周建紅,令玉林,司士輝
(1.湖南科技大學(xué)生命科學(xué)學(xué)院,湖南湘潭411201;2.湖南科技大學(xué)化學(xué)化工學(xué)院,湖南湘潭411201;3.中南大學(xué)化學(xué)化工學(xué)院,湖南長沙 410083)
絲網(wǎng)印刷電極在食品檢測中的應(yīng)用研究進(jìn)展
周建紅1,令玉林2,司士輝3
(1.湖南科技大學(xué)生命科學(xué)學(xué)院,湖南湘潭411201;2.湖南科技大學(xué)化學(xué)化工學(xué)院,湖南湘潭411201;3.中南大學(xué)化學(xué)化工學(xué)院,湖南長沙 410083)
絲網(wǎng)印刷電極因價(jià)格便宜、使用方便、重現(xiàn)性好、檢測靈敏度高而成為研究熱點(diǎn)。對絲網(wǎng)印刷電極在食品檢測中的應(yīng)用進(jìn)行了綜述,主要闡述絲網(wǎng)印刷電極在亞硝酸鹽、硫化物、毒枝菌素、致病菌、海產(chǎn)食品毒性等污染物的檢測和乳酸的檢測、電子鼻和電子舌的應(yīng)用與發(fā)展趨勢。對于同一種成分,則按工作電極的修飾方法或檢測方法來進(jìn)行分述,并對絲網(wǎng)印刷電極的應(yīng)用前景進(jìn)行了展望。
絲網(wǎng)印刷電極,綜述,傳感器,食品檢測
電分析化學(xué)方法具有靈敏度高、選擇性好、可野外操作和價(jià)格便宜的優(yōu)勢,有些電分析技術(shù)能夠在線、活體內(nèi)檢測各種性能的物質(zhì),其中一種就是采用絲網(wǎng)印刷電極(Screen-printed electrode,SPE)的電化學(xué)分析。SPE又稱厚膜電極,是用厚膜集成電路工藝制備的電化學(xué)傳感器。絲網(wǎng)印刷技術(shù)主要優(yōu)點(diǎn)包括:設(shè)計(jì)靈活,印制過程容易實(shí)現(xiàn)自動(dòng)化,重現(xiàn)性好,適用于各種材質(zhì),成本低廉。由于可大批量生產(chǎn)重現(xiàn)性好的傳感器且成本低,可以一次性使用,對使用者十分方便。這種在用戶手上不需要標(biāo)定的一次性產(chǎn)品成功地解決了電極重現(xiàn)性差等問題。這項(xiàng)技術(shù)為現(xiàn)場檢測提供了很大的發(fā)展前景[1]。SPE的多功能性表現(xiàn)在可采用不同方法來修飾電極。印刷的各種油墨的比例可通過添加不同的物質(zhì)例如金屬、酶、聚合物、復(fù)合劑等來改變[2-5];另一方面,可在已生產(chǎn)出的電極表面上采用不同電沉積方式來修飾電極[6-7]。本文主要對近年來的各種SPE在食品中的應(yīng)用進(jìn)行了綜述概括。根據(jù)被檢測的成分來進(jìn)行分類,闡述了絲網(wǎng)印刷電極在食品方面的應(yīng)用與發(fā)展,并對其以后的發(fā)展趨勢進(jìn)行了展望。
最早的絲網(wǎng)印刷傳感器主要集中在血糖的測定方面,之后逐漸拓展到諸如生物分子、殺蟲劑、離子及污染物的測定。以下就近年來絲網(wǎng)印刷電極在食品中有關(guān)成分的檢測做一闡述。
1.1 亞硝酸鹽(Nitrite)和硫化物的檢測
亞硝酸鹽的檢測結(jié)果對地下水及飲用水質(zhì)量的評價(jià)非常重要。Neuhold[8]等將Aliquat 336a陰離子交換劑加入碳油墨中來印刷電極,克服了以往采用固態(tài)交換劑操作費(fèi)時(shí)且不嚴(yán)密的弊端。Chang[9]等報(bào)道,發(fā)展一種便宜的聚二甲基硅氧烷(PDMS)基電化學(xué)電池,設(shè)計(jì)了一種一次性超微SPE,采用FIA系統(tǒng)來檢測亞硝酸鹽。Lin[10]等采用聚3,4-乙撐二氧噻吩/鐵酞菁/多壁碳鈉米管(PEDOT/FePc/MWCNT)來修飾絲網(wǎng)印刷電極,減小了亞硝酸鹽氧化的過電位,使檢測限達(dá)到了71nM,靈敏度達(dá)到638mA·cm-2·M-1。
對于硫外物的測定,有采用聚(L-交酯)固定金鈉米粒子修飾SPCE,利用As3+減少氧化電流能間接測定硫化物,其檢測限為0.04μM[11]。徐肖邢[12]等在一次性印刷碳電極(SPCE)的基礎(chǔ)上,研究了N,N-二甲基對苯二胺(DMPD)在印刷電極上的電化學(xué)行為及其對硫離子的電催化氧化,采用DPV測定了S2-。
1.2 致癌物質(zhì)——毒枝菌素的檢測
很多食品中的毒枝菌素含量超標(biāo)。牛奶通常被少量的黃曲霉毒素M1(AFM1)即奶牛對黃曲霉毒素B1(AFB1)的代謝產(chǎn)物所污染。Micheli[13]等描述了一種在SPCEs表面上直接固定抗體制得的電化學(xué)免疫傳感器,在其表面游離的AFM1與連接有HRP的AFM1發(fā)生競爭抗體;另一種建立在間接競爭的ELISA基礎(chǔ)上的一種一次性電化學(xué)免疫傳感器,采用DPV和SPCEs來簡單快速地測定AFB1[14]。表面吸附有抗AFB1抗體的SPCEs,基于游離分析物與連接有AFB1生物素之間競爭抗體的原理而被應(yīng)用于競爭性免疫分析中[15]。隨后添加結(jié)合有ALP的生物素,1-萘基磷酸鹽底物能產(chǎn)生一種電化學(xué)活性產(chǎn)物1-萘酚,采用線性掃描伏安法(LSV)得以測定。Piermarini[16]等首次采用一個(gè)微盤多通道的電化學(xué)檢測器,采用間歇脈沖電流(IPA)技術(shù)來檢測AFB1。Alarcon[17]等描述了一種直接競爭性的ELISA來測定另一種毒枝菌素——赭曲霉素A(OTA,ochratoxin),他們采用了多克隆抗體的SPCEs,適合于普查食品中的OTA。Romanazzo[18]等將磁性珠子作為載體,SPEs作為敏感元件,利用便攜式掌式傳感器來檢測毒枝菌素,在數(shù)秒鐘內(nèi)能自動(dòng)完成八次測定。Hervas[19]等采用碳SPEs作為電化學(xué)免疫傳感器來檢測嬰兒食品中的玉米烯酮,檢測限低至0.007μgL-1。
1.3 致病菌的檢測
李斯特產(chǎn)單核細(xì)胞細(xì)菌污染的食品會(huì)引起嚴(yán)重的傳染病。Crowley[20]等描述了一種測定牛奶中該菌的免疫傳感器,采用直接三明治式的對兩種親合多克隆的山羊、兔和一種單克隆的老鼠抗L.產(chǎn)單核細(xì)胞抗體進(jìn)行了比較分析,應(yīng)用生物素-抗生物素蛋白的SPCEs進(jìn)行檢測來克服敏感性低的弊端。Rao[21]等描述了一次性的電流式免疫傳感器快速測定霍亂弧菌(V.cholerae)。另有研究采用錐蟲成蟲期表面的醣蛋白制成的電流式免疫傳感器來診斷查格斯氏病[22]。Farabullini[23]等采用電化學(xué)基因傳感器陣列來同時(shí)快速檢測污染食品中的不同病原菌。Elizabeth Tully[24]等用聚苯胺(PANI)絲網(wǎng)印刷電極,將生物素-抗生物素蛋白固定在(PANI)表面,隨后多克隆抗-內(nèi)化素B(InlB)抗體,采用電化學(xué)阻抗光譜(EIS)來實(shí)現(xiàn)無標(biāo)檢測。Fernandez-Baldo[25]等采用碳鈉米管修飾絲網(wǎng)印刷免疫傳感器測定蘋果中的灰葡萄孢菌。利用競爭性的免疫方法達(dá)到0.02μg·mL-1,而一般的ELISA的檢測限為10μg·mL-1。SPE用于致病菌的檢測發(fā)展很迅速,也是目前研究的熱點(diǎn)。Lin[26]等利用商業(yè)的銀和碳墨制成的SPE,采用雙層抗體的制成安培免疫條帶,利用間接的三明治式的酶聯(lián)免疫分析快速檢測Escherichia coliO157∶H7。Escamilla-Gómez[27]等采用自組裝單層修飾金SPE,然后固定抗體制成無標(biāo)的電化學(xué)阻抗免疫傳感器。采用的硫基化抗體使得分析性能明顯改善,在不用富集和預(yù)處理的情況下能選擇性地檢測Escherichia coli,檢測限達(dá)到了3.3cfu· mL-1。Salam和Tothill IE[28]采用集三電極系統(tǒng)于一體的SPE來實(shí)現(xiàn)Salmonella typhimurium的檢測。Mata[29]等采用集成的SPE微系統(tǒng)電化學(xué)檢測致病菌。對于濃度為102cfu·mL-1和108cfu·mL-1的致病菌在樣品量只需10μL,不到30min內(nèi)得以快速檢測。為推行手提式病原菌控制裝置奠定了基礎(chǔ)。
1.4 海產(chǎn)食品毒性的檢測
大部分的海產(chǎn)品中毒是因?yàn)閿z取了海產(chǎn)品中低分子量的毒性物質(zhì)[30]。Kreuzer[31]等通過檢測標(biāo)有ALP而產(chǎn)生的p-氨基酚,嘗試制作了一種免疫傳感器來快速地、準(zhǔn)確地評定痕量海產(chǎn)品毒性物質(zhì)。在軟骨藻酸(DA)存在的情況下[32],DA與BSA共軛覆蓋在SPCE工作電極上,接著樣品(或標(biāo)準(zhǔn)的毒物)和抗-DA抗體共同培養(yǎng),用一種抗山羊IgG-堿性磷酸酯酶(AP)來產(chǎn)生信號,利用DPV方法來進(jìn)行測定。
1.5 乳酸的檢測
Shkotova[33]等采用在絲網(wǎng)印刷鉑電極上固定乳酸氧化酶來測量發(fā)酵過程中酒中乳酸的含量。Prieto-Simon[34]等采用萘酚藍(lán)和輔因子NAD(+)固定在SPE’s上測定,靈敏度較差為260μA·M-1,而用介體-聚砜-石墨復(fù)合膜后的SPE’s靈敏度明顯改善,達(dá)到80mA·M-1,檢測限達(dá)到0.87μM。接著有Piano[35]等采用萘酚藍(lán)和雷氏鹽,并用乳酸脫氫酶和輔因子NAD(+)采用流動(dòng)注射方法來檢測乳酸。該傳感器的線性范圍為0.55~10mM。
1.6 制得味覺和嗅覺傳感器來檢測食品
目前廣泛運(yùn)用生物模擬味覺傳感系統(tǒng):類脂/高聚物膜對接觸味覺物質(zhì)產(chǎn)生的電勢差的原理制成多通道味覺傳感器。而瑞典Linkpoing大學(xué)Fredrik Winquist課題小組使用的惰性貴金屬傳感器陣列,使用六種惰性貴金屬(金、銥、鈀、鉑、錸、銠),中心為Ag/AgCl參比電極,外周為不銹鋼對電極組成傳感器陣列構(gòu)成電子舌來檢測不同品牌的飲料,對其施加脈沖電壓,結(jié)果顯示使用脈沖電壓的電子舌也能夠區(qū)分不同類型的飲料[29,36]。因?yàn)樵谒┑碾娢幌?,溶液中的所有具有電化學(xué)活性的物質(zhì)對儀器所測得的響應(yīng)電流均有貢獻(xiàn),需通過計(jì)量學(xué)方法來解析,對溶液中的金屬及其他導(dǎo)電性能良好的離子進(jìn)行表達(dá)。俄羅斯圣彼得堡大學(xué)Hakhyun設(shè)計(jì)的絲網(wǎng)印刷電位傳感器[37],它是一種全固態(tài)平面式電位電子舌系統(tǒng),將摻有PVC、PPY、聚氨酯等不同物質(zhì)的高交叉靈敏度聚合物薄膜覆蓋在由普魯士蘭修飾的碳糊絲網(wǎng)印刷傳感器陣列電極表面,該系統(tǒng)可用于檢測飲用水、軟飲料和啤酒的味道。Busch[38]等采用SPEs碳電極和酪氨酸酶以及過氧化物酶作為生物傳感器,來檢測輕榨優(yōu)質(zhì)橄欖油中的酚類化合物,以此確定苦味和辛辣味。Gine Bordonaba[39]等采用葡萄糖生物傳感器快速估計(jì)草莓質(zhì)量。利用萘酚藍(lán)作為介體,葡萄糖氧化酶固定在SPEs上,根據(jù)葡萄糖含量區(qū)分八種不同品種的草莓。
近年來,根據(jù)大量的參考資料報(bào)道,絲網(wǎng)印刷傳感器適應(yīng)于執(zhí)行快速準(zhǔn)確地現(xiàn)場分析和緊湊輕便的裝置的需要。本文綜述了絲網(wǎng)印刷電極在食品檢測中的應(yīng)用,這項(xiàng)技術(shù)的主要改進(jìn)體現(xiàn)在如下方面:引入新的印刷材料和新的支撐表面來提高絲網(wǎng)印刷傳感器的重現(xiàn)性和靈敏性;采用新的修飾工作電極方法,主要集中于新的配位體、聚合物和納米結(jié)構(gòu)材料;采用不同的固定方法來固定酶;采用多陣列電極以及化學(xué)計(jì)量學(xué)手段進(jìn)行多種產(chǎn)物的同時(shí)識(shí)別和檢測。
[1]張先恩.生物傳感器[M].北京:化學(xué)工業(yè)出版社,2006:236-237.
[2]Gilmartin MA,Hart JP.Novel,reagentless,amperometric biosensor for uric acid based on a chemically modified screenprinted carbon electrode coated with cellulose acetate and uricase [J].Analyst,1994,119(5):833-840.
[3]Hart JP,Pemberton RM,Luxton R,et al.Studies towards a disposable screen-printed amperometric biosensor for progesterone [J].Biosensors and Bioelectronics,1997,12(11):1113-1121.
[4]Renedo OD,Alonso-Lomillo MA,Martinez MJ.Recent developments in the field of screen-printed electrodes and their related applications[J].Talanta,2007,73(2):202-219.
[5]BergaminiMF,SantosDP,ZanoniMV.Determinationofisoniazid in human urine using screen-printed carbon electrode modified withpoly-L-h(huán)istidine[J].Bioelectrochemistry.2010,77(2):133-138.
[6]Shih Y,Zen JM,Kumar AS,et al.Flow injection analysis of zinc pyrithione in hair care products on a cobalt phthalocyanine modified screen-printed carbon electrode[J].Talanta,2004,62(5):912-917.
[7]Zen JM,Chen PY,Kumar AS.Flow injection analysis of an ultratrace amount of arsenite using a Prussian blue-modified screen-printed electrode[J].Anal Chem,2003,75(21):6017-6022.
[8]Neuhold G G,Wang J,Cai X,et al.Screen-printed electrodes fornitrite based on anion-exchanger-doped carbon inks[J].Analyst,1995,120:2377-2380.
[9]Chang J L,Zen J M.A poly(dimethylsiloxane)-based electrochemical cell coupled with disposable screen printed edge band ultramicroelectrodes for use in flow injection analysis[J].Electrochemistry Communications,2007,9:2744-2750.
[10]Lin CY,Balamurugan A,Lai YH,et al.A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation[J].Talanta,2010,82(5):1905-1911.
[11]Chikae M,Idegami K,Kerman K,et al.Direct fabrication of catalytic metal nanoparticles onto the surface of a screen-printed carbon electrode[J].Electrochem Commun,2006,8:1375-1380.
[12]徐肖邢.絲網(wǎng)印刷電化學(xué)傳感器測定硫離子[J].化學(xué)研究與應(yīng)用,2005,17(1):811-812,815.
[13]Micheli L,Grecco R,Badea M,et al.An electrochemical immunosensor for aflatoxin M1 determination in milk using screenprinted electrodes[J].Biosens Bioelectron,2005,21:588-596.
[14]Ammida N H S,L Micheli,Palleschi G.Electrochemical immunosensor for determination of aflatoxin B1 in barley[J].Anal Chim Acta,2004,520:159-164.
[15]Pemberton R M,Pittson R,Biddle N,et al.A sensor for aflatoxin B1[J].Anal Lett,2006,39(7-9):1573-1586.
[16]Piermarini S,Micheli L,Ammida N H S,et al.Immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection[J].Biosens Bioelectron,2007,22(7):1434-1440.
[17]Alarcon S H,Micheli L,Palleschi G,et al.Development of an electrochemical immunosensor for ochratoxin A[J].Anal Lett,2004,37:1545-1558.
[18]Romanazzo D,Ricci F,Vesco S,et al.ELIME(enzyme linked immuno magnetic electrochemical)method for mycotoxin detection [J].J Vis Exp,2009(32):1-5.
[19]Hervas M,Lopez MA.Simplified calibration and analysis on screen-printed disposable platforms for electrochemical magnetic bead-based immunosensing of zearalenone in baby food samples [J].Biosens Bioelectron,2010,25(7):1755-1760.
[20]Crowley E L,O’Sullivan C K,Guilbault G G.Increasing the sensitivity of Listeria monocytogenes assays:evaluation using ELISA and amperometric detection[J].Analyst,1999,124(3):295-299.
[21]Rao V K,Sharma M K,Goel A K,et al.Amperometric immunosensor for the detection of Vibrio cholerae O1 using disposable screen-printed electrodes[J].Anal Sci,2006,22:1207-1211.
[22]Ferreira A A P,Colli W,Alves M J M,et al.Investigation of the interaction between Tc85-11 protein and antibody anti-T cruzi by AFM and amperometric measurements[J].Electrochim Acta,2006,51(24):5046-5052.
[23]Farabullini F,Lucarelli F,Palchetti I,et al.Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants[J].Biosens Bioelectron,2007,22(7):1544-1549.
[24]Elizabeth Tully,Seamus P,Higson,et al.The development of a ‘labeless’immunosensor for the detection of Listeria monocytogenes cell surface protein,Internalin B[J].Biosens Bioelectron,2008,23(6):906-912.
[25]Fernandez-Baldo MA,Messina GA,Sanz MI,et al.Screenprinted immunosensor modified with carbon nanotubes in a continuous-flow system for the Botrytis cinerea determination in apple tissues[J].Talanta,2009,79(3):681-686.
[26]Lin Y-H,Chen S-H,Chuang Y-C,et al.Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157∶H7[J]. Biosensors and Bioelectronics,2008,23(12):1832-1837.
[27]Escamilla-Gómez V,Campuzano S,Pedrero M,et al.Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation[J].Biosensors and Bioelectronics,2009,24(11):3365-3371.
[28]Salam F,Tothill IE.Detection of Salmonella typhimurium using an electrochemical immunosensor[J].Biosensors and Bioelectronics,2009,24(8):2630-2636.
[29]MataD,BejaranoD,BoteroML,etal.Screen-printed integrated microsystem for the electrochemical detection of pathogens[J].Electrochimica Acta,2010,55(14):4261-4266.
[30]Kreuzer M P,Pravda M,O’Sullivan C K,et al.Novel electrochemical immunosensors for seafood toxin analysis toxicon [J].2002,40(9):1267-1274.
[31]MicheliL,RadoiA,GuarrinaR,etal.Disposableimmunosensor for the determination of domoic acid in shellfish[J].Biosens,Bioelectron,2004,20(2):1-196.
[32]Winquist F,Holmin S,Krantz-Rulcker C.A hybrid electronic tongue[J].Anal Chim Acta,2000,406:147-157.
[33]Shkotova LV,Horiushkina TB,Slast’ia EA,et al.Amperometric biosensor for lactate analysis in wines and grape must during fermentation[J].Ukr Biokhim Zh,2005,77(5):123-130.
[34]Prieto-Simon B,F(xiàn)abregas E,Hart A.Evaluation of different strategies for the development of amperometric biosensors for L-lactate[J].Biosens Bioelectron,2007,22(11):2663-2668.
[35]Piano M,Serban S,Pittson R,et al.Amperometric lactate biosensor for flow injection analysis based on a screen-printed carbon electrode containing Meldola’s Blue-Reinecke salt,coated with lactate dehydrogenase and NAD+Talanta[J].2010,82(1):34-37.
[36]Winquist F,Wide P,Lundstrom I.An electronic tongue based on voltammetry[J].Anal Chim Acta,1997,357:21-31.
[37]Lvova L,Kimss,Legna,et al.All-solid-electonic tongue and its application for beverage analysis[J].Anal Chim Acta,2002,468:303.
[38]BuschJL,HrncirikK,BulukinE,etal.Biosensormeasurements of polar phenolics for the assessment of the bitterness and pungency of virgin olive oil[J].J Agric Food Chem,2006,54(12):4371-4377.
[39]Gine Bordonaba J,Terry LA.Development of a Glucose Biosensor for Rapid Assessment of Strawberry Quality:Relationship between Biosensor Response and Fruit Composition[J].J Agric Food Chem,2009,57(18):8220-8226.
Recent development of application of screen-printed electrodes in food determination
ZHOU Jian-hong1,LING Yu-lin2,SI Shi-hui3(1.College of Life Science,Hunan University of Science and Technology,Xiangtan 411201,China;
2.School of Chemistry and Chemical Engineering of Hunan University of Science and Technology,Xiangtan 411201,China;
3.College of Chemistry and Chemical Engineering,Central South University,Changsha 410083,China)
This review presents various applications and the developments of screen-printed electrodes(SPEs)in food determination in recent years.They were categorized according to the types of analytes,including nitrite,sulfide,mycotoxins,pathogenic bacteria and seafood toxins.Lactic acid determination and electronic nose or tongue was also summarized.For the same analyze,they were categorized according to the materials that modified the working electrode and the determination methods.At the same time,the main trends of screen-printed electrode were predicted.
screen-printed electrodes;review;sensors;food determination
TS201.1
A
1002-0306(2012)01-0388-04
2010-12-06
周建紅(1973-),女,博士研究生,講師,研究方向:電分析化學(xué)。
湖南大學(xué)化學(xué)化工學(xué)院,國家化學(xué)生物傳感和計(jì)量學(xué)重點(diǎn)實(shí)驗(yàn)室開放項(xiàng)目(200907);國家科技重大專項(xiàng)湘江水環(huán)境重金屬水質(zhì)目標(biāo)管理與監(jiān)測技術(shù)研究子課題(2009ZX07212-001-06)。