強了C/EBPβ和PPARγ2基因表達(dá)[24]。C/EBPβ和δ基因在成脂分化早期快速地被誘導(dǎo)表達(dá),最后刺激PPARγ和C/EBPα基因表達(dá)[25]。因此,在MSCs成脂方向分化過程中,可能需要多種轉(zhuǎn)錄因子參與,多轉(zhuǎn)錄因子間存在級聯(lián)反應(yīng)關(guān)系。
MSCs具有多向分化功能,在骨髓中調(diào)節(jié)MSCs定向分化的轉(zhuǎn)錄因子之間相互影響機制目前仍未完全明確。誘導(dǎo)成脂分化的過程中hMSCs同時表達(dá)PPARγ1和PPARγ2,而誘導(dǎo)其成骨分化過程中只檢測到PPARγ1表達(dá)。PPARγ拮抗劑和PPARγ基因敲除可以抑制hMSCs成脂分化但是不影響成骨分化轉(zhuǎn)錄因子Runx2的表達(dá),也不能促進(jìn)其成骨分化[26]。說明單一因素不能影響MSCs分化方向,需要多轉(zhuǎn)錄因子參與調(diào)控。PPARγ和Runx2之間可能存在相互抑制的關(guān)系。3T3-L1成脂細(xì)胞與成骨細(xì)胞共培養(yǎng)體系中,成脂細(xì)胞PPARγmRNA表達(dá)增高的同時,成骨細(xì)胞的Runx2表達(dá)下降。當(dāng)用siRAN敲除PPARγ基因時,這種現(xiàn)象受到遏制[27]。體外模擬細(xì)胞外基質(zhì)的實驗中,成骨分化早期MSCs因高表達(dá)RUNX2,MSCs的成骨分化能力增強,但是抑制了PPARγ基因的表達(dá)[28]。RUNX2基因轉(zhuǎn)染MSCs后,成骨細(xì)胞標(biāo)志基因堿性磷酸酶、骨鈣素和骨橋蛋白等表達(dá)上調(diào),然而PPARγ2表達(dá)下降,抑制了MSCs成脂分化[29]。如果能找到一條有效途徑來調(diào)節(jié)骨髓中MSCs分化為成骨細(xì)胞,而不是有害的脂肪細(xì)胞,臨床上在治療骨質(zhì)疏松、老年患者骨折和一些溶骨性疾病時,干細(xì)胞作為藥物的靶細(xì)胞和移植細(xì)胞時將有很好的運用前景。
[1]Yeung DK,Griffith JF,Antonio GE,et al.Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation:a proton MR spectroscopy study[J].J Magn Reson Imaging, 2005,22(2):279-285.
[2]Nuttall ME,Gimble JM.Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications[J].Curr Opin Pharmacol,2004,4:290-294.
[3]Ducy P,Starbuck M,Priemel M,et al.A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development [J].Genes Dev,1999,13:1025-1036.
[4]Kern B,Shen J,Starbuck M,et al.Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes[J].J Biol Chem, 2001,276:7101-7107.
[5]Zhao Z,Wang Z,Ge C,et al.Healing cranial defects with AdRunx2-transduced marrow stromal cells[J].J Dent Res,2007,86 (12):1207-1211.
[6]Lin GL,Hankenson KD.Integration of BMP,Wnt,and notch signaling pathways in osteoblast differentiation[J].J Cell Biochem,2011, 112(12):3491-3501.
[7]Oh JH,Park SY,de Crombrugghe B,et al.Chondrocyte-specific ab-lation of Osterix leads to impaired endochondral ossification[J]. Biochem Biophys Res Commun,2012,418(4):634-640.
[8]Li D,Liang C,Xu L,et al.Murine calvaria-derived progenitor cells express high levels of osterix and lose their adipogenic capacity[J]. Biochem Biophys Res Commun,2012,422(2):311-315.
[9]Kurata H,Guillot PV,Chan J,et al.Osterix induces osteogenic gene expression but not differentiation in primary human fetal mesenchymal stem cells[J].Tissue Eng,2007,13(7):1513-1523.
[10]Cao WJ,Liu LZ,Lai XY,et al.Effects of mycophenolic acid on human bone marrow-derived mesenchymal stem cellsin vitro[J].Zhejiang Da Xue Xue Bao Yi Xue Ban,2011,40(5):467-474.
[11]Nolte RT,Wisely GB,Westin S,et al.Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma[J].Nature,1998,395(6698):137-143.
[12]Kawai M,Rosen CJ.PPARγ:a circadian transcription factor in adipogenesis and Osteogenesis[J].Nat Rev Endocrinol,2010,6(11): 629-636.
[13]Grey A,Bolland M,Gamble G,et al.The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women:a randomized,controlled trial[J].J Clin Endocrinol Metab, 2007,92(4):1305-1310.
[14]Ali AA,Weinstein RS,Stewart SA,et al.Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation[J].Endocrinology.2005,146(3):1226-1235.
[15]Krause U,Harris S,Green A,et al.Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy[J].Proc Natl Acad Sci USA,2010,107(9): 4147-4152.
[16]Bruedigam C,Eijken M,Koedam MA,et al.A new concept underlying stem cell lineage skewing that explains the detrimental effects of thiazolidinediones on bone[J].Stem Cells,2010,28(5):916-927.
[17]Kang Q,Song WX,Luo Q,et al.A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells[J].Stem Cells Dev, 2009,18(4):545-559.
[18]Kim WK,Meliton V,Amantea CM,et al.20(S)-hydroxycholesterol inhibits PPARgamma expression and adipogenic differentiation of bone marrow stromal cells through a hedgehog-dependent mechanism[J].J Bone Miner Res,2007,22(11):1711-1719.
[19]Takada I,Mihara M,Suzawa M,et al.methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation [J].Nat Cell Biol,2007,9(11):1273-1285.
[20]Cao Z,Umek RM,McKnight SL.Regulated expression of three C/ EBP isoforms during adipose conversion of 3T3-L1 cells[J].Genes Dev,1991,5(9):1538-1552.
[21]Yeh WC,Cao Z,Classon M,et al.Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins[J].Genes Dev,1995,9(2):168-181.
[22]Yang HN,Park JS,Woo DG,et al.C/EBP-α and C/EBP-β-mediated adipogenesis of human mesenchymal stem cells(hMSCs)using PLGA nanoparticles complexed with poly(ethyleneimmine)[J].Biomaterials,2011,32(25):5924-5933.
[23]Zhang K,Guo W,Yang Y,et al.JAK2/STAT3 pathway is involved in the early stage of adipogenesis through regulating C/EBPβtranscription[J].J Cell Biochem,2011,112(2):488-497.
[24]Styner M,Sen B,Xie Z,et al.Indomethacin promotes adipogenesis of mesenchymal stem cells through a cyclooxygenase independent mechanism[J].J Cell Biochem,2010,111(4):1042-1050.
[25]Hishida T,Nishizuka M,Osada S,et al.The role of C/EBPdelta in the early stages of adipogenesis[J].Biochimie,2009,91(5): 654-657.
[26]Yu WH,Li FG,Chen XY,et al.PPARγ suppression inhibits adipogenesis but does not promote osteogenesis of human mesenchymal stem cells[J].Int J Biochem Cell Biol,2012,44(2):377-384.
[27]Liu LF,Shen WJ,Zhang ZH,et al.Adipocytes decrease Runx2 expression in osteoblastic cells:Roles of PPARγ and adiponectin[J]. Journal of Cellular Physiology,2010,225(3):837-845.
[28]Hoshiba T,Kawazoe N,Chen G.The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic stepwise tissue development[J].Biomaterials,2012, 33(7):2025-2031.
[29]董世武,應(yīng)大君,段小軍,等.核心結(jié)合因子α1對骨髓間充質(zhì)干細(xì)胞成骨細(xì)胞標(biāo)志基因表達(dá)的影響[J].中國修復(fù)重建外科雜志, 2005,19(9):746-750.
R681.1
A
1003—6350(2013)03—0427—03
10.3969/j.issn.1003-6350.2013.03.0188
2012-08-30)
廣東省科技計劃項目(編號:2010B031600288)
魏勁松。E-mail:jlccwjs@163.com