盧嘉奕, 殷躍輝
?
腎動(dòng)脈消融治療慢性心力衰竭研究進(jìn)展
盧嘉奕, 殷躍輝*
(重慶醫(yī)科大學(xué)附屬第二醫(yī)院心血管內(nèi)科, 重慶 400010)
慢性心力衰竭是一種復(fù)雜的臨床癥狀群,是多種心血管疾病的共同轉(zhuǎn)歸。交感神經(jīng)持續(xù)過(guò)度激活是其發(fā)生及發(fā)展的重要機(jī)制,多項(xiàng)臨床及動(dòng)物實(shí)驗(yàn)研究均表明,腎臟神經(jīng)在交感神經(jīng)活動(dòng)中起著促進(jìn)和傳遞的作用。2009年,Krum教授首次嘗試?yán)脤?dǎo)管靶向消融腎動(dòng)脈周圍的交感神經(jīng),從而降低全身過(guò)度激活的交感活性,達(dá)到治療頑固性高血壓的目的。這項(xiàng)新的治療策略在有效地控制血壓的同時(shí)還能有效降低心臟、腎臟以及肌肉組織等多個(gè)器官系統(tǒng)的交感神經(jīng)活性,并能調(diào)節(jié)水鹽代謝,改善心室重構(gòu)和心臟功能,減輕機(jī)體高交感神經(jīng)活性所導(dǎo)致的多器官損害。雖然其中具體的機(jī)制尚未明了,但我們有理由相信腎動(dòng)脈消融在治療高血壓、慢性心力衰竭、代謝綜合征等交感神經(jīng)慢性過(guò)度激活的疾病有廣闊的應(yīng)用前景。
腎動(dòng)脈消融;心力衰竭,慢性;交感神經(jīng)系統(tǒng);腎臟
慢性心力衰竭(chronic heart failure,CHF)是一種復(fù)雜的臨床癥狀群,為各種心血管疾病的終末階段,其發(fā)病率高,5年存活率與惡性腫瘤相仿,是全世界日趨嚴(yán)重的危害健康的主要問(wèn)題。據(jù)流行病學(xué)調(diào)查,全球心力衰竭患者的數(shù)量已高達(dá)2250萬(wàn),并以每年200萬(wàn)的速度遞增[1]。我國(guó)心力衰竭的患病率為0.9%,國(guó)內(nèi)35至74歲成年人中約有400萬(wàn)的心力衰竭患者,并呈逐年上升趨勢(shì)[2]。目前CHF的治療策略仍以藥物治療為主,但總體治療效果卻不十分令人滿意。因此,需要從CHF起病及長(zhǎng)期維持的病理生理機(jī)制出發(fā),尋找新的治療策略。目前已明確,心室重構(gòu)是CHF發(fā)生發(fā)展的基礎(chǔ)[3],而交感神經(jīng)的持續(xù)過(guò)度激活是其重要機(jī)制。2009年,Krum教授首次采用經(jīng)皮腎動(dòng)脈去交感神經(jīng)術(shù)(renal denervation, RDN)治療難治性高血壓,這一新策略通過(guò)靶向去除腎動(dòng)脈管壁分布的交感神經(jīng),降低血壓的同時(shí)也有效降低高血壓患者的全身交感活性[4]。因此,探討腎動(dòng)脈去神經(jīng)治療是否能夠應(yīng)用于防治CHF及進(jìn)一步研究其作用機(jī)制具有重要的理論和臨床應(yīng)用價(jià)值。
最初認(rèn)為CHF是心、腎功能異常,故應(yīng)用洋地黃提高心肌收縮力并聯(lián)合利尿劑治療,隨后認(rèn)為CHF是持續(xù)性血流動(dòng)力學(xué)障礙,因而加用血管擴(kuò)張藥。目前研究已明確,CHF的發(fā)生發(fā)展涉及一系列功能、形態(tài)以及細(xì)胞分子生物學(xué)的進(jìn)行性改變,而交感神經(jīng)系統(tǒng)興奮性異常增高、腎素-血管緊張素-醛固酮系統(tǒng)(renin-angiotensin-aldosterone system,RAAS)及多種內(nèi)源性的神經(jīng)內(nèi)分泌和細(xì)胞因子的過(guò)量激活在其中起不良調(diào)控作用[5,6]。
在CHF的發(fā)展過(guò)程中,交感神經(jīng)及其他神經(jīng)體液因素的激活可明顯早于心力衰竭癥狀的出現(xiàn),而現(xiàn)在也有研究證明交感神經(jīng)系統(tǒng)比RAAS更早激活,在這些復(fù)雜的神經(jīng)體液變化中,交感神經(jīng)的長(zhǎng)期過(guò)度激活似乎處于一種中心地位,也是研究最多及最重要的[7,8]。過(guò)去的研究?jī)H僅關(guān)注某種生理或病理狀態(tài)下全身交感活性的增加或是減少,現(xiàn)在看來(lái)這種觀點(diǎn)過(guò)于單純化,因?yàn)榻桓猩窠?jīng)在不同的病理生理環(huán)境下及對(duì)于不同器官的控制是不同的。最有力的證據(jù)是關(guān)于Esler等[9]通過(guò)放射性核素示蹤技術(shù)了解原發(fā)性高血壓患者交感神經(jīng)活性的研究,該研究證實(shí)高血壓患者交感神經(jīng)活性的增加是不均衡的,以腎臟局部去甲腎上腺素分泌速度最快,其次為心臟及骨骼肌系統(tǒng),而機(jī)體其他部位去甲腎上腺素分泌速度在原發(fā)性高血壓患者與血壓正常者之間無(wú)顯著區(qū)別?,F(xiàn)有研究[10]提出疾病狀態(tài)時(shí)不同器官的交感活性是被選擇性激活的,并發(fā)現(xiàn)腎臟既是交感神經(jīng)興奮的對(duì)象又是興奮的促進(jìn)者。Petersson等[11]發(fā)現(xiàn)腎臟去甲腎上腺素溢出量增加的CHF患者存活率下降,提出腎臟交感過(guò)度激活能獨(dú)立預(yù)測(cè)不良的心力衰竭預(yù)后情況。腎臟有豐富的傳入和傳出交感神經(jīng)分布,這些神經(jīng)大多沿腎動(dòng)脈走行,它們一方面可接受各種刺激,通過(guò)調(diào)節(jié)位于下丘腦后部的交感神經(jīng)中樞進(jìn)一步增強(qiáng)腎臟、心臟以及外周血管等多個(gè)器官及系統(tǒng)的交感神經(jīng)活性,另一方面可通過(guò)刺激腎小球旁細(xì)胞分泌腎素增加,進(jìn)而激活RAAS系統(tǒng);促進(jìn)腎小管對(duì)水鈉的重吸收增加及降低機(jī)體對(duì)心房利鈉肽的反應(yīng)性;降低腎血流量和腎小球?yàn)V過(guò)率,最終加重水鈉潴留及心肌損傷,使CHF的心功能進(jìn)一步惡化[12]?;诖?,腎動(dòng)脈消融術(shù)作用于分布在腎動(dòng)脈周圍的腎臟交感神經(jīng),可靶向阻滯腎臟交感神經(jīng)的過(guò)度激活,不僅可能成為治療慢性心力衰竭的重要途徑,在治療高血壓、代謝綜合征等交感神經(jīng)慢性過(guò)度激活的疾病中也呈現(xiàn)巨大的潛力[13,14]。
延緩心室重構(gòu)是CHF治療的基礎(chǔ),交感神經(jīng)系統(tǒng)及RAAS的拮抗劑能有效抑制神經(jīng)內(nèi)分泌活性,調(diào)節(jié)細(xì)胞因子和氧化應(yīng)激活性,從而延緩心室重構(gòu),改善衰竭心臟的生物學(xué)功能,故奠定了血管緊張素轉(zhuǎn)換酶抑制劑、血管緊張素受體拮抗劑、以及β受體阻滯劑等藥物作為治療CHF的基石。但臨床研究表明,心力衰竭的藥物治療效果并不十分令人滿意,有相當(dāng)一部分CHF患者療效欠佳,且部分患者由于低血壓、心動(dòng)過(guò)緩等原因限制了上述藥物的使用或足量使用,這可能與藥物治療缺少靶向性而出現(xiàn)不良影響有關(guān)。
鑒于長(zhǎng)期應(yīng)用β受體阻斷劑不僅改善左室收縮功能,而且能增加生存率,因而有人提出使用強(qiáng)有力的抗交感藥物(如莫索尼定)治療CHF,觀察是否具有同樣或更大的有益作用[15]。但遺憾的是,在MOXCOM臨床試驗(yàn)[16]中莫索尼定趨于增加CHF的死亡率和致殘率,這可能與其太大幅度降低全身交感活性而減少重要器官灌注有關(guān)。
藥物治療策略雖然在心力衰竭治療方面取得了重大進(jìn)展,但由于不良反應(yīng)的出現(xiàn),阻礙其進(jìn)一步的發(fā)展。
基于腎臟交感神經(jīng)與腎動(dòng)脈伴行的特殊解剖關(guān)系及其在全身交感神經(jīng)長(zhǎng)期過(guò)度激活過(guò)程中的重要作用,Krum等采用特制的消融導(dǎo)管,對(duì)45例頑固性高血壓的患者進(jìn)行了RDN治療。這45例患者經(jīng)股動(dòng)脈途徑放置消融導(dǎo)管于雙側(cè)腎動(dòng)脈處,沿雙側(cè)腎動(dòng)脈長(zhǎng)、短軸6個(gè)部位以<8W的能量分別消融2min。受試者的血壓水平在術(shù)后1個(gè)月即開(kāi)始下降,到術(shù)后3個(gè)月有了進(jìn)一步的下降,到1年隨訪時(shí)間結(jié)束時(shí)患者收縮壓及舒張壓的平均下降幅度為27/17mmHg(1mmHg=0.133kPa),術(shù)后無(wú)嚴(yán)重并發(fā)癥的出現(xiàn)。隨后,Esler等[17]完成的“關(guān)于頑固性高血壓腎臟去神經(jīng)治療”的國(guó)際多中心隨機(jī)對(duì)照研究(The Symplicity HTN-2 Trial)結(jié)果提示,RDN所帶來(lái)的降壓效果在隨訪2年內(nèi)仍然十分顯著。雖然RDN目前只針對(duì)難治性高血壓患者,不能簡(jiǎn)單地將其套用至其他類型高血壓,其遠(yuǎn)期的降壓作用以及能否減少遠(yuǎn)期的心血管事件仍然需要更多相關(guān)的證據(jù),但作為治療高血壓的新策略,已成為心血管介入治療領(lǐng)域的又一新突破。
Schlaich等[3]發(fā)現(xiàn)經(jīng)RDN治療的難治性高血壓患者腎素分泌明顯減少,腎臟血流量增加,而腎臟、骨骼肌及其他器官的交感神經(jīng)活性都有所降低,由此提出經(jīng)導(dǎo)管腎動(dòng)脈射頻消融去神經(jīng)治療不僅能夠有效降低血壓,也能夠有效降低全身交感神經(jīng)活性。與此同時(shí),Brandt等[18]的臨床研究發(fā)現(xiàn)RDN在降低頑固性高血壓患者血壓的同時(shí)還可改善患者的心臟功能和心室重塑情況,這些都提示RDN可能也會(huì)對(duì)心力衰竭患者有效。雖然這項(xiàng)新技術(shù)可能使心力衰竭患者在改善神經(jīng)體液調(diào)節(jié)紊亂中獲益,但是我們不得不注意到,心力衰竭患者的血壓通常是正?;蚱偷模M(jìn)行RDN治療后會(huì)不會(huì)使CHF患者血壓降低而出現(xiàn)心力衰竭癥狀加重?最近,Davies等[19]進(jìn)行的REACH研究結(jié)果提示:慢性收縮性心力衰竭患者在進(jìn)行RDN治療6個(gè)月后,血壓沒(méi)有明顯下降,沒(méi)有出現(xiàn)低血壓或暈厥事件的報(bào)導(dǎo),心力衰竭癥狀明顯改善,6分鐘步行距離明顯增加。雖然這項(xiàng)臨床研究?jī)H初步顯示了RDN治療心力衰竭的有效性和安全性,仍需要大量隨機(jī)對(duì)照試驗(yàn)進(jìn)行驗(yàn)證,但已經(jīng)給CHF治療提供了一種全新的思路。
腎臟去神經(jīng)治療心力衰竭由來(lái)已久,Kon等[20]通過(guò)研究大鼠心肌梗死后心力衰竭模型和水鈉潴留模型,發(fā)現(xiàn)去除腎臟神經(jīng)能夠顯著改善兩種模型的腎小球?yàn)V過(guò)率。隨后,Clayton等[21]采用快速起搏建立兔心力衰竭模型,結(jié)果表明去除腎臟神經(jīng)能預(yù)防心力衰竭所致的腎臟血管緊張素Ⅰ型受體表達(dá)增加和Ⅱ型受體表達(dá)下降。Rafiq等[22]進(jìn)一步發(fā)現(xiàn)腎臟去神經(jīng)術(shù)能夠降低大鼠主動(dòng)脈縮窄模型條件下腎臟組織內(nèi)去甲腎上腺素和血管緊張素Ⅱ水平。新近,上海中山醫(yī)院的Hu等[23]發(fā)現(xiàn)腎臟去神經(jīng)術(shù)對(duì)心肌梗死后的心室重塑有治療的作用,能改善心臟功能,同時(shí)發(fā)現(xiàn)腎臟去神經(jīng)治療對(duì)正常大鼠的心功能、血流動(dòng)力學(xué)、尿量及尿鈉排泄均沒(méi)有顯著的影響。這與Nozawa等[24]學(xué)者的研究發(fā)現(xiàn)是一致的。這些研究提示去除腎臟神經(jīng)可降低機(jī)體整體的交感活性,調(diào)節(jié)水鹽代謝,改善心室重構(gòu)和心臟功能,適用于治療各種原因?qū)е碌男牧λソ撸焖倨鸩⑿募」K兰爸鲃?dòng)脈縮窄等多種心力衰竭動(dòng)物模型)。
綜上所述,RDN無(wú)論在基礎(chǔ)還是臨床研究中均取得了確切的改善心功能及降低各器官交感活性等效果。RDN已經(jīng)在難治性高血壓的治療方面取得了巨大成功,引起了國(guó)內(nèi)外廣泛關(guān)注?;诖?,我們有理由相信將其應(yīng)用于治療慢性心力衰竭同樣具有誘人的前景。
然而,RDN采用的非連續(xù)的螺旋狀消融是否能實(shí)現(xiàn)有效的去交感神經(jīng)治療?是否能夠逆轉(zhuǎn)心力衰竭時(shí)的心室重構(gòu)以及其作用機(jī)制究竟是什么?腎臟神經(jīng)纖維分布在腎動(dòng)脈壁下方的淺表部位,導(dǎo)管消融的能量需經(jīng)內(nèi)膜傳遞至外膜才能起到對(duì)腎動(dòng)脈交感神經(jīng)的損傷作用,因此,將不可避免地造成內(nèi)膜的損傷,RDN后腎動(dòng)脈是否會(huì)出現(xiàn)狹窄?這些問(wèn)題的解決均需要更多科學(xué)的循證醫(yī)學(xué)證據(jù)來(lái)回答。
[1] Mosterd A, Hoes AW. Clinical epidemiology of heart failure[J]. Heart, 2007, 93(9): 1137-1146.
[2] Jiang H, Ge J. Epidemiology and clinical management of cardiomyopathies and heart failure in China[J]. Heart, 2009, 95(21): 1727-1731.
[3] Schlaich MP, Kaye DM, Lambert E,. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy[J]. Circulation, 2003, 108(5): 560-565.
[4] Krum H, Schlaich M, Whitbourn R,. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study[J]. Lancet, 2009, 373(9671): 1275-1281.
[5] Triposkiadis F, Karayannis G, Giamouzis G,. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications[J]. J Am Coll Cardiol, 2009, 54(19): 1747-1762.
[6] Davila DF, Nunez TJ, Odreman R,. Mechanisms of neurohormonal activation in chronic congestive heart failure: pathophysiology and therapeutic implications[J]. Int J Cardiol, 2005, 101(3): 343-346.
[7] Kishi T. Heart failure as an autonomic nervous system dysfunction[J]. J Cardiol, 2012, 59(2): 117-122.
[8] Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model[J]. J Am Coll Cardiol, 2009, 54(5): 375-385.
[9] Esler M, Jennings G, Lambert G. Noradrenaline release and the pathophysiology of primary human hypertension[J]. Am J Hypertens, 1989, 2(3 Pt 2): 140S-146S.
[10] Ramchandra R, Hood SG, Denton DA,. Basis for the preferential activation of cardiac sympathetic nerve activity in heart failure[J]. Proc Natl Acad Sci U S A, 2009, 106(3): 924-928.
[11] Petersson M, Friberg P, Eisenhofer G,. Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure[J]. Eur Heart J, 2005, 26(9): 906-913.
[12] Sobotka PA, Krum H, Bohm M,. The role of renal denervation in the treatment of heart failure[J]. Curr Cardiol Rep, 2012, 14(3): 285-292.
[13] Osborn JW, Kuroki MT. Sympathetic signatures of cardiovascular disease: a blueprint for development of targeted sympathetic ablation therapies[J]. Hypertension, 2012, 59(3): 545-547.
[14] Esler M. The 2009 Carl Ludwig Lecture: Pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management[J]. J Appl Physiol, 2010, 108(2): 227-237.
[15] Swedberg K, Bristow MR, Cohn JN,. Effects of sustained-release moxonidine, an imidazoline agonist, on plasma norepinephrine in patients with chronic heart failure[J]. Circulation, 2002, 105(15): 1797-1803.
[16] Cohn JN, Pfeffer MA, Rouleau J,. Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON) [J]. Eur J Heart Fail, 2003, 5(5): 659-667.
[17] Esler MD, Krum H, Sobotka PA,. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial[J]. Lancet, 2010, 376(9756): 1903-1909.
[18] Brandt MC, Mahfoud F, Reda S,. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension[J]. J Am Coll Cardiol, 2012, 59(10): 901-909.
[19] Davies JE, Manisty CH, Petraco R,. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: Primary outcome from REACH-Pilot study[J]. Int J Cardiol, 2012, Sep, 29. [Epub ahead of print].
[20] Kon V, Yared A, Ichikawa I.Role of renal sympathetic nerves in mediating hypoperfusion of renal cortical microcirculation in experimental congestive heart failure and acute extracellular fluid volume depletion[J]. J Clin Invest, 1985, 76(5): 1913-1920.
[21] Clayton SC, Haack KK, Zucker IH. Renal denervation modulates angiotensin receptor expression in the renal cortex of rabbits with chronic heart failure[J]. Am J Physiol Renal Physiol, 2011, 300(1): F31-F39.
[22] Rafiq K, Noma T, Fujisawa Y,. Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aortic regurgitation[J]. Circulation, 2012, 125(11): 1402-1413.
[23] Hu J, Ji M, Niu C,. Effects of renal sympathetic denervation on post-myocardial infarction cardiac remodeling in rats[J]. PLoS One, 2012, 7(9): e45986.
[24] Nozawa T, Igawa A, Fujii N,. Effects of long-term renal sympathetic denervation on heart failure after myocardial infarction in rats[J]. Heart Vessels, 2002, 16(2): 51-56.
(編輯: 周宇紅)
Progress of renal artery ablation in treatment of chronic heart failure
LU Jiayi, YIN Yuehui*
(Department of Cardiology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China)
Chronic heart failure is a complex clinical syndrome, and a common outcome of multiple cardiovascular diseases. Chronic excessive activation of sympathetic nerves is an important mechanism for heart failure. A number of clinical and animal studies have indicated that, renal nerves play an indispensable role in sympathetic activity. In 2009, Prof. Krum for the first time used catheter-based renal sympathetic denervation to reduce chronic excessive activation of sympathetic nerves, and thus treat drug-resistant hypertension. This new approach not only reduces hypertension but also significantly decreases the sympathetic nerve activity in the heart, kidneys, muscles and other organs. It also can regulate water salt metabolism, improve the ventricular remodeling and cardiac function, and alleviate multiple organ damages induced by sympathetic overactivity. Although the mechanisms mediating these changes remain unclear, these observations demonstrate that targeted sympathetic ablation therapies have enormous potential in the treatment of cardiovascular and metabolic diseases associated with excessive sympathetic activity.
renal artery ablation; chronic heart failure; sympathetic nervous system; kidneys
R541.6
A
10.3724/SP.J.1264.2013.00061
2012-12-10;
2012-12-30
殷躍輝, Tel: 023-63693766, E-mail: yinyuehui63@yahoo.com.cn