許明錄,鄭傳鳳,苑月杰,趙孟陽,王佳
(河南科技學(xué)院,河南新鄉(xiāng)453003)
蘭嶼肉桂(Cinnamomum kotoense)又名平安樹,屬于樟目樟科樟屬,別名紅頭嶼肉桂、紅頭山肉桂、芳蘭山肉桂、大葉肉桂、臺灣肉桂等,原產(chǎn)地在臺灣蘭嶼地區(qū).蘭嶼肉桂為常綠小喬木,樹形端莊,樹皮黃褐色,株高可達10~15 m,性喜溫暖濕潤,喜光又耐陰,人工繁殖及培育技術(shù)成熟,被廣泛用于觀葉盆景栽培及園景樹種植.肉桂的藥用價值早在《神農(nóng)本草經(jīng)》和《本草綱目》中就分別有記載[1].近年來,從植物中提取天然活性成分用于疾病的控制及化學(xué)預(yù)防越來越受到人們的關(guān)注與青睞.蘭嶼肉桂天然藥物成分的提取分離,對天然活性成分的開發(fā)和提高蘭嶼肉桂的綜合利用價值具有重要意義.
通過查閱文獻資料,目前關(guān)于蘭嶼肉桂化學(xué)成分的研究對象主要是莖和葉,提取分離出47種化合物,包括內(nèi)酯類[2-4]、萜類[5]、黃酮類、酚類[4-5]、甾體類[5]、飽和、不飽和脂肪烴類[2,5-6]、木脂素、苯丙素類[4-5]等;其中蘭嶼肉桂葉含內(nèi)酯類成分較多,而其他類化合物多從蘭嶼肉桂莖中分離得到;有關(guān)生物活性的研究涉及抗腫瘤[7-10]、抗氧化[2,11-12]、抗結(jié)核[4]、抗炎活性[13]等方面.本文對蘭嶼肉桂化學(xué)成分和生物活性國內(nèi)外研究現(xiàn)狀進行了綜述.
從蘭嶼肉桂葉和枝中均有內(nèi)酯類化合物提取分離,共8種.蘭嶼肉桂葉中分離得到化合物較多,包括KuoPL等人[2]分離的kotomolideA[(4S,3Z)-4-hydroxy-5-methylene-3-octylidenedihy-drofuran-2-one](1);Hsu Y L等[3]分離的isokotomolide A[(4S,3E)-4-hydroxy-5-methylene-3-octylidenedihydro-furan-2-one](2);Chen C H等[4]分離的kotomolide B[3-(1-methoxynona-decyl)-5-methylene-5 H-furan-2-one](3);Yang S S等人[14]分離的cinnakotolactone(4)和isolinderanolide B(5);Wang H M等人[4]分離的Obtusilactone A(6);Chen F C等人[5]從蘭嶼肉桂莖中分離得到isoobtusilactone A(7)、linco-molide B(8).
Chen F C等人[5]從蘭嶼肉桂莖中分離得到2種萜類化合物,分別是squalene(9)、trans-phytol(10).
黃酮類和黃烷類共7種化合物,由Chen F C等人[5]從蘭嶼肉桂莖中分離,其中黃酮類有化合物apigenin(11)、kaempferol(12)、quercetin(13)、genkwanin(14),黃烷類有化合物(+)-catechin(15)、(-)-catechin(16)、(-)-4'-hy-droxy-5,7,3'-tri-methoxyflavan-3-ol(17);Chen C H等[6]也從蘭嶼肉桂葉中分離得到黃烷類化合物(+)-catechin[15](15)、(-)-catechin[16](16).
已知酚類化合物6種,分別是由Chen C H等[6]從蘭嶼肉桂葉中分離得到的vanillic acid[17](18)、isoeugenol[13](19).Chen F C等人[5]從蘭嶼肉桂莖中分離的化合物syringaldehyde(20)、vanillin(21)、4-hydroxybenzaldehyde(22)、protocatechuic acid(23).
ChenFC等[5]從蘭嶼肉桂莖中分離得到6種甾體類化合物,分別是分別是amixtureofsitostenone(24)、stigmasta-4,22-dien-3-one(25)、β-sitosterol(26)、stig-masterol(27)、β-sitosteryl-3-O-β-D-glucoside(28)、stigmasteryl-3-O-β-D-gluco-side(29).
Chen C H等人[2]從蘭嶼肉桂葉中分離得到化合物secokotomolide A(30);Chen F C等[5]從蘭嶼肉桂莖中分離得到酯類化合物methyl palmitate(31)、methyl stearate(32);飽和脂肪酸lauric acid(33)、palmitic acid(34)、margaric acid(35)、stearic acid(36)、docosanoic acid(37);飽和脂肪烴tetracosane(38).Chen CH等[6]從蘭嶼肉桂葉中分離得到飽和脂肪酸palmitic acid[18](34)、stearic acid[19](36).
木脂素類化合物3種:Chen CH等[6]從蘭嶼肉桂葉中分離得到clemaphenol[20]A(39);Chen C H等[4],Chen F C等[5]分別從蘭嶼肉桂葉和莖中分離得到(±)-syringaresinol[21](40)、(-)-sesamin[22](41);WangH M等人[6]從蘭嶼肉桂葉中也分離得到(-)-sesamin(41).
苯丙素類化合物2種:Chen F C等[5]從蘭嶼肉桂莖中分離得到trans–ferulic acid(42)、trans–coumaric acid(43).
Chen F C等[5]從蘭嶼肉桂莖中分離得到2-acetyl-5-dode-cylfuran(44)、2-acetyl-5-me-thylfuran(45)兩種呋喃類化合物;苯甲酸benzoic acid(46)以及苯醌類化合物2,6-dimethoxy-1,4-benzoquinone(47).
Hsu Y L等人研究isokotomolide A對人類肺癌非小細(xì)胞A549有抗增殖活性[3];Chen C H等人研究報道secokotomolide A可誘導(dǎo)HeLa細(xì)胞凋亡[6];Yang S S等人報道γ-lactone、cinnakotolactone、isolinderanolide B對人類MCF-7和HT-29癌細(xì)胞系有顯著的反擴散作用[14].Wang H M等研究發(fā)現(xiàn)Obtusilactone A和(-)-sesamin能夠誘導(dǎo)人類肺癌細(xì)胞死亡,(-)-sesamin還對人類乳腺癌MCF-7細(xì)胞系具有抗癌活性[4];KuoP L等人報道kotomolide A對人類乳腺癌MCF-7細(xì)胞系具有抗癌作用[2];從蘭嶼肉桂葉中分離的isoobtusilactone A,對人喉癌Hep-2細(xì)胞、中國倉鼠卵巢CHO-K1細(xì)胞、大鼠肝癌HTC[7]和小鼠淋巴白血病P-388[8]等細(xì)胞株有細(xì)胞毒性和遺傳毒性;isoobtusilactone A在Chen CY等和Liu TZ等研究中能夠誘導(dǎo)HepG2肝癌細(xì)胞凋亡,并在Sprague-Dawley大鼠體內(nèi)測試沒有引起細(xì)胞毒性[9-10];Chen CH等研究中對肺癌A549細(xì)胞有抗癌作用[11].
KuoP L等人研究的kotomolide A作為抗氧化劑增加人類乳腺癌細(xì)胞的ROS水平[2],誘導(dǎo)的ROS激活JNK[12],隨后引發(fā)線粒體和DR5的凋亡途徑,最終導(dǎo)致細(xì)胞死亡.Chen C H等研究的secokotomolide A(4)處理HeLa細(xì)胞細(xì)胞可使細(xì)胞內(nèi)H2O2顯著增加,誘導(dǎo)線粒體的跨膜電位(ΔΨm)明顯減少,caspase 3/7活性和p53基因表達明顯上調(diào),當(dāng)細(xì)胞用細(xì)胞內(nèi)補充谷胱甘肽預(yù)處理后,secokotomolide A誘導(dǎo)的DNA損傷明顯減少,secokotomolide A引起H2O2的增加是導(dǎo)致細(xì)胞凋亡的主要原因[6].
Chen CY等研究的isoobtusilactone A處理肝癌Hep G2細(xì)胞,Chen CH等研究的isoobtusilactone A處理肺癌A549細(xì)胞,二者均表現(xiàn)出實驗早期細(xì)胞內(nèi)活性氧(ROS)的增加,引起線粒體跨膜電位ΔΨm的破壞,而使用活性氧清除劑(N-乙酰-L-半胱氨酸)和NADPH氧化酶抑制劑阻斷活性氧(ROS)的生產(chǎn),抑制細(xì)胞凋亡[9,11].
Chen F C等人根據(jù)Middlebrook 7H10瓊脂比例法[23]研究所提取化合物對結(jié)核分枝桿菌90-221387的體外抗結(jié)核活性并確定MIC值.MIC值是肉眼檢測的所測定化合物完全抑制結(jié)核分枝桿菌90-221387生長的最低濃度.研究發(fā)現(xiàn),isoobtusilactoneA、incomolideB、methylpalmitate和methylstearate的混合物,palmitic acid、margaric acid和stearic acid的混合物,具有較低的MIC值,即MIC值分別為22.48 μM、10.16 μM、45 μg/mL、25 μg/mL,表明具有較強的抗結(jié)核作用[5,23].
Shen Y C等人研究A.camphorata培養(yǎng)的菌絲體提取物在適度的藥理濃度下可通過抑制活性氧(ROS)的產(chǎn)生在人體白細(xì)胞內(nèi)顯示抗炎活性.進一步研究由PDB和C.kanehirae(CK)、C.micranthum(CM)、C.osmophloeum(CO)、C.camphora(CC)、C.kotoense(CKO)五種肉桂的水溶性組分培養(yǎng)A.camphorata菌絲體,取所培養(yǎng)的菌絲體的甲醇提取物,即PDB-ext、CK-ext、CM-ext、CO-ext、CC-ext、CKO-ext,對在周圍人的中性粒細(xì)胞(PMN)或單核細(xì)胞(MNC)內(nèi)由N-甲酰甲硫-亮氨酰苯丙氨酸(FMLP)或佛波醇-12-肉豆蔻13-醋酸酯(PMA)誘導(dǎo)的活性氧(ROS)生產(chǎn)的影響.PMN和MNC細(xì)胞內(nèi)ROS的產(chǎn)生是炎癥介質(zhì),預(yù)示著免疫反應(yīng).研究發(fā)現(xiàn)由提取物處理的PMN和MNC細(xì)胞內(nèi)ROS的產(chǎn)生成濃度依賴性減弱,且提取物中CM-EXT、CO-EXT、CKO-EXT表現(xiàn)出比其他提取物更高的效力[24].
蘭嶼肉桂植株豐滿,樹形端莊,四季常綠,是非常漂亮的盆景觀葉植物及園景樹,又因其能散發(fā)香氣,凈化空氣,保護人體健康,國內(nèi)作為行道樹被大量引進栽種.蘭嶼肉桂又名平安樹,有樹保平安之意,在花卉市場十分俏銷,價格不菲,但依然受到人們的追捧,經(jīng)濟價值十分可觀.
據(jù)相關(guān)研究報道,蘭嶼肉桂的栽培及繁殖技術(shù)成熟,活性成分的種類和數(shù)量多,其生物活性多樣等.但化學(xué)成分的研究僅限于莖和葉,其他部位尚未見報道,生物活性研究有抗腫瘤、抗氧化、抗結(jié)核、抗炎等方面.為提高蘭嶼肉桂的綜合開發(fā)利用,蘭嶼肉桂其他部位的化學(xué)成分及其生物活性等方面有待于研究.
[1] 胡一民.肉桂類觀葉植物—“平安樹”[J].中國花卉盆景,2002(7):10-11.
[2] Kuo P L,Chen C Y,Tzeng T F,et al.Involvement of reactive oxygen species/c-Jun NH(2)-terminal kinase pathway in kotomolide Ainduces apoptosis in human breast cancer cells[J].Toxicol Appl Pharmacol,2008,229(2):215-226.
[3] Chen C Y,Hsu Y L,Chen Y Y,et al.Isokotomolide A,a new butanolide extracted from the leaves of Cinnamomum kotoense,arrests cell cycle progression and induces apoptosis through the induction of p53/p21 and the initiation of mitochondrial system in human non-small cell lungcancer A549 cells[J].Eur J Pharmacol,2007,574(2/3):94-102.
[4] WangH M,ChengK C,Lin C J,et al.Obtusilactone A and(-)-sesamin induce apoptos is in human lungcancer cells by inhibiting mitochondrial Lon protease and activating DNA damage checkpoints[J].Cancer Sci.,2010,101(12):2612-2620.
[5] Chen F C,Peng C F,Tsai I L,et al.Antitubercular constituents from the stem wood of Cinnamomum kotoens[J].J Nat Prod,2005,68(9):1318-1323.
[6] Chen C H,Lo W L,Liu Y C,et al.Chemical and cytotoxic constituents from the leaves of Cinnamomum kotoense[J].J Nat Prod,2006,69(6):927-933.
[7] Garcez F R,Garcez W S,Martins M,et al.Cytotoxic and genotoxic butanolides and lignans from Aiouea trinervis[J].Planta Med,2005,71:923-927.
[8] Tsai I L,HungCH,Duh CY,et al.Cytotoxic butanolides and secobutanolides fromthe stemwood ofFormosan Lindera communis[J].Planta Med,2002,68:142-145.
[9] Chen C Y,Liu T Z,Chen C H,et al.Isoobtusilactone A-induced apoptosis in human hepatoma Hep G2 cells is mediated via increased NADPH oxidase-derived reactive oxygen species(ROS)production and the mitochondria-associated apoptotic mechanisms[J].Food ChemToxicol,2007,45(7):1268-1276.
[10] Liu T Z,Cheng J T,Yiin S J,et al.Isoobtusilactone A induces both caspase-dependent and-independent apoptosis in HepG2 cells[J].Food Chem Toxicol,2008,46(1):321-327.
[11] Chen C Y,Chen C H,Lo Y C,et al.Anticancer activity of isoobtusilactone A from Cinnamomum kotoense:involvement of apoptosis,cell-cycle dysregulation,mitochondria regulation,and reactive oxygen species[J].J Nat Prod,2008,71(6):933-940.
[12] KiMB C,Kim,H G,Lee S A,et al.Genipin-induced apoptosis in hepatoma cells is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of mitochondrial pathway[J].Biochem.Pharmacol,2005,70:1398-1407.
[13] Chen LH,KuoYH.Dye-sensitized photooxidation ofisoeugenol[J].J.Chin.Chem.Soc.,1985,32:169-172.
[14] Yang S S,Hou W C,Huang L W,et al.A new γ-lactone from the leaves of Cinnamomum kotoense[J].Nat Prod Res.,2006,20(13):1246-1250.
[15] MorimotoS,Nonaka G,Nishioka I,et al.Tannins and related compounds.XXIX.Seven new methyl derivatives offlavan-3-ols and a 1,3-diarylpropan-2-ol from Cinnamomum cassia,C.obtusifolium and Lindera umbellata var.membranacea[J].Chem.Pharm.Bull.,1985,33:2281-2286.
[16] ZhangH L,Nagatsu A,Okuyama H,et al.Sesquiterpene glycosides from cotton oil cake[J].Phytochemistry,1998,48:665-668.
[17] CardonaL,GarciaB,PedroJR,et al.6-Prenyloxy-7-methoxycou-marin,acoumarin-hemiter penee ther from Carduus tenuiflorus[J].Phytochemistry,1992,31:3989-3994.
[18] Addae MI,Achenbach H.Terpenoids and flavonoids ofBridelia ferruginea[J].Phytochemistry,1985,24:1817-1819.
[19] Dupont M P,Llabres G,Delaude C,et al.Sterolic and triterpenoidic constituents of steMBark of Drypetes gossweileri[J].Planta Med.,1997,63:282-284.
[20] He M,ZhangJ,Hu C.Studies on the chemical components of Clematis chinensis[J].J.Chin.Pharm.Sci.,2001,10:180-182.
[21] Chen C Y,Wu T Y,Chang F R,et al.Lignans and kauranes from the stems of Annona cherimola[J].J.Chin.Chem.Soc.,1998,45:629-634.
[22] Sun N J,Chang C J,Cassady J M.A cytotoxic tetralone derivative from Pararistolochia flos-avis[J].Phytochemistry,1987,26:3051-3053.
[23] Inderlied CB,Nash KA.Antibiotics in LaboratoryMedicine[M].4thed.,Williams&Wilkins,1996:127-175.
[24] Shen Y C,Chou C J,Wang Y H,et al.Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions fromfive different Cinnamomum species[J].FEMSMicrobol Lett,2004,231(1):137-143.