孟 超,周玉元
(湖南農(nóng)業(yè)大學(xué)理學(xué)院,湖南長(zhǎng)沙400128)
斑塊環(huán)境中生態(tài)動(dòng)力系統(tǒng)的性質(zhì)是數(shù)學(xué)生態(tài)學(xué)的一個(gè)熱點(diǎn)問(wèn)題.許多學(xué)者對(duì)斑塊環(huán)境中生態(tài)動(dòng)力系統(tǒng)的持久性、穩(wěn)定性與周期性做了大量的研究工作[1-10],但對(duì)各種群占有的斑塊數(shù)量的變化規(guī)律研究很少.1994年,V.A.A.Jansen研究了一類(lèi)斑塊環(huán)境中三營(yíng)養(yǎng)食物鏈模型分別在只有食餌擴(kuò)散和只有捕食者擴(kuò)散的情況下平衡點(diǎn)的存在性、穩(wěn)定性[11].之后,段會(huì)玲研究了下列斑塊環(huán)境中三營(yíng)養(yǎng)模型的平衡點(diǎn)的存在性、穩(wěn)定性[12]:
其中R表示空資源斑塊的數(shù)量,N表示被食餌種群占領(lǐng)的資源斑塊數(shù)量,M表示被食餌和捕食者同時(shí)占領(lǐng)的斑塊,總資源斑塊為N0(N0>1),且有R+N+M=N0,a>0,b>0,k>0,v>0.
本文將研究如下斑塊環(huán)境中周期系統(tǒng)
正周期解的存在性,其中a(t),b(t),k(t),v(t)均為連續(xù)且嚴(yán)格正的ω周期函數(shù).
為研究系統(tǒng)(2)的周期解,首先引入重合度理論中的延拓定理.
設(shè)X,Z是Banach空間,L:DomL?X→Z為線性映射,N:X→Z為連續(xù)映射,若L是指標(biāo)為零的Fredholm映射,且存在連續(xù)投影P:X→X及Q:Z→Z,使得ImP=KerL,ImL=KerQ=Im(I-Q),則可逆,設(shè)其逆映射為KP,Ω是X中的有界開(kāi)集,如果有界且KP(I是緊的,則稱(chēng)N在Ω上是L-緊的,由于ImQ與KerL同構(gòu),因而存在同構(gòu)映射J:ImQ→KerL.
引理1[13]設(shè)L是指標(biāo)為零的Fredholm映射,N在Ω上L-緊,如果
1)?λ∈(0,1),方程Lx=λNx的解滿足x??Ω;
2)?x∈KerL∩?Ω,QNx≠0;
3)deg{JQN,Ω∩KerL,0}≠0.
則方程Lx=Nx在內(nèi)至少存在一個(gè)解.
將R(t)=1-N(t)-M(t)代入上式,得
考慮到系統(tǒng)(4)的生態(tài)意義,假定初始值N(0)≥0,M(0)≥0,易證={(y1,y2)T∈R2|y1≥0,y2≥0}關(guān)于系統(tǒng)(4)是正向不變的.
證明 作變換
則系統(tǒng)(4)化為下列等價(jià)系統(tǒng):
取X=Y(jié)={x=(x1,x2)T∈C(R,R2):xi(t+ω)=xi(t),i=1,2}.定義范數(shù),x=(x1,x2)∈X或Y.對(duì)?x=(x1,x2)T∈X,由其周期性可知,
是一ω周期函數(shù).
令L:DomL∩X→X,L(x1(t),x2(t))T=.則DomL={(x1(t),x2(t))T∈C′(R,R2)}.
定義映射:N:X→X,.易知KerL=R2,ImL為Y中的閉子集,且dim KerL=codim ImL=2.
又P,Q均為連續(xù)映射,因此,ImP=KerL,KerQ=ImL=Im(I-Q).從而L是一個(gè)指標(biāo)為零的FredhoIm映射,通過(guò)計(jì)算知LP的逆KP存在,且KP:ImL→DomL∩于是
利用Lebesgue收斂定理可以證明QN及KP(I-Q)N是連續(xù)的.
設(shè)Ω是X中的有界開(kāi)集,顯然有界,利用Arzela-Ascoli[14]定理易證在Ω上是緊的,因此N在上是L-緊的.
對(duì)于算子方程Lx=λNx,λ∈(0,1),有
設(shè)x(t)=(x1(t),x2(t))T∈X是式(7),(8)關(guān)于某個(gè)特定的λ∈(0,1)的解.對(duì)(7),(8)在[0,ω]上積分,得
由式(7),(9)可得
即
由式(8),(10)類(lèi)似可得
對(duì)于(x1(t),x2(t))T∈X,?ξi,ηi∈[0,ω],使得
同時(shí)考慮式(11),對(duì)?t∈[0,ω]有
同時(shí)考慮式(11),對(duì)?t∈[0,ω]有
由式(15)和(17)有
另一方面,由式(9),(13)及定理?xiàng)l件(i)可得
同時(shí)考慮式(12),對(duì)?t∈[0,ω]有
由式(20)和(21)有
顯然B1,B2與λ無(wú)關(guān).
設(shè)w=(w1,w2)T∈R2,考慮代數(shù)方程組
當(dāng)x∈?Ω∩KerL=?Ω∩R2時(shí),x為R2中的常值向量且=B.則由B的定義知
所以引理1中條件2)滿足.
下面證明引理1中條件3)也滿足.
因ImQ=KerL,取J為恒同映射,可直接計(jì)算得
故由引理1可知,方程Lx=Nx在DomL∩中至少存在一個(gè)解,即系統(tǒng)(6)在DomL∩中至少存在一個(gè)ω周期解,從而是系統(tǒng)(4)的一個(gè)ω周期正解.證畢.
[1]Cantrell R S,Cosner C,Lou Yuan.Evolutionary stability of ideal free dispersal strategies in patchy environments[J].Journal of Mathematical Biology,2012,65(5):943-965.
[2]Jansen V A A,Lloyd A L.Local stability analysis of spatially homogeneous solutions of multi-patch systems[J].Journal of Mathematical Biology,2000,41(3):232-252.
[3]Chen Lijuan.Permanence for a delayed predator-prey model of prey dispersal in two-patch environments[J].Journal of Applied Mathematics and Computing,2010,34(1/2):207-232.
[4]Qiu Lin,Mitsui T.Predator-prey dynamics with delay when prey dispersing inn-patch environment[J].Japan Journal of Industrial and Applied Mathematics,2003,20(1):37-49.
[5]Zhang Feng,Hui Cang,Han Xiaozhuo,etal.Evolution of cooperation in patchy habitat under patch decay and isolation[J].Ecological Research,2005,20(4):461-469.
[6]Chun Y S,Ryoo M I,Choi W I.Influences of resource patch distribution on a host-parasitoid system stability in patch environment:a laboratory study[J].Asia-Pacific Entomology,1998,1(2):223-234.
[7]Zhang Xu,Wang Wendi.Importance of dispersal adaptations of two competitive populations between patches[J].Ecological Modelling,2011,222(1):11-20.
[8]Wang Ruiping.Competition in a patch environment with cross-diffusion in a three-dimensional Lotka-Volterra system[J].Nonlinear Analysis:Real World Applications,2010,11(4):2726-2730.
[9]Tian Desheng.Periodic solution and persistence for a three-species ratio-dependent predator-prey model with time delays in two-patch environments[J].Journal of Systems Science and Complexity,2008,21(2):226-238.
[10]Zhang Long,Teng Zhidong,Liu Zijian.Survival analysis for a periodic predator-prey model with prey impulsively unilateral diffusion in two patches[J].Applied Mathematical Modelling,2011,35(9):4243-4256.
[11]Jansen V A A.Effects of dispersal in a tri-trophic metapopulation model[J].Journal of Mathematical Biology,1994,34(2):195-224.
[12]段會(huì)玲.斑塊環(huán)境中三營(yíng)養(yǎng)模型的動(dòng)力學(xué)性態(tài)[J].重慶三峽學(xué)院學(xué)報(bào),2008,24(3):64-67.
[13]徐炳祥,曾志軍.一類(lèi)具有Holling III型功能性反應(yīng)的捕食者-食餌系統(tǒng)的周期解的存在性[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2012,28(4):523-530.
[14]張恭慶.泛函分析講義:上冊(cè)[M].北京:北京大學(xué)出版社,2004:15-16.