趙 敏,曾 成,楊 睿,劉再華
(1.中國科學院地球化學研究所環(huán)境地球化學國家重點實驗室,貴州貴陽 550002;2.中國科學院地球化學研究所普定喀斯特生態(tài)綜合試驗站,貴州普定 562100)
貴州普定燈盞河巖溶泉的硫同位素季節(jié)變化特征
趙 敏1,2,曾 成1,2,楊 睿1,2,劉再華1,2
(1.中國科學院地球化學研究所環(huán)境地球化學國家重點實驗室,貴州貴陽 550002;2.中國科學院地球化學研究所普定喀斯特生態(tài)綜合試驗站,貴州普定 562100)
通過對貴州普定后寨地下河補給區(qū)的燈盞河巖溶泉為期1年的泉水水文地球化學特征與水中SO2-4的硫同位素組成及季節(jié)性變化規(guī)律的分析,揭示燈盞河巖溶泉泉水中硫酸鹽的來源及形成機理。結果表明:燈盞河巖溶泉的水化學類型主要為HCO-3·SO2-4-Ca2+型,具有很高的硫酸鹽濃度,且變化幅度較大,SO2-4濃度為0.35~8.76 mmol·L-1;燈盞河泉水SO2-4的硫同位素組成為(3.80~25.76)×10-3,反映泉水的硫同位素組成主要受土壤有機硫氧化和石膏巖層溶解的控制;泉水硫同位素組成季節(jié)性變化明顯,表現(xiàn)為旱季大于雨季,且旱季變化平緩,主要受石膏溶解的控制,而雨季變化幅度較大,反映雨季地下水硫酸鹽土壤有機硫源貢獻的增加及其季節(jié)性差異。
水文地球化學;硫同位素;溶解;氧化;有機硫;泉;巖溶;貴州
硫同位素作為一種有效的地球化學手段,已被廣泛運用于自然生態(tài)系統(tǒng)中各種硫源的示蹤和地球化學循環(huán)研究之中,如大氣酸沉降研究[1-2]、礦坑廢水湖泊研究[3-5]、濕地及江河湖泊硫源的示蹤研究[6-11]、地下水研究[12-17]等。利用硫同位素可判別流域生態(tài)系統(tǒng)中硫的來源及其遷移轉(zhuǎn)化途徑。自20世紀80年代,國際上開始了河流體系的硫同位素地球化學研究[18],中國也逐步開始研究水體的硫同位素地球化學,如洪業(yè)湯等研究認為中國大氣降水和地表水硫同位素組成具有區(qū)域分異的格局[1],儲雪蕾研究發(fā)現(xiàn)北京地區(qū)地表水的硫同位素季節(jié)性差異可能主要受生物成因硫排放的控制[6]。地下水和地表水中SO24-的硫同位素組成(δ(34S))主要反映硫的來源和循環(huán)過程,不同物質(zhì)來源的硫具有不同的硫同位素組成[6,12-17,19-20]。
貴州省位于西南巖溶區(qū)的中心,境內(nèi)碳酸鹽巖分布面積占全省面積的70%以上。巖溶地區(qū)地表和地下水中的δ(34S)隨著硫的物質(zhì)來源不同、地下水賦存環(huán)境的水文地球化學條件不同而存在很大的不同[21]。近年來,硫同位素已被廣泛應用于地表水和地下水中含硫組分的來源及形態(tài)轉(zhuǎn)化過程示蹤研究等方面[16,19,22-24]。碳酸鹽巖風化作用在很大程度上控制了巖溶地下水的化學組成;因此,對碳酸鹽巖地區(qū)泉水的水文地球化學特征組成變化進行研究,將有助于弄清楚碳酸鹽巖地區(qū)的化學風化作用與水文地球化學特征的關系以及控制泉水化學組成變化的多種因素[25-29]。
關于硫同位素的研究,前人主要集中在水化學特征及同位素區(qū)域差異上,而季節(jié)變化特征研究相對較少,尤其是碳酸鹽巖地區(qū)地下水中SO24-來源及形成機理的研究鮮見報道。因此,筆者選擇貴州普定典型的峰叢谷地區(qū),以巖溶泉為代表,通過對巖溶泉水硫同位素及其季節(jié)變化規(guī)律的研究,弄清楚碳酸鹽巖地區(qū)地下水中SO24-來源及形成機理,并探討硫酸參與流域化學侵蝕的過程,為正確估算巖石風化碳匯通量提供參考。
燈盞河巖溶泉區(qū)域位于貴州省安順市普定縣境內(nèi),屬長江流域的烏江水系,并位于著名的后寨巖溶地下河系統(tǒng)補給區(qū)。該區(qū)域?qū)贊駶檨啛釒夂?,全年濕潤多雨、冬溫夏暖、雨熱同期,年均氣?5.1℃,多年平均降水量為1 314.6 mm,降水時空分布不均,每年5~10月為雨季,降水量約占全年的80%,每年11月至次年4月為旱季,降水量約占全年的20%[30-32]。巖溶泉區(qū)域內(nèi)出露地層為中三疊統(tǒng)關嶺組上段(T2g3),巖性為白云巖、泥質(zhì)白云巖夾灰?guī)r、石膏夾層,以地形分水嶺為匯水邊界。地貌類型由巖溶槽谷外圍的巖溶丘陵及谷底的平壩組成。槽谷呈北東—南西向延伸,總體趨勢是東北高、西南低,長約0.6 km,周圍巖溶丘陵海拔為1 400~1 520 m,槽谷底部海拔為1 320 m。該巖溶槽谷底部地表覆蓋第四系殘坡積和沖洪積成因的松散土層,并且已經(jīng)被開墾為水田和旱地。巖溶泉區(qū)域位于槽谷底部的開口處,流量變幅較大,為常年不干的長流泉。其土地利用狀況詳見文獻[33]。
筆者于2008年8月至2009年8月采集1個完整水文年的燈盞河泉水樣品。水樣采集后經(jīng)0.45μm醋酸纖維濾膜過濾,用于測定硫同位素的水樣加入超純鹽酸將p H值調(diào)至小于2后,加入過量10%BaCl2溶液,使溶液中的SO2-4全部轉(zhuǎn)化為BaSO4沉淀;將沉淀的樣品帶回實驗室做進一步處理,其具體操作過程詳見文獻[34];然后將處理好的樣品用連續(xù)硫同位素質(zhì)譜儀(EA-Isoprime)測定。其結果用相對于國際標準CDT值的千分差值表示,具體為
式中:RSa、RSt分別為樣品及標準的硫同位素比值;測試精度優(yōu)于±0.2×10-3。
用于測定水中溶解無機碳的碳同位素δ(13CDIC)樣品采用直接沉淀法采集水樣,具體過程詳見文獻[35]。帶回實驗室的野外水樣δ(13CDIC)均在中國科學院地球化學研究所環(huán)境地球化學國家重點實驗室測定。測定的δ(13CDIC)與國際標準PDB同位素比值相對應的計算式為式中:Rsample、RPDB分別為樣品及標準的碳同位素比值;分析誤差優(yōu)于±0.15×10-3。
現(xiàn)場滴定使用德國Merck公司生產(chǎn)的堿度計和硬度計測定泉水的HCO3-和Ca2+濃度,精度分別為6、4 mg·L-1。在用于測定陽離子(K+、Na+、Ca2+、Mg2+)的水樣中加入超純HNO3酸化至p H值小于2條件下,測定陰離子(Cl-、、)的樣品不作處理。將過濾樣品進行酸化處理后,使用美國瓦里安(Varian)公司生產(chǎn)的ICP-OES電感耦合等離子體-光發(fā)射光譜(VISTA-MPX)測定陽離子質(zhì)量濃度;使用美國戴安(DIONEX)公司的ICP-90型離子色譜儀測定陰離子質(zhì)量濃度。
3.1 水文地球化學特征
圖1 燈盞河泉流量季節(jié)變化Fig.1 Seasonal Change of Flow for Dengzhanhe Spring
3.2 硫同位素特征及其來源分析
不同物質(zhì)來源的硫具有不同的硫同位素組成。根據(jù)地下水中硫同位素組成變化,水體中硫酸鹽物質(zhì)來源的可能端元包括:①石膏巖層的溶解具有最高的δ(34S),但不影響水體中的δ(13CDIC),故δ(34S)與δ(13CDIC)很可能不存在相關關系;②受土壤有機質(zhì)的氧化(或降解),可能有略微負偏的δ(34S)和最低的δ(13CDIC),兩者成正相關關系。值得一提的是,燈盞河巖溶泉區(qū)域地下水中基本可以排除由地層中硫化礦床氧化而成的可能,主要因為在該區(qū)域地下水露頭調(diào)查過程中,未發(fā)現(xiàn)p H值小于6的強酸性水體,而且在各采樣點水樣的化驗結果中,F(xiàn)e3+等金屬離子從未檢出[36]。
圖2顯示了硫同位素和碳同位素組成變化的相互關系。δ(13CDIC)<-10×10-3或δ(34S)<20×10-3時,δ(13CDIC)與δ(34S)成正相關關系;當δ(13CDIC)>-10×10-3或δ(34S)>20×10-3時,δ(13CDIC)與δ(34S)不相關;因此,燈盞河泉硫酸鹽來源于土壤有機質(zhì)的氧化和石膏巖層的溶解,但不存在硫化物的氧化。從圖2還能看出δ(13CDIC)<-10×10-3或δ(34S)<20×10-3的情況發(fā)生在高流量時(即暴雨后),這進一步說明土壤有機質(zhì)氧化來源的SO2-4主要發(fā)生在雨季,而在旱季,地下水中的來源于含水層中的石膏溶解(δ(34S)>20×10-3)。
圖2 燈盞河泉δ(13CDIC)和δ(34S)的相互關系及其季節(jié)變化Fig.2 Relationship Betweenδ(13CDIC)andδ(34S)of Dengzhanhe Spring and Its Seasonal Change
由圖3可知,燈盞河地下水的δ(34S)與濃度具有相似的季節(jié)變化,燈盞河地下水體中硫酸鹽同位素值為(3.8~25.76)×10-3,雨季降低,旱季升高。區(qū)域內(nèi)出露地層為中三疊統(tǒng)關嶺組上段,地下水流經(jīng)含水巖層中膏巖層時,水-巖作用的結果使地下水具有較高的濃度和高的δ(34S),通常接近或分布在該區(qū)域海相蒸發(fā)硫酸鹽(石膏)的δ(34S)范圍((23.7~29.56)×10-3)內(nèi);基于前人關于西南喀斯特坡地土壤硫的生物地球化學循環(huán)研究,普定表層土壤的δ(34S)均為負值,為(-3.65~-1.34)×10-3;不考慮土壤類型的影響,普定表層土壤有機硫的δ(34S)為(-1.63~1.18)×10-3,明顯高于表層土壤[37]。若取平均值26.63×10-3作為石膏來源的端元值[38],-0.23×10-3作為土壤有機硫來源的端元值[37],則通過同位素質(zhì)量守恒定律,可計算出石膏來源的比例為15%~97%。由此可見,燈盞河硫酸鹽及其δ(34S)的變化,旱季主要受石膏溶解的影響,而雨季則受土壤有機硫來源的影響顯著增加。
圖3 燈盞河δ(34S)與濃度的相關關系及其季節(jié)變化Fig.3 Relationship Betweenδ(34S)andConcentration of Dengzhanhe Springand Its Seasonal Change
此外,從圖3還可知,δ(34S)隨著SO2-4濃度的增加而增加,高硫酸鹽濃度對應的δ(34S)均大于25× 10-3。圖3(b)中趨勢線后面部分變幅不大,主要原因是這一階段正好是旱季,受降水的影響較小,幾乎沒有土壤有機硫來源的影響,主要由石膏巖層的溶解所致。
(3)泉水δ(34S)季節(jié)性變化明顯,表現(xiàn)為旱季大于雨季,且旱季變化平緩,主要受石膏溶解的控制,而雨季變化幅度較大,反映雨季地下水硫酸鹽土壤有機硫源貢獻的增加及其季節(jié)性差異。
References:
[1] 洪業(yè)湯,張鴻斌,朱詠煊,等.中國大氣降水的硫同位素組成特征[J].自然科學進展,1994,4(6):741-745.HONG Ye-tang,ZHANG Hong-bin,ZHU Yong-xuan,et al.Sulfur Isotopic Composition of Rain in China[J].Progress in Natural Sciences,1994,4(6):741-745.
[2] 姚文輝,陳佑蒲,劉 堅,等.衡陽大氣硫同位素組成環(huán)境意義的研究[J].環(huán)境科學研究,2003,16(3):3-5.
YAO Wen-h(huán)ui,CHEN You-pu,LIU Jian,et al.The Research on the Environmental Significance of Atmospheric Sulfur Isotopic Composition in Hengyang[J].Research of Environmental Sciences,2003,16(3):3-5.
[3] KNOLLER K,STRSUCH G.Assessment of the Flow Dynamic of a Mining Lake by Stable Isotope Investigations[J].Isotopes in Environmental and Health Studies,1999,35(1/2):75-83.
[4] KNOLLER K,STRSUCH G.The Application of Stable Isotopes for Assessing the Hydrological,Sulfur,and Iron Balances of Acidic Mining Lake ML 111(Lusatia,Germany)as a Basis for Biotechnological Remediation[J].Water,Air and Soil Pollution:Focus,2002,2(3):3-14.
[5] PELLICORI D A,GAMMONS C H,POULSON S R.Geochemistry and Stable Isotope Composition of the Berkeley Pit Lake and Surrounding Mine Waters,Butte,Montana[J].Applied Geochemistry,2005,20(11):2116-2137.
[6] 儲雪蕾.北京地區(qū)地表水的硫同位素組成與環(huán)境地球化學[J].第四紀研究,2000,20(1):87-97.
CHU Xue-lei.Sulfur Isotopic Compositions and Environmental Geochemistry of Surface Water in Beijing District[J].Quaternary Sciences,2000,20(1):87-97.
[7] SCHIFFS L,SPOELSTRA J,SEMKIN R G,et al.Drought Induced Pulses offrom a Canadian Shield Wetland:Use ofδ34S andδ18O into Determine Sources of Sulfur[J].Applied Geochemistry,2005,20(4):691-700.
[8] 蔣穎魁,劉叢強,陶發(fā)祥.貴州烏江水系枯水期河水硫同位素組成研究[J].地球化學,2006,35(6):623-628.
JIANG Ying-kui,LIU Cong-qiang,TAO Fa-xiang.Sulfur Isotopic Compositions of Wujiang River Water in Guizhou Province During Low-flow Period[J].Geochimica,2006,35(6):623-628.
[9] 蔣穎魁,劉叢強,陶發(fā)祥.貴州烏江水系河水硫同位素組成特征研究[J].水科學進展,2007,18(4):558-565.JIANG Ying-kui,LIU Cong-qiang,TAO Fa-xiang.Sulfur Isotope Composition Characters of Wujiang River Water in Guizhou Province[J].Advances in Water Science,2007,18(4):558-565.
[10] 王中良,劉叢強,朱兆洲.中國西南喀斯特湖泊硫酸鹽來源的硫同位素示蹤研究[J].礦物巖石地球化學通報,2007,26(增):580-581.
WANG Zhong-liang,LIU Cong-qiang,ZHU Zhaozhou.Stable Isotopic Research to Investigate Potential Sulfate Sources of Karst Lakes in Southwest China[J].Bulletin of Mineralogy,Petrology and Geochemistry,2007,26(S):580-581.
[11] BRENOT A,BRENOT M,CARIGAN J,et al.Geological and Land Use Control onδ34S andδ18O of River Dissolved Sulfate:the Moselle River Basin,F(xiàn)rance[J].Chemical Geology,2007,244(1/2):25-41.
[12] 顧慰祖,林曾平,費光燦,等.環(huán)境同位素硫在大同南寒武—奧陶系地下水資源研究中的應用[J].水科學進展,2000,11(1):14-20.GU Wei-zu,LIN Zeng-ping,F(xiàn)EI Guang-can,et al.The Use of Environmental Sulphur Isotopes in the Study of the Cambrian-Ordovician Aquifer System in the South of Datong[J].Advances in Water Science,2000,11(1):14-20.
[13] BOTTCHER M E.The Stable Isotopic Geochemistry of the Sulfur and Carbon Cycles in a Modern Karst Environment[J].Isotopes in Environmental and Health Studies,1999,35(1/2):39-61.
[14] PICHLER T.δ34S Isotope Values of Dissolved Sulfate()as a Tracer for Battery Acid(H2SO4)Contamination in Groundwater[J].Environmental Geology,2005,47(2):215-224.
[15] KNOLLER K,TRETTIN R,STRAUCH G.Sulphur Cycling in the Drinking Water Catchment Area of Torgau-Mockritz(Germany):Insights from Hydrochemical and Stable Isotope Investigations[J].Hydrological Processes,2005,19(17):3445-3465.
[16] TUTTLE M L W,BREIT G N,COZZARELLI I M.Processes Affectingδ34S andδ18O Values of Dissolved Sulfate in Alluvium Along the Canadian River,Central Oklahoma,USA[J].Chemical Geology,2009,265(3/4):455-467.
[17] YANG Y C,SHEN Z L,WEN D G,et al.Distribution ofδ34S andδ18O in SO2-4in Groundwater from the Ordos Cretaceous Groundwater Basin and Geological Implications[J].Acta Geologica Sinica:English Edition,2010,84(2):432-440.
[18] 李干蓉,劉叢強,陳 椽,等.豐水期烏江上游干流水庫—河流體系硫同位素組成[J].長江流域資源與環(huán)境,2009,18(4):350-355.
LI Gan-rong,LIU Cong-qiang,CHEN Chuan,et al.Sulfur Isotope Composition of River Channel and Reservoir Water in Upper Reaches of Wujiang River in High Flow Season[J].Resources and Environment in the Yangtze Basin,2009,18(4):350-355.
[19] DAS A,PAWAR N J,VEIZER J.Sources of Sulfur in Deccan Trap Rivers:a Reconnaissance Isotope Study[J].Applied Geochemistry,2011,26(3):301-307.
[20] 張江華,梁永平,王維泰,等.硫同位素技術在北方巖溶水資源調(diào)查中的應用實例[J].中國巖溶,2009,28(3):235-241.
ZHANG Jiang-h(huán)ua,LIANG Yong-ping,WANG Weitai,et al.A Practical Use of34S in the Investigation of Karst Groundwater Resource in North China[J].Carsologica Sinica,2009,28(3):235-241.
[21] 郎赟超.喀斯特地下水文系統(tǒng)物質(zhì)循環(huán)的地球化學特征——以貴陽市和遵義市為例[D].貴陽:中國科學院地球化學研究所,2005.
LANG Yun-chao.Geochemical Characteristics of Cycling of Substances in Karstic Ground Water System—a Case Study from Guiyang and Zunyi Cities of China[D].Guiyang:Institute of Geochemistry,Chinese Academy of Sciences,2005.
[22] DOWUONA G N,MERMUT A R,KROUSE H R.Stable Isotope Geochemistry of Sulfate in Relation to Hydrogeology in Southern Saskatchewan,Canada[J].Applied Geochemistry,1993,8(3):255-263.
[23] DOGRAMACI S S,HERCZEG A L,SCHIFF S L,et al.Control onδ34S andδ18O of Dissolved Sulfate in Aquifers of the Murray Basin,Australia and Their Use as Indicators of Flow Processes[J].Applied Geochemistry,2001,16(4):475-488.
[24] KIRSTE D,DE CARITAT P,DANN R.The Application of the Stable Isotopes of Sulfur and Oxygen in Groundwater Sulfate to Mineral Exploration in the Broken Hill Region of Australia[J].Journal of Geochemical Exploration,2003,78/79:81-84.
[25] ROY S,GAILLARDET J,ALLEGRE C J.Geochemistry of Dissolved and Suspended Loads of the Seine River,F(xiàn)rance:Anthropogenic Impact,Carbonate and Silicate Weathering[J].Geochimica et Cosmochimica Acta,1999,63(9):1277-1292.
[26] TELMER K,VEIZER J.Carbon Fluxes,ρCO2and Substrate Weathering in a Large Northern River Basin,Canada:Carbon Isotope Perspectives[J].Chemical Geology,1999,159(1/2/3/4):61-86.
[27] YOSHIMURA K,NAKAO S,NOTO M,et al.Geochemical and Stable Isotope Studies on Natural Water in the Taroko Gorge Karst Area,Taiwan:Chemical Weathering of Carbonate Rocks by Deep Source CO2and Sulfuric Acid[J].Chemical Geology,2001,177(3/4):415-430.
[28] HELIE J F,HILLAIRE-MARCEL C,RONDEAU B.Seasonal Changes in the Sources and Fluxes of Dissolved Inorganic Carbon Through the St.Lawrence River:Isotopic and Chemical Constraint[J].Chemical Geology,2002,186(1/2):117-138.
[29] HAN G L,LIU C Q.Water Geochemistry Controlled by Carbonate Dissolution:a Study of the River Waters Draining Karst-dominated Terrain,Guizhou Province,China[J].Chemical Geology,2004,204(1/2):1-21.
[30] 蒙海花,王臘春.巖溶地區(qū)土地利用變化的水文響應研究——以貴州后寨河流域為例[J].中國巖溶,2009,28(3):227-234.
MENG Hai-h(huán)ua,WANG La-chun.Hydrological Responses to Land-use Changes in Karst Area—a Case Study in Houzhai River,Guizhou Province[J].Carsologica Sinica,2009,28(3):227-234.
[31] 趙 敏,曾 成,劉再華.土地利用變化對巖溶地下水溶解無機碳及其穩(wěn)定同位素組成的影響[J].地球化學,2009,38(6):565-572.
ZHAO Min,ZENG Cheng,LIU Zai-h(huán)ua.Influence of Land Use Change on Dissolved Inorganic Carbon and Stable Isotopic Compositions of Karst Groundwater[J].Geochimica,2009,38(6):565-572.
[32] 束龍倉,柯婷婷,劉麗紅,等.基于綜合法的巖溶山區(qū)生態(tài)系統(tǒng)脆弱性評價——以貴州省普定縣為例[J].中國巖溶,2010,29(2):141-144.
SHU Long-cang,KE Ting-ting,LIU Li-h(huán)ong,et al.Assessment on Ecosystem Fragility of Karst Mountain Areas Based on Synthetic Method—a Case Study in Puding Country,Guizhou Province[J].Carsologica Sinica,2010,29(2):141-144.
[33] ZHAO M,ZENG C,LIU Z H,et al.Effect of Different Land Use/Land Cover on Karst Hydrogeochemistry:a Paired Catchment Study of Chenqi and Dengzhanhe,Puding,Guizhou,SW China[J].Journal of Hydrology,2010,388(1/2):121-130.
[34] YANAGLSAWA F,SAKAL H.Thermal Decomposition of Barium Sulfate-vanadium Pentoxide-silica Glass Mixtures for Preparation of Sulfur Dioxide in Sulfur Isotope Ratio Measurements[J].Analytical Chemistry,1983,55(6):985-987.
[35] LIU Z H,ZHANG M L,LI Q,et al.Hydrochemical and Isotope Characteristics of Spring Water and Travertine in the Baishuitai Area(SW China)and Their Meaning for Paleoenvironmental Reconstruction[J].Environmental Geology,2003,44(6):698-704.
[36] 曾 成.濕亞熱帶巖溶系統(tǒng)水文水化學對不同土地利用的響應研究[D].桂林:中國地質(zhì)科學院巖溶地質(zhì)研究所,2009.
ZENG Cheng.Study on the Response of Hydrology and Hydrochemistry of Karst Systems to Different Land Uses Under Humid Subtropical Climate[D].Guilin:Institute of Karst Geology,Chinese Academy of Geological Sciences,2009.
[37] 張 偉.西南喀斯特坡地土壤硫的生物地球化學循環(huán)研究[D].貴陽:中國科學院地球化學研究所,2009.
ZHANG Wei.Biogeochemical Cycle of Sulfur in Soils on Slopes of Karst Areas,Southwest China[D].Guiyang:Institute of Geochemistry,Chinese Academy of Sciences,2009.
[38] 郎赟超,劉叢強,SATAKE H,等.貴陽地表水-地下水的硫和氯同位素組成特征及其污染物示蹤意義[J].地球科學進展,2008,23(2):151-159.
LANG Yun-chao,LIU Cong-qiang,SATAKE H,et al.δ37Cl andδ34S Variations of Cl-andin Groundwater and Surface Water of Guiyang Area,China[J].Advances in Earth Science,2008,23(2):151-159.
Seasonal Variation of Sulfur Isotope in Dengzhanhe Karst Spring of Puding,Guizhou
ZHAO Min1,2,ZENG Cheng1,2,YANG Rui1,2,LIU Zai-h(huán)ua1,2
(1.State Key Laboratory of Environmental Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,Guizhou,China;2.Puding Comprehensive Karst Ecological Experiment Station,
Institute of Geochemistry,Chinese Academy of Sciences,Puding 562100,Guizhou,China)
The concentration of sulfate is high in Dengzhanhe karst spring located in the recharge area of Houzhai underground river of Puding,Guizhou.Hydrogeochemistry characteristics of the spring,sulfur isotopic composition of SO2-4and their seasonal changes were analyzed during a hydrological year,and the source and formation mechanism of sulfate in the spring were revealed.The results showed that the hydrochemical type of Dengzhanhe karst spring was HCO-3·SO2-4-Ca2+,the concentration of sulfate was very high and the range of variation was significant,the concentration of SO2-4was 0.35-8.76 mmol·L-1;the sulfur isotopic composition of SO2-4in the spring was(3.80-25.76)×10-3,and indicated that the sulfur isotopic composition was mainly controlled by dissolution of gypsum and oxidation of organic sulfur in soil;seasonal variation of sulfur isotopic composition was remarkable,and indicated that sulfur isotopic composition in dry season was more than that in rainy season,and the change of composition in dry season was small and mainly controlled by the dissolution of gypsum,but the change in rainy season was large and reflected the increase of organic sulfur for underground sulfate soil and its seasonal difference.
hydrogeochemistry;sulfur isotope;dissolution;oxidation;organic sulfur;spring;karst;Guizhou
P595;P641.3
A
1672-6561(2012)03-0083-06
2011-10-16
國家自然科學基金項目(41103084,41003056);貴州省博士基金項目(2011GZ62743)
趙 敏(1980-),女,貴州興義人,助理研究員,理學博士,E-mail:zhaomin@m(xù)ails.gyig.a(chǎn)c.cn。