陳太邦,趙建華
脊髓損傷(spinal cord injury,SCI)造成嚴重的功能障礙。當前臨床上治療SCI的方法為早期使用大劑量甲潑尼龍防止脊髓繼發(fā)性損傷,脊柱固定和脊髓減壓,加強多個醫(yī)學學科的聯(lián)合治療,規(guī)范的康復護理。這些措施雖取得了一定療效,但迫切需要形成全新的方法解釋SCI復雜的病理生理和SCI后的優(yōu)化恢復。目前已使用的策略包括促進中斷神經(jīng)纖維束的再生及殘余神經(jīng)軸突的萌芽,調(diào)理不利的損傷脊髓內(nèi)環(huán)境,運用外周神經(jīng)或各種細胞移植橋接病灶區(qū),以及以干細胞為基礎的治療補充丟失的細胞類型。細胞替代治療策略有兩類:(1)移植胚胎或成熟神經(jīng)干/祖細胞(neural stem/progenitor cells,NSPCs)到脊髓病灶區(qū);(2)重新激活和動員成熟的脊髓內(nèi)源性NSPCs。通過NSPCs分泌營養(yǎng)因子或新形成的少突膠質(zhì)細胞使殘余軸突再髓鞘化促進功能恢復[1],或通過新生神經(jīng)元的生成、存活、分化促進功能恢復[2]。然而,以移植為基礎的治療方法有免疫排斥反應,細胞來源、倫理問題和潛在的持續(xù)性生長的危險及腫瘤形成等缺陷,而限制了它的應用。
內(nèi)源性NSPCs參與神經(jīng)發(fā)生的特性讓人們看到了其修復SCI的潛能[3]。如何激活內(nèi)源性NSPCs,促進其在局部增殖、遷移,并通過調(diào)控微環(huán)境促使其向特定神經(jīng)細胞組織分化成為SCI研究方向之一。本文就內(nèi)源性NSPCs增殖、遷移、分化及轉(zhuǎn)歸和SCI治療的國內(nèi)外研究進展進行綜述。
不同種屬哺乳動物的胚胎和成年人類的小腦、中腦、海馬、紋狀體、皮層、腦室、紋狀體、室管膜區(qū)(ventricular zone,VZ)、室管膜下區(qū)(subventricular zone,SVZ)、齒狀回(dentate gyrus,DG)、嗅球(olfactory bulb,OB)、脊髓等處發(fā)現(xiàn)有 NSPCs的存在[4]。在病理狀態(tài)下,如腦缺血、脊髓損傷、神經(jīng)系統(tǒng)退行性變等疾病可以誘導NSPCs的活化、增殖,并且可誘導成年神經(jīng)細胞逆向分化為NSPCs。Shibuya等[5]則發(fā)現(xiàn)枝狀膠質(zhì)細胞有逆向分化為干細胞的的功能。Kondo等[6]發(fā)現(xiàn)少突膠質(zhì)前體細胞有逆向分化的功能。這些研究提示神經(jīng)系統(tǒng)損傷后,機體可以通過固有的或者逆向分化而來的內(nèi)源性NSPCs進行自我修復,這為內(nèi)源性NSPCs治療脊髓損傷的研究奠定了理論基礎。
神經(jīng)系統(tǒng)損傷能激活內(nèi)源性NSPCs,使其增殖、遷移到損傷區(qū)域并分化,替代受損的細胞,重塑神經(jīng)組織,最后達到治療的目的。內(nèi)源性NSPCs如何激活,在什么情況下被激活,學者們提出各自的觀點。
內(nèi)環(huán)境的改變是影響內(nèi)源性NSPCs活化、增殖的主要因素。Fernando等[7]研究發(fā)現(xiàn)成年人類大腦中配體激活的表觀遺傳標記物組蛋白H2AX在干細胞更新、干細胞巢大小和神經(jīng)發(fā)生中扮演至關(guān)重要的角色。α-氨基丁酸(gamma-aminobutyric acid,GABA)受體激活后,通過磷脂酰肌醇3-激酶(PI3K)途徑使組蛋白H2AX磷酸化,從而抑制室下區(qū)NSPCs的增殖。NSPCs增殖內(nèi)環(huán)境的改變導致了神經(jīng)系統(tǒng)自我修復能力受限。在病理條件下神經(jīng)干細胞能不斷產(chǎn)生新神經(jīng)元,此現(xiàn)象稱為神經(jīng)發(fā)生(neurogensis)的增加與NSPCs自我更新的增強相關(guān)[8]。此外,遷移增殖的祖細胞和神經(jīng)母細胞的耗竭導致干細胞增殖的顯著增加[9],證明相對緩慢的內(nèi)源性成年NSPCs的增殖受內(nèi)環(huán)境機制的調(diào)控,就是當干細胞巢中NSPCs很少時他們會比細胞多時增殖更快。
病理條件改變內(nèi)環(huán)境可引發(fā)內(nèi)源性NSPCs活化、增殖,體內(nèi)的細胞因子對內(nèi)源性NSPCs的作用也是至關(guān)重要的。表皮生長因子(EGF)和成纖維細胞生長因子-2(FGF-2)對神經(jīng)發(fā)生引起了人們的注意。Tureyen等[10]實驗評估成年大鼠暫時性大腦中動脈閉塞后這兩個因子對缺血后海馬DG和SVZ區(qū)域NSPCs增殖、存活和表型成熟的附加效應。結(jié)果顯示,EGF和FGF-2在成年大鼠海馬DG和SVZ區(qū)域持續(xù)灌注5天后增強缺血后NSPCs的增殖,續(xù)灌注21d可促進內(nèi)源性NSPCs的成熟。Kuhn等[11]的實驗也證明了這個實驗結(jié)果。Martens等[12]將 EGF和FGF-2注射到側(cè)腦室后發(fā)現(xiàn)能促進脊髓中央管周圍內(nèi)源性NSPCs的增殖。Mikami等[13]移植樹突細胞到脊髓損傷大鼠動物模型中的體內(nèi)試驗,發(fā)現(xiàn)樹突細胞移植對內(nèi)源性NSPCs的激活作用,體內(nèi)外實驗發(fā)現(xiàn)樹突細胞分泌神經(jīng)營養(yǎng)因子神經(jīng)營養(yǎng)素-3(NT-3)。NT-3可能參與了NSPCs增殖、活化。Nicoleau等[14]提出內(nèi)源性肝細胞生長因子(HGF)是腦室下區(qū)干細胞增殖和自我更新的一個細胞巢信號。
研究發(fā)現(xiàn)親炎癥因子,如腫瘤壞死因子α(TNF-α)、白細胞介素-6(IL-6)、白細胞介素-1α(IL-1α)和白細胞介素-1β(IL-1β)在SCI后高表達[15]。IL-6受體拮抗劑 MR16-1抑制IL-6信號傳導后,小鼠脊髓挫傷動物模型神經(jīng)功能得以改善[16]。目前主流的觀點認為,SCI后的免疫反應會進一步損傷神經(jīng)組織。為了減少SCI后的免疫反應,甲潑尼龍是目前臨床唯一治療方法[17]。但有些學者提出免疫反應在脊髓損傷修復中起到正面作用。Obermair等[18]的實驗發(fā)現(xiàn)甲潑尼龍不僅影響巨噬細胞和小膠質(zhì)細胞的增殖,也減少內(nèi)源性NSPCs的增殖。研究發(fā)現(xiàn)大腦損傷激活小膠質(zhì)細胞誘導體外神經(jīng)干細胞增殖及促進神經(jīng)球來源干細胞分化為神經(jīng)元和少突膠質(zhì)細胞。Lu等[19]研究證明免疫激活是NT-3誘導慢性脊髓損傷軸突再生所必須的。TNF-RⅠ和TNF-RⅡ基因敲除小鼠體內(nèi)實驗證明,TNF-α能刺激少突膠質(zhì)祖細胞和NSPCs的生存和增殖[20]。Butovsky等[21]實驗證明 T 細胞誘導激活小膠質(zhì)細胞增強海馬區(qū)和SVZ區(qū)NSPCs的增殖。從文獻我們得知,免疫反應在內(nèi)源性NSPCs的激活、增殖、分化中也起著至關(guān)重要的作用。如何權(quán)衡SCI后的免疫反應的利弊將是我們面臨的一個重要課題。
神經(jīng)系統(tǒng)損傷后內(nèi)源性NSPCs活化、增殖,在體內(nèi)外因素的共同作用下遷移至損傷區(qū)域并分化為神經(jīng)組織細胞。這些因素有干細胞因子、營養(yǎng)因子、趨化因子、炎癥因子等。Belmadani等[22]實驗發(fā)現(xiàn)炎性刺激物IFN-Y,gp120可激活小膠質(zhì)細胞和星形膠質(zhì)細胞合成趨化因子、細胞因子參與NSPCs的遷移。Law等[23]也提出相似的觀點并認為這種遷移可能受絡氨酸激酶途徑的調(diào)控。在眾多炎癥趨化因子中,研究最多的是細胞基質(zhì)衍生因子(stromal cell-drived factor 1α,SDF-1α)。損傷區(qū)域內(nèi)的反應性細胞如膠質(zhì)細胞,免疫細胞通過分泌因子影響NSPCs周圍微環(huán)境,SDF-1α可通過其細胞表面受體CXCR4對SVZ區(qū)域增殖的細胞產(chǎn)生化學趨化作用。研究發(fā)現(xiàn)SDF-1α主要趨化的是成年神經(jīng)細胞而Nestin未分化細胞則幾乎未發(fā)生遷移[24]。Yamashita等[25]研究認為干細胞因子可趨化Nestin未分化細胞遷移。干細胞因子能誘導C17.2NSPCs定向遷移,并且干細胞因子可與其受體C-kit相互作用激活多條信號通路,誘導中樞神經(jīng)系統(tǒng)內(nèi)的干細胞定向遷移。Belmadani等[26]實驗證明內(nèi)源性趨化因子單核細胞趨化蛋白-1(monocyte chemoattractant protein-1,MCP-1)能促進NSPCs向損傷處遷移,表明神經(jīng)損傷后,炎性細胞促進趨化蛋白的表達,引導NSPCs遷移。總之,神經(jīng)系統(tǒng)損傷后,NSPCs的遷移是多因素相互作用的共同結(jié)果。
內(nèi)源性NSPCs的增殖分化不僅取決于內(nèi)在因素(基因調(diào)控),而且與損傷局部所處的微環(huán)境信號密切相關(guān)。在非病理條件下,脊髓NSPCs向少突膠質(zhì)細胞和星形膠質(zhì)細胞分化,幾乎不向神經(jīng)元分化,僅在溫和的損傷中,如脊髓擠壓傷或頸椎背根切斷術(shù)中可發(fā)現(xiàn)有神經(jīng)元分化[27],說明脊髓損傷后損傷局部具備內(nèi)源性NSPCs分化為神經(jīng)元的微環(huán)境,同時也存在抑制內(nèi)源性NSPCs分化為神經(jīng)元的抑制因子。這證明NSPCs分化的問題上,局部微環(huán)境扮演著重要角色。研究發(fā)現(xiàn)廣泛分布于中樞神經(jīng)系統(tǒng)的腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)能刺激遷移的NSPCs的存活并分化為神經(jīng)元[28],它是通過酪氨酸激酶受體B(tyrosine kinase receptor,TrkB)受體信號通路調(diào)控運動神經(jīng)元的發(fā)育、成年后的存活及病變運動神經(jīng)元的存活和軸突再生[29]。Wachs等[30]實驗證實當 BDNF 濃度為 200ug/L時,NSPCs分化為神經(jīng)元的比例最高。Mikami等[13]報道移植樹突細胞(dendritic cells,DCs)治療脊髓損傷的體內(nèi)實驗顯示,移植了DCs細胞的脊髓損傷小鼠,其內(nèi)源性NSPCs被激活,引起新的神經(jīng)發(fā)生。研究發(fā)現(xiàn)脊髓損傷后,移植DCs可增加NT-3、IL-2等保護性細胞因子的表達,促進運動功能恢復。DCs是通過NT-3直接促進內(nèi)源性NSPCs的分化還是通過IL-2的作用,文章未給出結(jié)論。國內(nèi)外就NT-3對內(nèi)源性NSPCs作用的研究很少。而炎癥因子在SCI后內(nèi)源性NSPCs分化中的作用研究較多。NSPCs的體外分化實驗顯示,當炎癥因子IL-6與NSPCs共培養(yǎng)時,NSPCs優(yōu)先分化為星型膠質(zhì)細胞。Vela等[31]證明IL-1β抑制少突膠質(zhì)祖細胞增殖,促進其分化。受IL-4刺激的神經(jīng)小膠質(zhì)細胞能誘導NSPCs向少突膠質(zhì)細胞分化。白細胞抑制因子(LIF)能增加嗅球和SVZ區(qū)NSPCs的增殖,減少神經(jīng)發(fā)生,增加脊髓內(nèi)NSPCs的增殖。
很多實驗證明骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP)及其同類的受體具有促進膠質(zhì)細胞生成的活性,但BMP信號受體抑制劑能促進神經(jīng)元發(fā)生。實驗證明生長因子胰島素樣生長因子-1(IGF-1)通過高表達BMP拮抗劑Smad6、Smad7、Martens和 Noggin來抑制 BMP,從而刺激海馬區(qū)NSPCs向少突膠質(zhì)細胞分化[32]。當BMP被實驗性增加時,觀察到NSPCs分化為星形膠質(zhì)細胞的比例增加。最近有報道細胞周期結(jié)束后,Yin Yang(YY-1)參與調(diào)控NSPCs向少突膠質(zhì)細胞早期階段的分化而倍受人們的關(guān)注[33]。另一個參與發(fā)育和成年人類中樞神經(jīng)系統(tǒng)增殖和分化的轉(zhuǎn)錄因子家族90x,這個家族收到廣泛關(guān)注[34]。
內(nèi)源性NSPCs最終分化為神經(jīng)元、少突膠質(zhì)細胞和星形膠質(zhì)細胞。內(nèi)源性NSPCs的轉(zhuǎn)歸決定脊髓損傷治療的最終療效。體內(nèi)外實驗證實,SCI后增殖的NSPCs 99%以上分化為膠質(zhì)細胞,最后在損傷區(qū)形成瘢痕阻斷上下行神經(jīng)沖動的傳導[29]。實驗證明新生的少突膠質(zhì)細胞參與髓鞘的形成。根據(jù)損傷程度不同,由少突膠質(zhì)細胞引發(fā)的髓鞘再生通常在損傷后14d開始[35],損傷后1個月軸突再髓鞘化達到頂峰,雖然再生的髓鞘比損傷前短?。?0]。但有學者證明脊髓損傷后新生少突膠質(zhì)細胞和神經(jīng)元數(shù)周后消失,證明它們并未被整合[36]。如何使新生的神經(jīng)元存活進行軸突生長并跨越損傷部位及使殘存的軸突再髓鞘化最終恢復神經(jīng)通路,是目前治療脊髓損傷主要策略。
復習文獻發(fā)現(xiàn)成年哺乳動物中樞神經(jīng)系統(tǒng)內(nèi)細胞因子在脊髓損傷后參與調(diào)節(jié)神經(jīng)元的恢復和軸突再生,它們包括生長因子、轉(zhuǎn)錄因子、細胞因子及與磷脂相關(guān)的抑制分子中和劑。小鼠胼胝體局部脫髓鞘后顯示少突膠質(zhì)祖細胞內(nèi)的人類表皮生長因子受體(EGRP)的過表達可加速髓鞘再生和功能恢復[37]。Qin等[38]實驗證明脊髓損傷后,與免疫調(diào)節(jié)損傷治療相關(guān)的程序在NT-3誘導的神經(jīng)元可塑性扮演一個重要角色。髓鞘磷脂特異性T細胞顯示能增強海馬區(qū)、SVZ區(qū)甚至脊髓內(nèi)的神經(jīng)發(fā)生。Vela等[31]證實炎癥因子IL-1β抑制少突膠質(zhì)祖細胞增殖,促進分化,同時通過誘導LGF-1的表達促進髓鞘再生。
由此可見,迄今為止人們對脊髓損傷后損傷局部內(nèi)環(huán)境的病理生理改變并未闡明。所以,筆者認為如今的研究更應該側(cè)重于對損傷脊髓本身內(nèi)環(huán)境改變的研究。文獻復習發(fā)現(xiàn)人們對脊髓損傷后哪些因子參與損傷區(qū)內(nèi)環(huán)境的改變及它們分別扮演的角色是什么還不清楚,這是研究SCI治療的瓶頸。神經(jīng)營養(yǎng)因子廣泛存在于中樞神經(jīng)系統(tǒng)內(nèi),是脊髓內(nèi)環(huán)境穩(wěn)態(tài)的參與者,同時是新分化神經(jīng)元和原有神經(jīng)元存活所必須的細胞因子,所以人們試圖尋找一種神經(jīng)營養(yǎng)因子改變損傷部位的微環(huán)境,為使增殖的內(nèi)源性NSPCs存活、分化為神經(jīng)元少突膠質(zhì)細胞提供一個有利的環(huán)境。眾多神經(jīng)營養(yǎng)因子中,BDNF對內(nèi)源性NSPCs的增殖、分化、遷移及誘導軸突生長方面作用明顯,引起學者們的關(guān)注。作為同樣是神經(jīng)營養(yǎng)因子的NT-3,人們對于其對內(nèi)源性NSPCs的作用的研究甚少。NT-3對內(nèi)源性NSPCs的作用逐漸引起學者們的注意。如果能明確它對NSPCs的增殖、分化、遷移及誘導軸突生長方面有積極效應,為我們治療脊髓損傷提供另外一條途徑??傊P者認為一個理想的、候選的移植到脊髓損傷區(qū)能夠促進神經(jīng)元分化和軸突再生的細胞因子應該是自體的,容易獲得的,脊髓損傷后在短時間內(nèi)可進行基因操控的,移植到體內(nèi)后能激發(fā)內(nèi)源性NSPCs向神經(jīng)元分化,并有效地支持宿主軸突生長,最終達到治療脊髓損傷的目的。
[1] Koblar SA,Turnley AM,Classon BJ,et al.Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor[J].Proc Natl Acad Sci USA,1998,95(6):3178-3181.
[2] Lepore AC,F(xiàn)ischer I.Lineage-restricted neural precursors survive,migrate,and differentiate following transplantation into the injured adult spinal cord[J].Exp Neurol,2005,194(1):230-242.
[3] Arvidsson A,Collin T,Kirik D,et al.Neuronal replacement from endogenous precursors in the adult brain after stroke[J].Nat Med,2002,8(9):963-970.
[4] Pamer TD,Ray J,Gage FH.FGF-2 responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain[J].Mol Cell Neurosci,1995,6(5):474-486.
[5] Shibuya S,Miyamoto O,Itano T,et al.Temporal progressive antigen expression in radial glia after contusive spinal cord injury in adult rats[J].Glia,2003,42(2):172-183.
[6] Kondo T,Raff M.Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells[J].Science,2000,289(5485):1754-1757.
[7] Fernando RN,Eleuteyi B,Abdelhady S,et al.Cell cycle restriction by histone H2AX limits proliferation of adult neural neural stem cells[J].PNAS,2011,108(14):5837-5842.
[8] Kaneko N,Sawamoto K.Adult neurogenesis and its alteration under pathological conditions[J].Neurosci Res,2009,63(3):155-164.
[9] Ahn S,Joyner AL.In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog[J].Nature,2005,437(7060):894-897.
[10] Tureyen K,Vemuganti R.EGF and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain[J].Neurosurgery,2005,57(6):1254-1263.
[11] Kuhn HG,Winkler J,Kempermann G,et al.Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain[J].J Neurosci,1997,17(15):5820-5829.
[12] Martens DJ,Seaberg RM,Vander KD,et al.In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord[J].Eur J Neurosci,2002,16(6):1045-1057.
[13] Mikami Y,Okano H,Sakaquch M,et al.Implantation of dendritic cells in injured adult spinal cord results in activation of endogenous neural stem/progenitor cells leading to de novo neurogenesis and functional recovery[J].J Neurosci Res,2004,746(4):453-465.
[14] Nicoleau C,Benzakour O,Agaasse F,et al.Endogenous hepatocyte growth factor is a niche signal for subventricular zone neural stem cell amplification and self-renewal[J].Stem Cells,2009,27(2):408-419.
[15] Pineau I,Lacroix S.Proinflammatory cytokine synthesis in the injured mouse spinal cord:multiphasic expression pattern and identification of the cell types involved[J].J Comp,2007,500(2):267-285.
[16] Okada S,Nakamura M,Mikani Y,et al.Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury[J].J Neurosci Res,2004,76(2):265-276.
[17] Rozet I.Methylprednisolone in acute spinal cord injury:is there any other ethical choice[J].J Neurosurg Anesthesiol,2008,20(2):137-139.
[18] Obermair FJ,Schroter A,Thallmair M.Endogenous neural progenitor cells as therapeutic target after spinal cord injury[J].Physiology,2008,23(5):296-304.
[19] Lu HX,Li Mj,Qian Y,et al.Retrovirus delivered neurotrophin-3 promotes survival,proliferation and neuronal differentiation of human fetal neural stem cells in vitro[J].Brain Res Bull,2008,77(4):158-164.
[20] Iosif RE,Ekdahil CT,Ahlenius H,et al.Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis[J].J Neruosci,2006,36(38):9703-9712.
[21] Butovsky O,Ziv Y,Schwartz A,et al.Microglia activated by IL-4 or IFN-gamma differentially induce neurongenesis and oligodendrogenesis from adult stem/progenitor cells[J].Mol Cell Neurosci,2006,31(1):149-160.
[22] Belmadani A,Tran PB,Ren D.Chenmokines regulate the migration of neural progenitors to sites of neuroinflammation[J].J Neurosci,2006,26(12):3182-3191.
[23] Law S,Maiti O,Palit A,et al.Role of biomodulators and involvement of protein tyrosine kinase on stem cell migration in normal and leukaemic mice[J].Immunol Lett,2003,86(3):287-290.
[24] Barkho BZ,Munoz AE,Li X,et al.Endogenous matricmetallopro teinase(MMP)-3 and MMP-9 promote the differention and migration of adult neural progenitor cells in response to chemokies[J].Stem Cells,2008,26(12):3139-3149.
[25] Yamashita N,Uchida Y,Ohshima T,et al.Collapsin response mediator protein 1 mediates reelin signaling in cortical neuronal migration[J].J Neurosci,2006,26(51):13357-13362.
[26] Belmadani A,Tran PB,Ren D,et al.The chemokine stromal cellderived factor-1 regulated the migration of sensory neuron progenitors[J].J Neurosci,2005,25(16):3995-4003.
[27] Ke Y,Chi L,Xu R,et al.Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice[J].Stem Cells,2006,24(4):1011-1019.
[28] Benraiss A,Chmielnicki E,Lerner K,et al.Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenousprogenitor cells in the adult forebrain[J].J Neurosci,2001,21(17):6718-6731.
[29] Germana A,Sanchez-Ramos C,Guerrera MC,et al.Expression and cell localization of brain-derived neurotrophic factor and TrkB during zebrafish retinal development[J].J Anat,2010,217(3):214-222.
[30] Wachs FP,Sebastien CD,Engelhardt M,et al.High efficacy of clonal growth and expansion of adult neural stem cells[J].Lab Invest,2003,83(7):949-962.
[31] Vela JM,Molina-Holgado E,Arevalo-Martin A,et al.Interleukin-1 regulates proliferation and defferentiation of oligodendrocyte progenitor cells[J].Mol Cell Neurosci,2002,20(3):489-502.
[32] Hsieh J,Aimone JB,Kaspar BK,et al.IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes[J].J Cell Biol,2004,164(1):111-122.
[33] He Y,Dupree J,Wang J,et al.The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differrentiation[J].J Neuron,2007,55(2):217-230.
[34] Wegner M,Stolt CC.From stem cells to neurons and glia:a Soxist's view of neural development[J].Trends Neurosci,2005,28(1):583-588.
[35] McTigue DM,Wei P,Stokes BT.Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord[J].J Neurosci,2001,21(10):3392-3400.
[36] Uchida Y,Nakano S,Gomi F,et al.Differential regulation of basic helix-loop-helix factors Mash1 and Olig2 by beta-amyloid accelerates both differentiation and death of cultured neural stem/progenitor cells[J].J Biol Chem,2007,282(27):19700-19709.
[37] Meletis K,Barnabe-Heider F,Carlen M,et al.Spinal cord injury reveals multilineage differentiation of ependymal cells[J/OL].PLos Biol,2008,6(7):182.
[38] Qin C,George M,Smith H.Immune activation is required for NT-3-induced axonal plasticity in chronic spinal cord injury[J].Exp Neurol,2008,209(2):497-509.