楊寶峰
結(jié)直腸癌(colorectal cancer,CRC)是一種常見的消化道惡性腫瘤,在西方發(fā)達國家,結(jié)直腸癌發(fā)病率居第3位[1]。在我國,結(jié)腸癌發(fā)病率占第4位且其發(fā)病率和致死率逐年增加[2]。結(jié)直腸癌轉(zhuǎn)移率高、早期診斷率低、手術(shù)切除后易復(fù)發(fā)是造成結(jié)直腸癌致死率高的主要因素。研究發(fā)現(xiàn),microRNAs(miRNAs)參與促進結(jié)直腸癌細胞增殖抑制結(jié)直腸癌細胞凋亡及促進轉(zhuǎn)移等過程。因此,本文旨在探討miRNAs在結(jié)直腸癌發(fā)生發(fā)展中的作用,探討能否成為結(jié)直腸癌早期診斷標志物及治療靶點,以提高結(jié)直腸癌診治水平。
miRNAs是一類由18~25個核苷酸構(gòu)成的內(nèi)源性非編碼微小RNA,在進化中高度保守。首先,編碼miRNA的基因在細胞核內(nèi)轉(zhuǎn)錄成300~1000個堿基長度并具有發(fā)夾結(jié)構(gòu)的pri-miRNA。然后,pri-miRNA在細胞核內(nèi)經(jīng)核糖核酸酶Drosha剪切產(chǎn)生70~90個堿基長度并具有頸環(huán)結(jié)構(gòu)的pre-miRNA。接著,pre-miRNA由轉(zhuǎn)運蛋白-5(Exportin-5)轉(zhuǎn)運至胞漿,經(jīng)過Dicer酶剪切后形成18~25個核苷酸的成熟雙鏈miRNAs。最后,在解螺旋酶的作用下,成熟miRNAs解離,其功能鏈通過與Argonaute蛋白結(jié)合形成RNA誘導(dǎo)的默復(fù)合物[3]。
成熟的miRNAs通過與靶基因mRNA3’-UTR端完全或不完全互補結(jié)合,進而降解靶基因mRNA或抑制其翻譯。自從1993年在線蟲中發(fā)現(xiàn)第一個miRNA以來,越來越多的研究證實miRNAs在生物體中發(fā)揮著重要作用。miRNAs具有調(diào)控細胞增殖、分化、凋亡、代謝等基本生命活動的功能。研究表明miRNAs同樣參與了多種腫瘤的發(fā)生與發(fā)展過程,例如結(jié)直腸癌、胃癌、肝癌等[4]。
Robert A.Weinberg提出癌癥細胞具有十大特征(圖 1),包括自給自足生長信號(self-sufficiency in growth signals)、抗生長信號的不敏感(insensitivity to antigrowth signals)、抵抗細胞死亡(resisting cell death)、無限復(fù)制的潛能(limitless replicative potential)、持續(xù)的血管生成(sustained angiogenesis)、組織浸潤和轉(zhuǎn)移(tissue invasion and metastasis)、避免免疫摧毀(avoiding immune destruction)、促進腫瘤的炎癥(tumor promotion inflammation)、細胞能量異常(deregulating cellular energetics)基因組不穩(wěn)定和突變(genome instability and mutation)[5]。miRNAs在結(jié)直腸癌細胞獲得這些特征功能的過程中發(fā)揮重要作用[6]。
1.細胞增殖:細胞獲得自給自足的生長信號或者對抗生長信號的不敏感,均可導(dǎo)致癌細胞異常增殖并癌變。Ras/MAPK信號通路的異常激活,可以促進結(jié)直腸上皮細胞增殖,進而導(dǎo)致結(jié)直腸癌的發(fā)生。癌基因KRAS是Ras/MAPK信號通路的核心基因,受多個miRNAs調(diào)節(jié)。例如,KRAS是let-7a的靶點,結(jié)直腸癌患者中l(wèi)et-7a表達降低,且KRAS表達升高;將let-7a轉(zhuǎn)染入體外培養(yǎng)的人結(jié)腸癌細胞中,可以降低KRAS蛋白表達量,并顯著抑制癌細胞生長[7]。又如,結(jié)直腸癌患者中miRNA-143表達量降低,其靶基因KRAS上調(diào)并促進癌細胞增殖[8]。其他參與細胞增殖過程的通路亦受miRNA調(diào)節(jié)。例如,miRNA-34a發(fā)揮抑癌作用,在結(jié)直腸癌中通過調(diào)節(jié)E2F信號通路抑制癌細胞過度增殖[9]。miRNA-137通過靶向Cdc42阻滯細胞周期,從而抑制癌細胞增殖[10]。此外,miRNA-145、miRNA-30a-5p和miRNA-320a在結(jié)直腸癌中均發(fā)揮抑癌作用,可抑制結(jié)腸癌細胞增殖[11-13]。然而,miRNA-95和miRNA-17在結(jié)直腸癌中發(fā)揮促癌作用,可以促進癌細胞的增殖[14-15]。
2.細胞凋亡:組織內(nèi)環(huán)境的穩(wěn)態(tài)主要依賴于體內(nèi)細胞增殖和細胞死亡之間的相互平衡,在腫瘤細胞中,兩者之間的平衡被打破。因此,抵抗細胞凋亡是腫瘤的另外一個重要特征,在結(jié)直腸癌的發(fā)生中發(fā)揮著重要作用。
經(jīng)典的細胞凋亡途徑分為內(nèi)源性和外源性凋亡通路,Bcl-2蛋白家族在內(nèi)源性凋亡信號通路中發(fā)揮著重要作用。近年研究發(fā)現(xiàn)許多調(diào)控Bcl-2家族的重要miRNAs(如miRNA-365,miRNA-491和miRNA-148)。在結(jié)直腸癌患者中miRNA-365表達量降低,進而上調(diào)抗凋亡蛋白Bcl-2的表達量,最終抑制結(jié)直腸癌細胞凋亡[16]。在結(jié)直腸癌患者中,miRNA-491和miRNA-148分別下調(diào)抗凋亡基因Bcl-xL和Bcl-2表達量而促進細胞凋亡[17-18]。Geng等[19]發(fā)現(xiàn)let-7可通過下調(diào)Fas表達量而抑制死亡受體介導(dǎo)的外源性凋亡通路,進而抑制結(jié)腸癌細胞的凋亡。此外,miRNA-34a、miRNA-26、miRNA-342等在結(jié)直腸癌細胞凋亡過程中也發(fā)揮著重要的調(diào)節(jié)作用[20-21]。
3.癌細胞轉(zhuǎn)移:癌細胞發(fā)生轉(zhuǎn)移是癌癥的關(guān)鍵特征。大量研究表明,miRNAs參與結(jié)直腸癌細胞轉(zhuǎn)移過程。轉(zhuǎn)錄因子ZEB1可通過抑制E-adherin的表達促進腫瘤細胞轉(zhuǎn)移。Chen等[22]發(fā)現(xiàn)iRNA-200c靶向調(diào)控ZEB1,并與ZEB1相互抑制,形成負反饋環(huán)調(diào)節(jié)結(jié)直腸癌細胞的侵襲轉(zhuǎn)移能力。神經(jīng)纖毛蛋白1(neuropilin-1,NRP1)可通過依賴于血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)和獨立于VEGF兩種途徑參與腫瘤血管新生,在腫瘤轉(zhuǎn)移過程中發(fā)揮作用,Wernicke等[23]發(fā)現(xiàn)miRNA-320a通過調(diào)節(jié)NRP1表達量在結(jié)直腸癌轉(zhuǎn)移中發(fā)揮重要調(diào)節(jié)作用。此外,miRNA-21與miRNA-499-5p均可作用于抑癌基因PDCD4而促結(jié)直腸癌細胞轉(zhuǎn)移[24-25]。let-7c、miRNA-145等miRNAs在結(jié)直腸癌的轉(zhuǎn)移過程發(fā)揮核心作用[26-27]。
4.其他作用:除了調(diào)控細胞增殖、細胞凋亡和轉(zhuǎn)移外,miRNAs還參與調(diào)節(jié)結(jié)直腸癌的其他特征(圖1)。例如,癌癥細胞的持續(xù)生長必須依賴新生血管供應(yīng)營養(yǎng),研究證實miRNA-29b可以通過抑制血管新生而抑制結(jié)直腸癌的發(fā)生,而miRNA-194水平的降低可促進血管新生進而誘導(dǎo)結(jié)直腸癌的發(fā)生和轉(zhuǎn)移[28-29]。此外,癌基因組呈現(xiàn)不穩(wěn)定性、伴隨大量突變、炎癥的發(fā)生以及逃避免疫監(jiān)視等特征,miRNAs亦參與了這些過程的發(fā)生。miRNA-155可以促進癌細胞的基因突變,使癌基因組穩(wěn)定性降低[30]。在結(jié)直腸癌中,miRNA-21和miRNA-181b-1分別作用于PTEN用于第10號染色體同源丟失性磷酸酶-張力蛋白基因(phosphatase and tensin homolog deleted on chromosometen,PTEN)和腫瘤抑癌基因(cylindromatosis,CYLD)進而激活NF-kB,促進炎癥的發(fā)生[31]。miRNA-328可通過調(diào)節(jié)腫瘤干細胞而參與結(jié)直腸癌的病程[32]。
目前,腫瘤細胞耐藥性是臨床腫瘤化療失敗的重要原因之一。因此,研究腫瘤細胞耐藥性機制,逆轉(zhuǎn)腫瘤細胞耐藥性,提高腫瘤細胞對化療藥物的敏感性,具有重要的臨床意義。已有研究顯示多個miRNAs參與調(diào)控腫瘤細胞的耐藥性,miRNA-143可以增加結(jié)直腸癌細胞對5-氟尿嘧啶的化療敏感性,而miRNA-19b水平的升高可以使結(jié)腸癌細胞對5-氟尿嘧啶產(chǎn)生耐藥性[33]。miRNA-192和miRNA-215可以使結(jié)直腸癌細胞對5-氟尿嘧啶產(chǎn)生耐藥性,同時miRNA-215可降低結(jié)直腸癌細胞對氨甲喋呤和雷替曲塞的化療敏感性[34]。其他miRNAs,如miRNA-21、miRNA-506等,也參與調(diào)節(jié)結(jié)直腸癌細胞耐藥性[35-36]。
結(jié)直腸癌起病隱匿,病死率高,治療結(jié)直腸癌的關(guān)鍵在于早期診斷,早期治療。目前,癌胚抗原(cancer embryo antigen,CEA)是臨床上惟一一個用于結(jié)直腸癌患者診斷及預(yù)后的分子標志物,但其效果不佳,因此迫切需要發(fā)現(xiàn)新的結(jié)直腸癌診斷標志物。
研究表明,血漿中的循環(huán)miRNAs可以作為診斷結(jié)直腸癌的早期標志物。Ng等[37]發(fā)現(xiàn)結(jié)直腸癌患者血漿中miRNA-17-3p和miRNA-92a表達水平顯著升高,而通過手術(shù)切除癌組織后,患者血漿中的miRNA-17-3p和miRNA-92a又可恢復(fù)到正常水平。此外,miRNA-92a還可作為區(qū)分結(jié)直腸癌、胃癌和腸道炎癥疾病的分子。除了外周血,糞便中的miRNAs也可以作為診斷結(jié)直腸癌的標志物。Link等[38]發(fā)現(xiàn)結(jié)腸直腸癌患者糞便中的miRNA-21和miRNA-106a顯著升高。
通過研究miRNAs的異常表達與結(jié)直腸癌患者預(yù)后之間的關(guān)系,研究人員發(fā)現(xiàn)miRNA-21的高表達與晚期腫瘤的淋巴結(jié)轉(zhuǎn)移有關(guān),miRNA-21高表達的結(jié)直腸癌患者術(shù)后無病生存時間縮短,預(yù)后差。因此,miRNA-21的表達量與結(jié)直腸癌轉(zhuǎn)移及臨床預(yù)后等相關(guān)[39]。除了miRNA-21外,miRNA-372、miRNA-143、miRNA-125b等均可作為評價結(jié)直腸癌患者預(yù)后的標志物[40-42]。越來越多的miRNAs被發(fā)現(xiàn)可以作為結(jié)直腸癌早期診斷和預(yù)后評價的標志物,但是如何開發(fā)經(jīng)濟有效、簡單快捷的診斷試劑盒還需要科研工作者進一步探索。
研究發(fā)現(xiàn),多種miRNAs在結(jié)直腸癌患者異常表達,參與癌癥發(fā)生與發(fā)展過程。因此,人們設(shè)想恢復(fù)異常表達的miRNAs是否可以治療結(jié)直腸癌。miRNA-92在結(jié)直腸癌中表達量升高,Tsuchida等[43]運用膽固醇連接的反義核苷酸anti-miRNA-92將miRNA-92沉默,發(fā)現(xiàn)可以引起結(jié)腸癌細胞凋亡,提示miRNA-92可作為治療結(jié)腸癌的潛在靶點。Ibrehim等[44]用聚乙烯亞胺介導(dǎo)未經(jīng)修飾的miRNA-145擬似物,將其注入到患有結(jié)腸癌的小鼠體內(nèi),發(fā)現(xiàn)miRNA-145可以抑制其靶基因c-Myc和ERK5的蛋白表達量,抑制腫瘤細胞增殖同時可引起細胞凋亡,最終抑制腫瘤生長。用同樣的研究方法發(fā)現(xiàn)miRNA-33a亦可以發(fā)揮抗腫瘤作用,可作為治療結(jié)直腸癌的潛在治療手段。
人們試圖將miRNAs開發(fā)成治療結(jié)直腸癌的核酸藥物,或者以異常表達的miRNAs為靶點,開發(fā)可以特異性調(diào)節(jié)這些miRNAs的藥物,為結(jié)直腸癌患者的預(yù)防和治療帶來新的希望。然而,miRNAs用于臨床治療還存在一些問題,一個miRNA可調(diào)節(jié)多個靶基因,如何確保作為治療分子的miRNAs可以準確地運送到效應(yīng)細胞作用于相應(yīng)靶點,以及miRNAs在體內(nèi)的穩(wěn)定性和安全性等都是miRNAs用于癌癥治療中遇到的技術(shù)壁壘。
結(jié)直腸癌早期診斷不明確,轉(zhuǎn)移率高,預(yù)后差,死亡率高。研究發(fā)現(xiàn),miRNAs參與結(jié)直腸癌的發(fā)生與發(fā)展、預(yù)后及產(chǎn)生耐藥性的過程,miRNAs可以作為促癌或抑癌分子調(diào)控結(jié)直腸癌,同時也可以作為診斷和預(yù)后的標志物,豐富了我們對結(jié)直腸癌發(fā)病機制的認識,為提高其診斷率和治療率提供了新的思路。
目前,關(guān)于miRNAs在結(jié)直腸癌治療中作用的研究還處于探索階段,大部分的試驗主要集中于細胞試驗或者動物試驗,要將其應(yīng)用于臨床診斷或治療還需要進一步的系統(tǒng)研究。另外,miRNAs在致癌過程中并不是孤立的發(fā)揮作用,miRNA與miRNA,miRNAs與轉(zhuǎn)錄因子之間存在相互調(diào)節(jié)作用,一個miRNA可以調(diào)節(jié)多個信號通路,一個信號通路又可受多個miRNAs調(diào)節(jié)。隨著miRNAs認識的不斷深入,需要繪制miRNAs在結(jié)直腸癌發(fā)生與發(fā)展過程中發(fā)揮作用的網(wǎng)絡(luò)圖譜,進而更好地揭示miRNAs在結(jié)直腸癌中的調(diào)控機制。
(本文圖1見光盤)
[1]Jemal A,Siegel R,Xu J,Ward E,et al.Cancer statistics,2010[J].CA Cancer J Clin,2010,60(5):277-300.
[2]Yang L,Parkin DM,Li L,et al.Time trends in cancer mortality in China:1987-1999[J].Int J Cancer,2003,106(5):771-783.
[3]Inui M,Martello G,Piccolo S,et al.MicroRNA control of signal transduction[J].Nat Rev Mol Cell Biol,2010,11(4):252-263.
[4]Lujambio A,Lowe SW.The microcosmos of cancer[J].Nature,2012,482(7385):347-355.
[5]Hanahan D,Weinberg RA.Hallmarks of cancer:the next generation[J].Cell,2011,144(5):646-674.
[6]Ruan K,Fang X,Ouyang G.MicroRNAs:novel regulators in the hallmarks of human cancer[J].Cancer Lett,2009,285(2):116-126.
[7]Akao Y,Nakagawa Y,Naoe T.Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells[J].Biol Pharm Bull,2006,29(5):903-906.
[8]Chen X,Guo X,Zhang H,et al.Role of miR-143 targeting KRAS in colorectal tumorigenesis[J].Oncogene,2009,28(10):1385-1392.
[9]Tazawa H,Tsuchiya N,Izumiya M,et al.Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells[J].Proc Natl Acad Sci U S A,2007,04(39):15472-15477.
[10]LiuM,Lang N,QiuM,et al.miR-137 targets Cdc42 expression,induces cell cycle G1 arrest and inhibits invasion in colorectalcancer cells[J].Int J Cancer,2011,128(6):1269-1279.
[11]Sun JY,Huang Y,Li JP,et al.MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting beta-catenin[J].Biochem Biophys Res Commun,2012,420(4):787-792.
[12]Baraniskin A,Birkenkamp-Demtroder K,Maghnouj A,et al.MiR-30a-5p suppresses tumor growth in colon carcinoma by targeting DTL[J].Carcinogenesis,2012,33(4):732-739.
[13]Shi B,Sepp-Lorenzino L,Prisco M,et al.Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells[J].J Biol Chem,2007,282(45):32582-32590.
[14]Luo H,Zou J,Dong Z,et al.Up-regulated miR-17 promotescell proliferation,tumour growth and cell cycle progression by targeting the RND3 tumour suppressor gene in colorectal carcinoma[J].Biochem J,2012,442(2):311-321.
[15]Huang Z,Huang S,Wang Q,et al.MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma[J].Cancer Res,2011,71(7):2582-2589.
[16]Nie J,Liu L,Zheng W,et al.MicroRNA-365,down-regulated in colon cancer,inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2[J].Carcinogenesis,2012,33(1):220-225.
[17]Zhang H,Li Y,Huang Q,et al.MiR-148a promotes apoptosisby targeting Bcl-2 in colorectal cancer[J].Cell Death Differ,2011,18(11):1702-1710.
[18]Nakano H,Miyazawa T,Kinoshita K,et al.Functional screening identifies a microRNA,miR-491 that induces apoptosis bytargeting Bcl-X(L)in colorectal cancer cells[J].Int J Cancer,2010,127(5):1072-1080.
[19]Geng L,Zhu B,Dai BH,et al.A let-7/Fas double-negative feedback loop regulates human colon carcinoma cells sensitivity to Fas-related apoptosis[J].Biochem Biophys Res Commun,2011,408(3):494-499.
[20]Ma YL,Zhang P,Wang F,et al.Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b[J].J Cell Mol Med,2011,15(9):1941-1954.
[21]Grady WM,Parkin RK,Mitchell PS,et al.Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer[J].Oncogene,2008,27(27):3880-3888.
[22]Chen ML,Liang LS,Wang XK.miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1[J].Clin Exp Metastasis,2012,29(5):457-469.
[23]Wernicke AG,Shamis M,Sidhu KK,et al.Complication Rates in Patients With Negative Axillary Nodes 10 Years After Local Breast Radiotherapy After Either Sentinel Lymph Node Dissection or Axillary Clearance[J].Am J Clin Oncol,2011 Nov 29.[Epub ahead of print]
[24]Liu X,Zhang Z,Sun L,et al.MicroRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4[J].Carcinogenesis,2011,32(12):1798-1805.
[25]Asangani IA,Rasheed SA,Nikolova DA,et al.MicroRNA-21(miR-21)post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion,intravasation and metastasis in colorectal cancer[J].Oncogene,2008,27(15):2128-2136.
[26]Han HB,Gu J,Zuo HJ,et al.Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer[J].J Pathol,2012,226(3):544-555.
[27]Arndt GM,Dossey L,Cullen LM,et al.Characterization ofglobal microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer[J].BMC Cancer,2009,9:374.
[28]Sundaram P,Hultine S,Smith LM,et al.P53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers[J].Cancer Res,2011,71(24):7490-7501.
[29]Fang JH,Zhou HC,Zeng C,et al.MicroRNA-29b suppresses tumor angiogenesis,invasion,and metastasis by regulat- ing matrix metalloproteinase 2 expression[J].Hepatology,2011,54(5):1729-1740.
[30]Valeri N,Gasparini P,Fabbri M,et al.Modulation of mismatch repair and genomic stability by miR-155[J].Proc Natl Acad Sci U SA,2010 A,107(15):6982-6987.
[31]Iliopoulos D, Jaeger SA, Hirsch HA,et al.STAT3 activation ofmiR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer[J].Mol Cell,2010,39(4):493-506.
[32]Xu XT,Xu Q,Tong JL,et al.MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer[J].Br J Cancer,2012,106(7):1320-1330.
[33]Kurokawa K,Tanahashi T,Iima T,et al.Role of miR-19b andits target mRNAs in 5-fluorouracil resistance in colon cancer cells[J].J Gastroenterol,2012 Mar 1.[Epub ahead of print]
[34]Boni V,Bitarte N,Cristobal I,et al.miR-192/miR-215 influence5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidilate synthase regulation[J].Mol Cancer Ther,2010,9(8):2265-2275.
[35]Liu K,Li G,Fan C,et al.Increased expression of microRNA-21and its association with chemotherapeutic response in human colorectal cancer[J].J Int Med Res,2011,39(6):2288-2295.
[36]Tong JL,Zhang CP,Nie F,et al.MicroRNA 506 regulates expression of PPAR alpha in hydroxycamptothecin-resistant human colon cancer cells[J].FEBS Lett,2011,585(22):3560-3568.
[37]Ng EK,Chong WW,Jin H,et al.Differential expression of microRNAs in plasma of patients with colorectal cancer:a potential marker for colorectal cancer screening[J].Gut,2009,58(10):1375-1381.
[38]Link A,Balaguer F,Shen Y,et al.Fecal MicroRNAs as novel biomarkers for colon cancer screening[J].Cancer Epidemiol Biomarkers Prev,2010,19(7):1766-1774.
[39]Schetter AJ,Leung SY,Sohn JJ,et al.MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma[J].JAMA,2008,299(4):425-436.
[40]Pichler M,Winter E,Stotz M,et al.Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer[J].Br J Cancer,2012,106(11):1826-1832.
[41]Yamashita S,Yamamoto H,Mimori K,et al.MicroRNA-372 IsAssociated with Poor Prognosisin Colorectal Cancer[J].Oncology,2012,82(4):205-212.
[42][Nishida N,Yokobori T,Mimori K,et al.MicroRNA miR-125b is a prognostic marker in human colorectal cancer[J].Int J Oncol,2011,38(5):1437-1443.
[43]Tsuchida A,Ohno S,Wu W,et al.miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer[J].CancerSci,2011,102(12):2264-2271.
[44]Ibrahim AF,Weirauch U,Thomas M,et al.MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma[J].Cancer Res,2011,71(15):5214-5224.