位曉清,王東興,蔡國忠
(1.煙臺大學(xué)機電汽車工程學(xué)院,煙臺 264005;2.臺灣宜蘭大學(xué)機械與機電工程學(xué)系(所),宜蘭 26047)
水平軸風(fēng)力發(fā)電機技術(shù)成熟,是目前風(fēng)力發(fā)電機的主流技術(shù)[1-2],但是水平軸風(fēng)力發(fā)電機組造價高,而且不能充分利用過大或者過小風(fēng)速的風(fēng)能。垂直軸風(fēng)力發(fā)電機組的結(jié)構(gòu)簡單、造價低,安裝靈活、維修方便,而且啟動風(fēng)速要求低,可以充分利用水平軸風(fēng)力發(fā)電機組不能利用的風(fēng)能,非常適合作為小型分布式的風(fēng)能利用裝置,分散應(yīng)用在人口密集、風(fēng)力資源一般的地區(qū),特別是采用就地發(fā)電、就地使用的方法,還可以擺脫對大電網(wǎng)的依賴,因此有很好的發(fā)展前景。
本文將對風(fēng)機的氣動性能進行分析,通過選用適當(dāng)?shù)耐牧髂P?,對風(fēng)機進行流固耦合分析,從而得到不同轉(zhuǎn)角下葉片產(chǎn)生的扭矩情況,計算出風(fēng)機的力矩系數(shù),得到力矩系數(shù)與葉片轉(zhuǎn)角之間的關(guān)系,從而為提升風(fēng)機的風(fēng)能利用率提供參考。
風(fēng)力機的風(fēng)能利用率CP為風(fēng)機輸出功率與掃略葉片風(fēng)能的比值[3]:
式中:P為風(fēng)機的輸出功率,W;ρ為空氣的密度,取1.205 kg/m3;A為葉片受風(fēng)面積,m2;v為風(fēng)速,m/s;ω為葉片旋轉(zhuǎn)角速度,r/s;M為葉片產(chǎn)生扭矩,N·m;H為葉片高度,m;D為葉片旋轉(zhuǎn)直徑,m;n為葉片轉(zhuǎn)速,r/min。
風(fēng)機的力矩系數(shù)CM為:
風(fēng)機的葉尖速度比λ為:
式中:R為葉片半徑,m。
流過風(fēng)葉的氣流屬于完全紊流情形,因此仿真采用標(biāo)準(zhǔn)k-ε模型。
其中,湍動能k的傳輸方程:
擴散率ε的傳輸方程:
式中:Gk為由于平均速度梯度引起的湍動能k的產(chǎn)生項;Gb為由浮力造成的湍動能生成項;YM為可壓縮流動脈動擴張的貢獻;Sk和Sε為用戶定義的源項;Cε1,Cε2和Cε3為經(jīng)驗常數(shù);σk和σε分別為湍動能和耗散率對應(yīng)的Prandtl數(shù);Sij為平均流動變形率張量分量。
選用恰當(dāng)?shù)耐牧髂P停瑢δP头抡娣治鼋Y(jié)果的精確性,有著至關(guān)重要的影響。
根據(jù)風(fēng)機實體尺寸,利用Pro/E軟件繪制出簡化的Savonius風(fēng)機葉片模型。葉片剖面視圖見圖1。
圖1 葉片簡化模型剖面圖
建立尺寸為長12 m、寬8 m、高2 m的長方體型外部空氣流場,內(nèi)部旋轉(zhuǎn)流場直徑為1 m、高度為0.8 m的圓柱型。在空間坐標(biāo)系下,對外部靜止流場的X軸正方向施加入口風(fēng)速邊界條件,計算時風(fēng)速為10 m/s;X軸負方向的出口為自由邊界,相對壓力為零;內(nèi)部旋轉(zhuǎn)流場施加200 r/min的轉(zhuǎn)速條件,旋轉(zhuǎn)軸為Z軸正方向,旋轉(zhuǎn)方向由右手法則確定;風(fēng)機葉片選用無滑移、光滑壁面條件。
在對風(fēng)機模型進行網(wǎng)格劃分時,為了滿足計算精度要求和計算機配置要求,風(fēng)機模型外部的靜止流場選用適應(yīng)性較好的非結(jié)構(gòu)性四面體型網(wǎng)格,而對風(fēng)機葉片周圍旋轉(zhuǎn)的內(nèi)部流場選用精度較高的六面體型結(jié)構(gòu)網(wǎng)格,共生成約65 000個元素和26 000個節(jié)點。整個模型的內(nèi)外流場及葉片周圍網(wǎng)格劃分情況見圖2。
圖2 流場及葉片網(wǎng)格圖
為使計算結(jié)果更加精確,將收斂條件設(shè)定為1×10-5,在經(jīng)過420步迭代運算后,模型運算滿足質(zhì)量守恒和動量守恒定律,計算結(jié)果達到預(yù)定要求而收斂。
Savonius風(fēng)機是由兩個半圓筒形葉片組成,依靠兩半圓筒形葉片受風(fēng)時,兩側(cè)產(chǎn)生壓力差不同,從而使風(fēng)機旋轉(zhuǎn)如圖3所示。圖3中的θ角為風(fēng)機葉片的半個旋轉(zhuǎn)周期。
圖3 葉片受風(fēng)旋轉(zhuǎn)示意圖
從0°轉(zhuǎn)到180°的范圍內(nèi),每間隔15°設(shè)定一個測試點,測試風(fēng)機在旋轉(zhuǎn)180°范圍內(nèi),于不同角度處產(chǎn)生的扭矩情況。利用ANSYS的CFX模塊,對風(fēng)機模型進行流體分析,得到不同轉(zhuǎn)角下葉片產(chǎn)生的扭矩情況,如表1所示。
表1 葉片轉(zhuǎn)角與扭矩關(guān)系
利用Savonius風(fēng)機葉片結(jié)構(gòu)的對稱性,根據(jù)葉片在180°范圍內(nèi)產(chǎn)生的扭矩情況,從而得到風(fēng)機在一個旋轉(zhuǎn)周期內(nèi)產(chǎn)生的扭矩情況。通過風(fēng)機力矩系數(shù)的計算公式,得到葉片在旋轉(zhuǎn)一周的過程中,當(dāng)葉片處于不同旋轉(zhuǎn)角度時,對風(fēng)機力矩系數(shù)的影響情況,如表2所示。
表2 葉片轉(zhuǎn)角與力矩系數(shù)關(guān)系
利用MATLAB工具,根據(jù)葉片轉(zhuǎn)角與力矩系數(shù)的關(guān)系表,繪制出轉(zhuǎn)角與力矩系數(shù)關(guān)系的曲線圖,如圖4所示。
圖4 葉片轉(zhuǎn)角對力矩系數(shù)影響
由圖4可以看出,風(fēng)機葉片在一個旋轉(zhuǎn)周期內(nèi),即在35°~70°以及215°~250°兩個區(qū)間內(nèi),風(fēng)機出現(xiàn)負扭矩,產(chǎn)生負扭矩的區(qū)間大致占1/6個旋轉(zhuǎn)周期,約占風(fēng)機一個旋轉(zhuǎn)周期產(chǎn)生總扭矩的24.8%,可見對風(fēng)機發(fā)電效率產(chǎn)生的影響非常大。所以,如何將產(chǎn)生負扭矩的區(qū)間縮小甚至不產(chǎn)生負扭矩,將是今后Savonius風(fēng)機研究工作的重點。
而當(dāng)風(fēng)機葉片旋轉(zhuǎn)到105°和285°附近時,葉片產(chǎn)生的有效扭矩達到最大值,在此兩角度附近,葉片產(chǎn)生扭矩占整個旋轉(zhuǎn)周期產(chǎn)生總扭矩的33.8%,因此如何最大限度的利用這兩個受風(fēng)區(qū)間,對風(fēng)機效率的提高起著十分關(guān)鍵的作用。
通過對Savonius風(fēng)機的整個仿真分析過程可知,Savonius風(fēng)力發(fā)電機的風(fēng)能利用率比較低,僅有15%左右,其主要原因是由于在旋轉(zhuǎn)過程中大約有1/6個周期會產(chǎn)生負扭矩,并且對產(chǎn)生最大扭矩的區(qū)間利用程度并不高,因此對風(fēng)機整體效率會有很大影響。
通過仿真分析,得到葉片轉(zhuǎn)角對小型Savonius風(fēng)機性能的影響情況,以及風(fēng)機產(chǎn)生負扭矩的區(qū)間和產(chǎn)生最大有效扭矩所處的旋轉(zhuǎn)角度,為今后Savonius風(fēng)機的結(jié)構(gòu)優(yōu)化和效率的進一步提升等相關(guān)研究提供參考。
[1] 楊慧杰,楊文通.小型垂直軸風(fēng)力發(fā)電機在國外的新發(fā)展[J].電力需求側(cè)管理,2007,9,(2):68-70.
[2] 蔣超奇,嚴(yán)強.水平軸與垂直軸風(fēng)力發(fā)電機的比較研究[J].上海電力,2007(2):163-165.
[3] Joao Vicente Akwa,Horacio Antonio Vielmo,Adriane Prisco Petry.A review on the performance of Savonius wind turbines[J].Renewable and Sustainable Energy Reviews,2012,(16):3054-3064.