朱劍峰,王朝祥,黃心中
(華僑大學(xué)數(shù)學(xué)科學(xué)學(xué)院,福建泉州362021)
單位圓上調(diào)和映照的單葉半徑
設(shè)f(z)=h(z)+為定義在單位圓盤U上的調(diào)和映照,滿足條件證明當(dāng)0<p≤1時(shí),f(z)在圓盤|z|<r0=1/(21-p)內(nèi)單葉;當(dāng)1<p≤2時(shí),f(z)在圓盤|z|<R0=1/(22-p)內(nèi)為凸像函數(shù).所得結(jié)果推廣了M.Jahangiri等和M.?ztürk等的結(jié)論.
調(diào)和映照;單葉半徑;星像函數(shù);凸像函數(shù)
h(z)和g(z)為D上的解析函數(shù),稱h(z)為f(z)的解析部分,g(z)為f(z)的共軛解析部分.由文獻(xiàn)[1]可知:f(z)為D上的局部單葉保向映照的充要條件是|h′(z)|>|g′(z)|,對于任意的z∈D.
記U={z∶|z|<1}為單位圓盤,如果式(1)中的f(z)滿足f(0)=fz(0)-1=0,則有
設(shè)f(z)=u(x,y)+i v(x,y)為定義在區(qū)域D上的連續(xù)函數(shù),如果u(x,y),v(x,y)皆為實(shí)調(diào)和函數(shù),則稱f(z)為D上的復(fù)調(diào)和函數(shù).又若D為單連通區(qū)域,則f(z)可寫成
定義SH類函數(shù)為一族定義在單位圓盤U上的單葉保向調(diào)和映照且滿足條件(2).對于任意的f∈SH,若其像域f(U)為星像,則稱f(z)為星像調(diào)和函數(shù),記為f∈S*H.類似地若其像域f(U)為凸像,則稱f(z)為凸像調(diào)和函數(shù),記為f∈KH.關(guān)于星像調(diào)和與凸像調(diào)和函數(shù)的特征,有如下充要條件[2],即
M.Jahangiri等[3-4]利用系數(shù)不等式證明了下列的定理.
定理A 設(shè)f=h+ˉg為定義在單位圓盤U上的調(diào)和映照,其中h和g的定義如式(2),滿足
則f(z)為U上的單葉、保向近于凸映照.式(5)的上限是精確的,因?yàn)閷τ谌我獾摩模?,f(z)=z+內(nèi)已不在單葉.進(jìn)一步地,若有則f∈KH為U上的凸像函數(shù).這里的上限同樣是精確的,因?yàn)楹瘮?shù)f(z)=z+,δ>0表明式(6)的上界已無法再改進(jìn).
M.?ztürk等[5]進(jìn)一步研究了上述問題.設(shè)f=h+gˉ為單位圓盤U上的調(diào)和函數(shù),其中h,g由式(2)定義,若其系數(shù)滿足
則f(z)為凸像函數(shù).
定理1 設(shè)f=h+ˉg為定義在單位圓盤U上的調(diào)和映照,h和g如式(2)定義,對于任意的0<p≤1,若f(z)滿足
[1] LEWY H.On the non-vanishing of the Jocobian in certain one-to-one mappings[J].Bull Am Math Soc,1936,42(10):689-692.
[2] AHUJA P.Planar harmonic univalent and related mappings[J].Journal of Inequalitities in Pure and Applied Mathematics,2005,6(4):1-18.
[3] JAHANGIRI M,SILVERMAN H.Harmonic close-to-convex mappings[J].Journal of Applied Mathematics and Stochastic Analysis,2002,15(1):23-28.
[4] JAHANGIRI M,SILVERMAN H.Meromorphic univalent harmonic functions with negative coefficients[J].Bull Korean Math Soc,1999,36(4):763-770.
[5] ?ZTüRK M,YALCIN S.On univalent harmonic functions[J].Journal of Inequalities in Pure and Applies Mathematics,2002,3(4):1-8.
[6] WIDOMAKI J,GREGORCZYK M.Harmonic mappings in the exterior of the unit disk[J].Annales UMCS,Mathematica,2010,64(1):63-73.
Univalent Radius of Harmonic Mapping in the Unit Disk
ZHU Jian-feng,WANG Chao-xiang,HUANG Xin-zhong
(School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China)
(|an|+|bn|)≤1-|b1|.In this paper we prove that:if 0<p≤1,then f(z)is univalent in the diskif 1<p≤2,then f(z)is convex in the disk|z|<R=.These improve the corresponding results made by M.Jahan-0giri and M.?ztürk.
harmonic mapping;univalent radius;starlike mapping;convexity mapping
1000-5013(2012)05-0581-03
朱劍峰,王朝祥,黃心中
(華僑大學(xué)數(shù)學(xué)科學(xué)學(xué)院,福建泉州362021)
O 174.2
A
(責(zé)任編輯:黃曉楠 英文審校:黃心中)
2011-10-12
朱劍峰(1980-),男,講師,主要從事函數(shù)論的研究.E-mail:flandy@hqu.edu.cn.
國家自然科學(xué)基金資助項(xiàng)目(11101165);國務(wù)院僑辦科研基金資助項(xiàng)目(10QZR22)