曲 瑩,周海龍,董 方3,薛欽昭
(1.中國(guó)科學(xué)院 煙臺(tái)海岸帶研究所,山東 煙臺(tái) 264003;2.海南大學(xué)生物系,海南 ???570228;3.中國(guó)科學(xué)院 海洋研究所,山東 青島 266071;4.中國(guó)科學(xué)院 研究生院,北京 100049)
隨著人們對(duì)海洋生態(tài)系統(tǒng)保護(hù)意識(shí)的增強(qiáng),很多學(xué)者對(duì)造成海洋污染的成因、機(jī)理、污染物對(duì)海洋生物的生態(tài)毒理進(jìn)行了深入的研究[1-5]。近年來(lái),持久性有機(jī)污染物(persistent organic pollutants,POPs)對(duì)海洋生物生理和生化過(guò)程的影響已成為該領(lǐng)域的研究熱點(diǎn)。
1964年,Jensen用氣-液相色譜法從野生生物樣品中分離有機(jī)氯農(nóng)藥,發(fā)現(xiàn)了一個(gè)未知峰[6],1966年這些未知峰被確定為多氯聯(lián)苯(PCBs)。此后,陸續(xù)有學(xué)者發(fā)現(xiàn) PCBs及其他有機(jī)化合物在全世界的海洋底泥、無(wú)脊椎動(dòng)物、魚(yú)及其他生物體內(nèi)也有殘留,至今已無(wú)處不在[7]。這類持久性有機(jī)污染物具有持久性、生物富集性、半揮發(fā)性和毒性,能在大氣環(huán)境中遠(yuǎn)距離遷移并沉積,對(duì)人類健康和環(huán)境造成嚴(yán)重危害[8]。為控制POPs對(duì)環(huán)境繼續(xù)造成污染,2001年5月,中國(guó)簽署了《斯德哥爾摩持久性有機(jī)污染物公約》,對(duì)12種POPs的生產(chǎn)和使用加以限制。然而,隨著環(huán)境污染日趨嚴(yán)重及各國(guó)學(xué)者對(duì) POPs污染的研究深入,人們發(fā)現(xiàn)對(duì)環(huán)境安全造成威脅的POPs遠(yuǎn)不止這12種,如PBDE (polybrominated biphenyl ether,多溴聯(lián)苯醚)、BDE (polybrominated biphenyl ethers,多溴二苯醚)、PFOS (peifluorooctane sulfonate,全氟辛烷磺?;衔?、PFOA (perfluorooctanoic acid,全氟辛酸)、2,4-DCP (2,4-dichlorophenol,2,4-二氯酚)等新型POPs陸續(xù)為文獻(xiàn)報(bào)道。這些POPs是設(shè)計(jì)用來(lái)替代那些被禁用或過(guò)時(shí)的 POPs,或者是一些已經(jīng)使用多年但近期才發(fā)現(xiàn)可以在生態(tài)系統(tǒng)中富集、危害可能性增大的環(huán)境污染物;新型POPs還有另一個(gè)可能的來(lái)源是存在于環(huán)境中的有機(jī)化學(xué)物質(zhì)通過(guò)物理或生物降解成為毒性更大、更容易被生物富集的形式如PFO (烷基酚和全氟辛烷磺酰基化合物)[9]。
隨著被認(rèn)知的POPs種類的不斷增加,人們發(fā)現(xiàn)POPs污染問(wèn)題越來(lái)越嚴(yán)重。通過(guò)陸源排放和大氣沉降等途徑,釋放于各種環(huán)境中的POPs最終進(jìn)入海洋,使得海洋成為POPs的重要聚集地,海洋生態(tài)系統(tǒng)的穩(wěn)定性也因此受到嚴(yán)重威脅,這一情況已引起全球?qū)W者對(duì)海洋污染物來(lái)源研究的重視。以硫丹污染為例,來(lái)自美國(guó)、澳大利亞和印度剛果河流域[10-13]的調(diào)查數(shù)據(jù)顯示,徑流從土壤中帶來(lái)的硫丹可使其在這三個(gè)地區(qū)水域中的濃度分別升高到 13.4,45μg/L和66.5 μg/L,這些濃度已遠(yuǎn)高于對(duì)水生生物產(chǎn)生急性和慢性毒害作用的濃度 0.22 μg/L 和 0.05 μg/L[14]。很多種類的 POPs都被證明具有生物富集效應(yīng)和生物放大效應(yīng)[15-20]。POPs在海洋生態(tài)系統(tǒng)中隨著食物鏈的延伸而遷移,最終將對(duì)食物鏈的最高營(yíng)養(yǎng)級(jí)——人類的健康造成嚴(yán)重威脅。因此,國(guó)內(nèi)外對(duì)于可供食用的海洋動(dòng)物體內(nèi)POPs濃度水平的研究較多[21-22],而POPs對(duì)藻類生態(tài)毒理研究部分則相對(duì)較薄弱。
藻類是整個(gè)生態(tài)系統(tǒng)物質(zhì)循環(huán)和能量流動(dòng)的重要基礎(chǔ),其本身的生長(zhǎng)和代謝會(huì)直接受到POPs污染的影響,進(jìn)而影響到初級(jí)消費(fèi)者及高級(jí)消費(fèi)者的正常生長(zhǎng)和生理過(guò)程。藻類對(duì)于許多毒物比魚(yú)類、甲殼類更為敏感,而且藻類具有周期短、易于培養(yǎng)、可以直接觀察細(xì)胞水平上的毒性癥狀等特點(diǎn)[23]。利用藻類的這些生物學(xué)特點(diǎn)進(jìn)行生態(tài)毒理學(xué)研究,有助于我們客觀了解和準(zhǔn)確評(píng)估 POPs對(duì)整個(gè)海洋生態(tài)系統(tǒng)造成的威脅,為阻斷 POPs在食物鏈中的傳遞,降低和避免對(duì)人類健康造成的危害,為解決中國(guó)海洋環(huán)境POPs污染問(wèn)題提供科學(xué)依據(jù)。
許多研究結(jié)果表明,在POPs暴露和脅迫下,藻類生長(zhǎng)受到明顯的影響。Delorenzo等[24]在研究中發(fā)現(xiàn),綠藻(Pseudokirchneriella subcapitatum)在硫丹中暴露的 EC50濃度為 427.8 μg/L。在室內(nèi)試驗(yàn)中,當(dāng)PFOS的濃度高于50 mg/L時(shí),羊角月牙藻(Selenastrum capricornutum)和小球藻(Chlorella vulgaris)的生長(zhǎng)會(huì)被顯著抑制[25]。但有些種類的藻在一定濃度范圍內(nèi)的某種POPs中還能正常生長(zhǎng)。小球藻(Chl.fuscavar.vacuolata)和項(xiàng)圈藻(Anabaena varialilis)在有5~40 nmol/L濃度DNP存在的條件下能夠正常生長(zhǎng)并表現(xiàn)出較高的富集DNP的能力[26];小球藻(C.vulgaris)和Coenochloris pyrenoidosa在 24 h光照培養(yǎng)下, 5 d內(nèi)在50 mg/L的p-chlorophenol和p-nitrophenol環(huán)境中能對(duì)兩種有機(jī)污染物進(jìn)行富集[27];扁藻(Tetraselmis marina)還能通過(guò)與葡萄糖共轉(zhuǎn)移的方式將 2,4-DCP類化合物富集,從而降低其對(duì)藻體產(chǎn)生的毒性[28]。
許多毒性物質(zhì)的致毒機(jī)理在于能夠誘導(dǎo)細(xì)胞產(chǎn)生大量活性氧(reactive oxygen species,ROS)而對(duì)機(jī)體產(chǎn)生各種損害,誘發(fā)細(xì)胞抗氧化酶系統(tǒng)活性增強(qiáng),加快ROS清除過(guò)程。抗氧化酶系統(tǒng)涉及的抗氧化酶包括抗壞血酸過(guò)氧化物酶(APX)、超氧化物岐化酶(SOD)、過(guò)氧化物酶(POD)、谷胱甘肽過(guò)氧化物酶(GPX)、過(guò)氧化氫酶(CAT)和谷胱甘肽還原酶(GR)等。由于抗氧化防御系統(tǒng)對(duì)污染物脅迫相當(dāng)敏感,因此在指示污染物脅迫的早期預(yù)警中發(fā)揮巨大的作用[29]。不同的POPs對(duì)同一種生物的抗氧化防御系統(tǒng)產(chǎn)生的影響不同,不同種類的抗氧化酶對(duì)POPs脅迫的響應(yīng)也不盡相同。當(dāng)金魚(yú)藻(Ceratophyllum demersum)暴露于10 mg/L的1,2-DCP和10 mg/L 的1,4-DCP中時(shí),GST活性顯著增高;當(dāng)二者的濃度達(dá)到5 mg/L的時(shí)候,POD和GR的活性就顯著增強(qiáng)[30]。乙氧氟草醚(oxyfluorfen)和敵草隆(diuron)對(duì)斜生柵藻(Scenedesmus obliquus)的單獨(dú)以及聯(lián)合作用24 h后的研究結(jié)果顯示:CAT、APX、GR和s-GST在乙氧氟草醚的刺激下活性增強(qiáng),而敵草隆未對(duì) 3種酶活性有顯著影響。乙氧氟草醚和敵草隆對(duì)S.obliquus的抗氧化反應(yīng)具有拮抗作用,但在酶水平上,只能觀察到對(duì) CAT酶的拮抗表現(xiàn)[31]。通過(guò)對(duì)暴露于不同濃度的硫丹環(huán)境中水聚藻(Myriophyllum quitense)體內(nèi)CAT、GR、s-GSTs和m-GSTs活性變化的研究結(jié)果表明,硫丹濃度為 0.02 μg/L(淡水中最大安全濃度)時(shí)未能引起M.quitense體內(nèi)抗氧化壓力升高,但在試驗(yàn)中設(shè)計(jì)濃度0.5 μg/L和5 μg/L 時(shí)抗氧化酶系活性都應(yīng)激升高。藻類抗氧化酶防御系統(tǒng)對(duì)POPs與其他有毒物質(zhì)的響應(yīng)類似[32]。
目前,POPs對(duì)藻類產(chǎn)生毒性作用的機(jī)理還沒(méi)有統(tǒng)一的定論,不同的研究結(jié)果顯示POPs對(duì)藻類的毒性機(jī)制不同。首先,POPs的化學(xué)結(jié)構(gòu)會(huì)對(duì)其生物毒性產(chǎn)生決定性的影響。例如,氯酚能夠干擾細(xì)胞內(nèi)能量轉(zhuǎn)換過(guò)程,將氧化反應(yīng)和光合磷酸化反應(yīng)隔離或者干擾電子傳遞,從而對(duì)微生物產(chǎn)生毒害作用,其毒性隨苯環(huán)的氯化程度的升高而增高[33-34]。硝基芳烴對(duì)藻體可能是通過(guò)親核取代或氧化反應(yīng)而致變的,毒性差異主要是受取代基的影響[35]。其次,有研究表明,單硝基取代物的毒性取決于其疏水性,而二硝基取代物的毒性取決于其電子屬性[36]。另外,杜慶才等[37]對(duì)氯代芳香族污染物對(duì)羊角月芽藻(Selenastrum carpricornutum)的急性毒性試驗(yàn)結(jié)果表明,分子總能量TE是決定該組污染物毒性的關(guān)鍵參數(shù),TE越高,反應(yīng)活性越高,對(duì)藻的毒性也越大。除了POPs可能的致毒機(jī)理復(fù)雜多變以外,受試生物的不同也增加了致毒機(jī)理的不確定性。總之,POPs進(jìn)入藻類細(xì)胞以后對(duì)細(xì)胞造成毒性損傷且很難降解[38]。
藻類所在生態(tài)系統(tǒng)的實(shí)際環(huán)境遠(yuǎn)比實(shí)驗(yàn)室條件復(fù)雜,很多理化因子如水分、pH和紫外線(UV)等環(huán)境因素也會(huì)影響有毒物質(zhì)對(duì)其毒性作用。例如,UV可導(dǎo)致生物體內(nèi) ROS含量增加[39],同時(shí),植物體內(nèi)的PSII、蛋白質(zhì)和DNA、膜系統(tǒng)以及植物激素均為UV作用靶,因此,UV和有毒物質(zhì)的聯(lián)合脅迫往往導(dǎo)致生物體受到更為嚴(yán)重的傷害。例如,藍(lán)藻Plectonema boryanum遭受UV-B和Cd的聯(lián)合脅迫后,CAT和SOD活性均增高,UV-B輻射使質(zhì)膜透性增大,從而導(dǎo)致Cd吸收量增加,使得Cd對(duì)其毒害作用更強(qiáng)[40]。土壤鎘污染也會(huì)加劇 UV-B輻射對(duì)一種云杉(Picea abies)的損傷[41]。但目前未見(jiàn)有 UV和 POPs聯(lián)合脅迫對(duì)藻類毒理學(xué)的研究。
前人的研究工作主要以藻類生境中 POPs種類和濃度定量描述、POPs急性和慢性毒理試驗(yàn)為主,試驗(yàn)的結(jié)果可以作為評(píng)價(jià)環(huán)境中 POPs毒性強(qiáng)度以及對(duì)海洋生態(tài)造成影響的參數(shù)之一,能夠反映污染物對(duì)生態(tài)系統(tǒng)在整體水平上的影響,但是隨著海洋環(huán)境污染程度的加劇和污染情況復(fù)雜性的提高,POPs對(duì)藻類的生態(tài)毒理研究還應(yīng)在以下幾個(gè)方面加強(qiáng):
(1) 污染物對(duì)藻類毒害作用的本質(zhì)、POPs與藻細(xì)胞中蛋白、核酸等生物大分子之間的互作影響研究。
(2) 結(jié)合現(xiàn)代生物學(xué)方法與技術(shù)如差減雜交、差異顯示 PCR,利用基因在生物體內(nèi)的差異表達(dá)量作為生物標(biāo)記物,或找出POPs對(duì)藻類毒害作用的靶位點(diǎn)或靶分子,探索新的分子生態(tài)毒理學(xué)指標(biāo)。
(3) 不同種類的 POPs、POPs與其他污染物、POPs與其他理化因子如紫外線、水分和pH對(duì)藻類的聯(lián)合毒理作用研究。
(4) 用多項(xiàng)指標(biāo)綜合評(píng)價(jià)POPs對(duì)藻類的潛在影響,從而更有效地對(duì)POPs低劑量暴露的作用做出早期預(yù)警,對(duì)藻類個(gè)體、種群、群落和生態(tài)系統(tǒng)造成的環(huán)境影響做出更準(zhǔn)確的預(yù)測(cè)。
[1]Storelli M M,Barone G,Storelli A,et al.Total and subcellular distribution of trace elements (Cd,Cu and Zn) in the liver and kidney of green turtles (Chelonia myda s) from the Mediterranean Sea [J].Chemosphere,2008,70:908-913.
[2]Capelli R,Das K,De Pellegrini R,et al.Distribution of trace elements in organs of six species of cetaceans from the Ligurian Sea ( Mediterranean ),and the relationship with stable carbon and nitrogen ratios [J].Science of the Total Environment,2008,390:569-578
[3]Jong I H D,Van Zelm R,Huijbregts M A J,et al.Ranking of agricultural pesticides in the Rhine-Meuse-Scheldt basin based on toxic pressure in marine ecosystems [J].Environmental Toxicology and Chemistry,2008,27(3):737-745.
[4]Gomez-Gutierrez A,Garnacho E,Bayona J M,et al.Screening ecological risk assessment of persistent organic pollutants in Mediterranean sea sediments [J].Environment International,2007,33:867-876.
[5]Mearns A J,Reish D J,Oshida P S,et al.Effects of pollution on marine organisms [J].Water Environment Research,2007,79:2102-2160.
[6]聯(lián)合國(guó)環(huán)境規(guī)劃署,世界衛(wèi)生組織.多氯聯(lián)苯和多氯三聯(lián)苯[M].北京:中國(guó)環(huán)境科學(xué)出版社,1979.
[7]Katsoyiannis A,Samara C.Persistent organic pollutants(POPs) in the conventional activated sludge treatment process:fate and mass balance [J].Environmental Research,2005,97(3):245-257.
[8]Gouin T,Harner T,Daly G L,et al.Variability of concentrations of polybrominated diphenyl ethers and polychlorinated biphenyls in air:implications for monitoring,modeling and control [J].Atmospheric Environment,2005,39(1):151-166.
[9]Newman M C,Unger M A.Fundamentals of Ecotoxicology [M].second edition.北京:化學(xué)工業(yè)出版社,2006.
[10]Antonious G F,Byers M E.Fate and movement of endosulfan under field conditions [J].Environmental Toxicology and Chemistry,1997,16(4):644-649.
[11]Kennedy I R,Sanchez-Bayo F,Kimber S W,et al.Off-site movement of endosulfan from irrigated cotton in New South Wales [J].Journal of Environmental Quality,2001,30(3):683-696.
[12]Leonard A W,Hyne R V,Lim R P,et al.Fate and toxicity of endosulfan in Namoi River water and bottom sediment [J].Journal of Environmental Quality, 2001,30(3):750-759.
[13]Selvakumar S,Geraldine P,Shanju S,et al.Stressor-specitic induction of heat shock protein 70 in the freshwater prawnMacrobrachium malcolmsonii(H.Milne Edwards) exposed to the pesticides endosulfan and carbaryl [J].Pesticide Biochemistry and Physiology,2005,82(2):125-132.
[14]Mersie W,Seybold C A,McNamee C,et al.Abating endosulfan from runoff using vegetative filter strips:the importance of plant species and flow rate [J].Agriculture Ecosystems &Environment,2003,97(13):215-223.
[15]Ankley G T,Kuehl D W,Kahl M D,et al.Partial life-cycle toxicity and bioconcentration modeling of perfluorooctanesulfonate in the northern leopard frog(Rana pipiens) [J]. Environmental Toxicology and Chemistry,2004,23(11):2745-2755.
[16]Barata C,Calbet A,Saiz E,et al.Predicting single and mixture toxicity of petrogenic polycyclic aromatic hydrocarbons to the copepodOithona davisae[J]. Environmental Toxicology and Chemistry,2005,24(11):2992-2999.
[17]Ashauer R,Boxall A,Brown C.Predicting effects on aquatic organisms from fluctuating or pulsed exposure to pesticides [J].Environmental Toxicology and Chemistry,2006,25(7):1899-1912.
[18]Svendsen T C,Vorkamp K,Ronsholdt B,et al.Organochlorines and polybrominated diphenyl ethers in four geographically separated populations ofAtlantic salmon(Salmo salar) [J].Journal of Environmental Monitoring,2007,9:1213-1219.
[19]Magnusson K,Magnusson M,Ostberg P,et al.Bioaccumulation of C-14-PCB 101 and C-14-PBDE 99 in the marine planktonic copepodCalanus finmarchicusunder different food regimes [J].Marine Environmental Research,2007.63(1):67-81.
[20]Cheng C Y,Liu L L,Ding W H.Occurrence and seasonal variation of alkylphenols in marine organisms from the coast of Taiwan [J].Chemosphere,2006,65(11):2152-2159.
[21]Kannan K,Franson J C,Bowerman W W,et al.Perfluorooctane sulfonate in fish-eating water birds including bald eagles and albatrosses [J].Environmental Science &Technology,2001,35(15):3065-3070.
[22]Gulkowska A,Jiang Q T,So M K,et al.Persistent perfluorinated acids in seafood collected from two cities of China [J].Environmental Science &Technology,2006,40(12):3736-3741.
[23]Boutonnet J C,Bingham P,Calamari D,et al.Environmental risk assessment of trifluoroacetic acid [J].Human and Ecological Risk Assessment,1999,5(1):59-124.
[24]DeLorenzo M E,Taylor L A,.Lund S A,et al.Toxicity and bioconcentration potential of the agricultural pesticide endosulfan in phytoplankton and zooplankton [J].Archives of Environmental Contamination and Toxicology,2002,42(2):173-181.
[25]Boudreau T M,Sibley P K.Laboratory evaluation of the toxicity of perfluorooctane sulfonate (PFOS) onSelenastrum capricornutum,Chlorella vulgaris,Lemna gibba,Daphnia magna,andDaphnia pulicaria[J].Archives of Environmental Contamination and Toxicology,2003,44(3):307-313.
[26]Hirooka T,Akiyama Y,Tsuji N,et al.Removal of hazardous phenols by microalgae under photoautotrophic conditions [J].Journal of Bioscience and Bioengineering,2003,95(2):200-203.
[27]Lima S A C,Raposo M F J.Biodegradation of p-chlorophenol by a microalgae consortium [J].Water Research,2004,38(1):97-102.
[28]Dimitris P,Katapodis P.Detoxification of 2,4- dichlorophenol by the marine microalgaTetraselmis marina[J].Phytochemistry,2008,69(3):707-714.
[29]Valavanidis A,Vlahogianni T,Dassenakis M,et al.Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants [J].Ecotoxicology and Environmental Safety,2006,64(2):178-189.
[30]Monferran M V,Wunderlin D A,Nimptsch J,et al.Biotransformation and antioxidant response inCeratophyllum demersumexperimentally exposed to 1,2- and 1,4-dichlorobenzene [J].Chemosphere,2007,68:2073-2079.
[31]Geoffroy L,Teisseire H,Couderchet M,et al.Effect of oxyfluorfen and diuron alone and in mixture on antioxidative enzymes ofScenedesmus obliquus[J].Pesticide Biochemistry and Physiology,2002,72(3):178-185.
[32]Morelli E,Scarano G.Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalgaPhaeodactylum tricomutum[J].Plant Science,2004,167(2):289-296.
[33]Escher B I,Snozzi M,Schwarzenbach R P.Uptake,speciation,and uncoupling activity of substituted phenols in energy transducing membranes [J].Environmental Science &Technology,1996,30(10):3071-3079.
[34]Tissut M,Taillandier G,Ravanel P,et al.Effects of chlorophenols on isolated class a chloroplasts and thylakoids- a QSAR study [J].Ecotoxicology and Environmental Safety,1987,13(1):32-42.
[35]沈洛夫,姜建國(guó),林慶生,等.硝基芳烴類物質(zhì)對(duì)鹽藻的毒性試驗(yàn)及比較[J].海洋科學(xué),2006,5:15-17.
[36]Yan X F,Xiao H M,Gong X D,et al.Quantitative structure-activity relationships of nitroaromatics toxicity to the algae (Scenedesmus obliguus) [J].Chemosphere,2005,59(4):467-471.
[37]杜慶才,張德祿,王高鴻,等.萊茵衣藻生長(zhǎng)和光合作用對(duì)硝基苯的響應(yīng)[J].西北師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,3(3):71-74.
[38]Warshawsky D,Radike M,Jayasimhulu K,et al.Metabolism of benzo(a)pyrene by a dioxygenase enzyme system of the freshwater green algaSelenastrum capricornutum[J].Biochem Biophys Res Commun,1988,152(2):540-544.
[39]Takeuchi Y,Kubo H,Kasahara H,et al.Adaptive alterations in the activities of scavengers of active oxygen in cucumber cotyledons irradiated with UV-B.Journal of Plant Physiology,1996,147(5):589-592.
[40]Prasad S M,Zeeshan M.UV-B radiation and cadmium induced changes in growth,photosynthesis,and antioxidant enzymes ofcyanobacterium Plectonemaboryanum [J].Biologia Plantarum,2005,49(2):229-236.
[41]Dube S L,Bornman J F.Response of spruce seedlings to simultaneous exposure to ultraviolet-b radiation and cadmium [J].Plant Physiology and Biochemistry,1992,30(6):761-767.