国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

試談新課程下數(shù)學(xué)課堂的體驗學(xué)習(xí)

2012-12-29 00:00:00張大年
新課程·上旬 2012年10期

《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:“要讓學(xué)生在參與特定的數(shù)學(xué)活動,在具體情境中初步認識對象的特征,獲得一些體驗?!彼^體驗,就是個體主動親歷或虛擬地親歷某件事,并獲得相應(yīng)的認知和情感的直接經(jīng)驗的活動。讓學(xué)生親歷經(jīng)驗,不但有助于通過多種活動探究和獲取數(shù)學(xué)知識,更重要的是學(xué)生在體驗中能夠逐步掌握數(shù)學(xué)學(xué)習(xí)的一般規(guī)律和方法。教師要以“課標(biāo)”精神為指導(dǎo),用活、用好教材,進行創(chuàng)造性的教,讓學(xué)生經(jīng)歷學(xué)習(xí)過程,充分體驗數(shù)學(xué)學(xué)習(xí),感受成功的喜悅,從而達到學(xué)會學(xué)習(xí)的目的。那么如何讓學(xué)生在課堂中體驗學(xué)習(xí)呢?我從以下幾方面做了嘗試。

一、創(chuàng)設(shè)有效問題情境,體驗意義

《分數(shù)乘整數(shù)》是分數(shù)乘法單元的第一課時,本課主要讓學(xué)生通過自主探索,了解分數(shù)與整數(shù)相乘的意義,知道“求幾個幾分之幾相加的和”可以用乘法計算,初步理解并掌握分數(shù)與整數(shù)相乘的計算方法。而分數(shù)與整數(shù)相乘的意義與整數(shù)相乘的意義相同,這節(jié)課在引入課題時,我是這樣設(shè)計問題情境的:

(1)做一朵綢花要30厘米綢帶,小麗做3朵這樣的綢花,一共用多少厘米綢帶?

(2)做一朵綢花要0.3米綢帶,小紅做3朵這樣的綢花,一共用多少米綢帶?

(3)做一朵綢花要■米綢帶,小芳做3朵這樣的綢花,一共用幾分之幾米綢帶?

通過讓學(xué)生列式并追問:(3)為什么也可用乘法計算,這樣設(shè)計,不但能激活學(xué)生對整數(shù)乘法的意義的理解,而且能使其將整數(shù)乘法的意義遷移到了分數(shù)乘整數(shù)的意義中,實現(xiàn)了知識的正遷移,為下面的學(xué)習(xí)做好了堅實的鋪墊。

二、創(chuàng)設(shè)有效操作情境,體驗算理

法則的獲得要給學(xué)生提供足夠數(shù)量的素材,使學(xué)生建立豐富的表象,引導(dǎo)學(xué)生從個別到一般加以分析研究。德國教育家第斯多惠提出:要“激發(fā)學(xué)生的認知素質(zhì),使他們在掌握和尋找真理中得到發(fā)展?!彼€指出:“不好的教師是給學(xué)生傳授真理,好的教師是使學(xué)生尋找真理?!币虼?,要重視法則形成過程的教學(xué),要根據(jù)學(xué)生的認識規(guī)律,使他們對每個法則的形成都有一個完整的心理過程,自己去尋找法則的條件和結(jié)論,理解法則的算理和算法,不能單純死記條文。否則,不但影響法則的靈活運用,而且也不利于學(xué)生思維能力的發(fā)展。在分析研究的過程中,教師應(yīng)主要抓住新舊知識的聯(lián)結(jié)點,思維的轉(zhuǎn)折點,引導(dǎo)學(xué)生體驗算理。在這個教學(xué)環(huán)節(jié)上,我改變教材例題的呈現(xiàn),給學(xué)生提供了以下三個素材:

(1)做一朵綢花要■米綢帶,小芳做3朵這樣的綢花,一共用幾分之幾米綢帶?

(2)人跑一步的距離相當(dāng)于袋鼠跳一下的■。人跑三步的距離是袋鼠跳一下的幾分之幾?

(3)一袋面包重■千克,4袋面包重多少千克?

讓學(xué)生列出算式后,在圖中“涂一涂、算一算”,想一想分數(shù)乘整數(shù)應(yīng)怎樣計算?這樣讓學(xué)生在具體的情境——操作活動中,探索分數(shù)乘整數(shù)的意義。

學(xué)生通過探索有如下兩種算法:(1)有少數(shù)學(xué)生列成加法算式,求得結(jié)果。(2)相當(dāng)一部分學(xué)生列成乘法算式,通過涂一涂求得結(jié)果。對于分數(shù)乘整數(shù)的算法還不夠理解,接下來我充分發(fā)揮教師的主導(dǎo)作用,讓學(xué)生比較兩種算法的意義,得出:

■×3=■+■+■=■=■=■

3×■=■+■+■=■=■=■

■×4=■+■+■+■=■=■=■

在此基礎(chǔ)上,引導(dǎo)學(xué)生觀察上面的計算過程,說說分數(shù)乘整數(shù)應(yīng)怎樣計算?通過學(xué)生交流、思維的碰撞,歸納出分數(shù)乘整數(shù)法則:用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變。布魯納指出:“兒童一旦使言語化為認識工具,就比以前更能用有效而靈活的方法將經(jīng)驗規(guī)律表現(xiàn)出來,并加以系統(tǒng)地轉(zhuǎn)換?!彼韵茸寣W(xué)生講算理,而后用言語表達法則,對理解法則有巨大的促進作用。

三、創(chuàng)設(shè)有效練習(xí)情境,體驗優(yōu)化

結(jié)果是分數(shù)的一般要化成最簡分數(shù),對于上面第三小題結(jié)果要進行約分,也可以在計算過程中進行約分,然后再計算,教師板書出兩種約分過程。建構(gòu)主義學(xué)習(xí)理論告訴我們,學(xué)生學(xué)習(xí)數(shù)學(xué)的過程是在自身經(jīng)驗基礎(chǔ)上積極主動的建構(gòu)過程。于是對于第一種結(jié)果進行約分,學(xué)生比較容易接收,第二種算法學(xué)生是第一次遇到,學(xué)生還感到比較陌生,就更別說體會這種算法的優(yōu)點了。因此,我首先讓學(xué)生認識到這種算法“優(yōu)”在何處,讓學(xué)生從心理上認可并接受這種做法,一旦學(xué)生從內(nèi)心認識到“這種算法的確好”,那么學(xué)生在行為上就會很自然地采用這種算法。怎樣才能讓學(xué)生認識到“這種算法優(yōu)在何處”呢?建構(gòu)主義認為,學(xué)習(xí)者要想完成對所學(xué)知識的意義建構(gòu),即達到對該知識所反映事物的性質(zhì)、規(guī)律以及該事物與其他事物之間聯(lián)系的深刻理解,最好的辦法是讓學(xué)習(xí)者到現(xiàn)實世界的真實環(huán)境中去感受、去體驗(即通過獲取直接經(jīng)驗來學(xué)習(xí)),而不是僅僅聆聽別人(例如教師)關(guān)于這種經(jīng)驗的介紹和講解。

根據(jù)以上所說,我設(shè)計如下一組練習(xí)題:

5×■= ■×4= 15×■= ■×42=

針對“■×42你是如何計算的”展開交流,使學(xué)生體會到計算過程中進行約分的好處。總之,算法的優(yōu)化一定要建立在學(xué)生主觀認可的基礎(chǔ)之上,在體驗中進行優(yōu)化,讓算法優(yōu)化展現(xiàn)原有的面貌!

(作者單位 江蘇省溧陽市上興中心小學(xué))

邻水| 海林市| 收藏| 南部县| 和田县| 淳化县| 永兴县| 杭锦旗| 辛集市| 衡东县| 灵丘县| 望城县| 白银市| 哈尔滨市| 蕉岭县| 惠水县| 玉树县| 东乡族自治县| 墨竹工卡县| 石嘴山市| 兴海县| 卓尼县| 乌鲁木齐市| 伊通| 炉霍县| 洛宁县| 武川县| 和硕县| 象州县| 苍南县| 西盟| 宜黄县| 曲阳县| 宾阳县| 靖宇县| 玛多县| 大庆市| 海阳市| 乐陵市| 内乡县| 龙口市|