聶志華,王沿東,劉冬梅
(1.北京理工大學(xué)材料學(xué)院,北京100081)
(2.北京有色金屬研究總院有色金屬材料制備加工國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100088)
磁驅(qū)動(dòng)相變材料研究進(jìn)展
聶志華1,王沿東1,劉冬梅2
(1.北京理工大學(xué)材料學(xué)院,北京100081)
(2.北京有色金屬研究總院有色金屬材料制備加工國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100088)
磁驅(qū)動(dòng)相變材料利用外磁控制下鐵彈馬氏體變體重排或磁誘導(dǎo)一級(jí)相變產(chǎn)生的形狀記憶效應(yīng)來(lái)捕獲應(yīng)變,兼具鐵彈形狀記憶與磁致伸縮功效特征。Heusler型Ni-Mn-X(X=Ga或In)系磁驅(qū)動(dòng)相變合金材料具有磁感生應(yīng)變大、能量密度高、反應(yīng)速度快等優(yōu)點(diǎn),是未來(lái)重要磁傳感器和磁驅(qū)動(dòng)器研制的關(guān)鍵。主要介紹了國(guó)內(nèi)外Ni-Mn-Ga、Ni-Co-Mn-In、反鐵磁體等磁驅(qū)動(dòng)相變材料的研究進(jìn)展,以及本課題組利用高能X射線衍射和中子散射技術(shù)對(duì)磁驅(qū)動(dòng)相變材料的原位研究。最后,展望了磁驅(qū)動(dòng)相變合金材料的發(fā)展趨勢(shì)。
磁驅(qū)動(dòng)相變;磁感生應(yīng)變;馬氏體相變;形狀記憶合金;超彈性
1963年,美國(guó)海軍實(shí)驗(yàn)室的 Buchler等[1]首次在Ni-Ti合金中發(fā)現(xiàn)了形狀記憶效應(yīng),該發(fā)現(xiàn)開(kāi)創(chuàng)了形狀記憶合金的實(shí)際應(yīng)用階段。1969年,“阿波羅”11號(hào)登月艙在月球著陸,實(shí)現(xiàn)了人類第1次登月旅行的夢(mèng)想。宇航員登月后,在月球上放置了一個(gè)半球形、直徑數(shù)米大的天線,用以向地球發(fā)送和接收信息,該天線就是用Ni-Ti記憶合金制作的[2]。Ni-Ti合金最令人鼓舞的應(yīng)用即是在航天工業(yè)中,除此之外,還被廣泛應(yīng)用于儀器儀表、自動(dòng)控制、能源、醫(yī)療和機(jī)器人等領(lǐng)域[3]。
形狀記憶合金自被發(fā)現(xiàn)以來(lái),一直備受世界各國(guó)材料學(xué)家和物理學(xué)家的廣泛關(guān)注,很多記憶合金體系被相繼開(kāi)發(fā)出來(lái)。傳統(tǒng)的溫控形狀記憶合金(如 Ni-Ti[1],Au-Cd[4],Cu-Zn-Al[5]等),雖然具有較大的可逆恢復(fù)應(yīng)變和大的恢復(fù)應(yīng)力,但由于其功能行為受溫度場(chǎng)驅(qū)動(dòng),導(dǎo)致響應(yīng)頻率較低。與溫控形狀記憶合金相比,傳統(tǒng)磁致伸縮材料具有較高的響應(yīng)頻率,但輸出應(yīng)變一般很小,如目前性能最好的巨磁致伸縮材料Terfenol-D(Tb0.27Dy0.73Fe2)在易磁化方向上的最大輸出應(yīng)變也僅為0.17%[6],且脆性較大,嚴(yán)重制約了其實(shí)際應(yīng)用。開(kāi)發(fā)同時(shí)具有高響應(yīng)頻率、大輸出應(yīng)變、大輸出應(yīng)力、良好機(jī)械性能的新型功能材料是當(dāng)前研究的一個(gè)重點(diǎn)[7]。
近年來(lái),人們發(fā)現(xiàn)以Heusler型Ni2MnGa為代表的形狀記憶合金,在磁場(chǎng)誘導(dǎo)下可產(chǎn)生比傳統(tǒng)磁致伸縮材料高一個(gè)數(shù)量級(jí)的應(yīng)變[8-12],不僅具有普通溫控形狀記憶合金的大應(yīng)變輸出的特點(diǎn),而且具有反應(yīng)迅速、響應(yīng)頻率高等純磁致伸縮材料的優(yōu)點(diǎn)。該類合金被稱為磁驅(qū)動(dòng)相變材料,即兼具馬氏體相變和磁性相變的一類智能材料。
按功能行為機(jī)理不同,Heusler型Ni-Mn-X系磁驅(qū)動(dòng)相變材料可分兩類。第1類是Ni-Mn-Ga系合金,其馬氏體為鐵磁相,磁感生應(yīng)變效應(yīng)源自鐵磁馬氏體變體在磁場(chǎng)作用下發(fā)生重排。第2類是Ni-Mn-In系合金,尤其是添加Co提高居里溫度的Ni-Co-Mn-In四元合金[13],其馬氏體為反鐵磁(或順磁)相,母相為鐵磁相,磁感生應(yīng)變是通過(guò)磁場(chǎng)誘發(fā)馬氏體相向母相的轉(zhuǎn)變引起的。受不同的磁感生應(yīng)變機(jī)制控制,這兩類合金在磁控功能行為方面各具特色,成為各國(guó)材料學(xué)家和物理學(xué)家競(jìng)相研究的重點(diǎn)之一。
Ni-Mn-Ga磁驅(qū)動(dòng)相變合金有5個(gè)重要的溫度參數(shù),分別為:居里溫度(Curie Temperature,Tc)、馬氏體轉(zhuǎn)變開(kāi)始溫度(Ms)、馬氏體轉(zhuǎn)變結(jié)束溫度(Mf)、奧氏體轉(zhuǎn)變開(kāi)始溫度(As)和奧氏體轉(zhuǎn)變結(jié)束溫度(Af)。居里溫度Tc,是指有序的鐵磁相(Ferromagnetic Phase)向無(wú)序的順磁相(Paramagnetic Phase)轉(zhuǎn)變的溫度[14]。Ni-Mn-Ga合金的 Tc點(diǎn)與化學(xué)成分相關(guān),約在380 K附近[15-21],其相互關(guān)系如圖1所示[17]。在各成分中,標(biāo)準(zhǔn)化學(xué)計(jì)量比Ni2MnGa合金的母相飽和磁化強(qiáng)度最大,約為65 emu/g[17]。Ni-Mn-Ga合金母相磁性主要是由Mn原子提供。從中子粉末衍射數(shù)據(jù)得出,300 K時(shí),Ni2MnGa 合金每個(gè) Mn 原子磁距為 2.4 μB[22]。
化學(xué)成分對(duì)Ni-Mn-Ga合金馬氏體相變溫度及馬氏體結(jié)構(gòu)的影響遠(yuǎn)比對(duì)Tc的影響大的多。通過(guò)調(diào)整成分配比,馬氏體轉(zhuǎn)變開(kāi)始溫度(Ms)可在500 K到100 K范圍變化[15-24]。Ms與成分配比之間經(jīng)驗(yàn)公式[24]為:
式中元素含量均為原子百分?jǐn)?shù)。
圖1 Ni-Mn-Ga合金居里溫度與化學(xué)成分關(guān)系示意圖Fig.1 Relationship between Curie temperature and chemical composition in Ni-Mn-Ga alloy
Ni-Mn-Ga合金的磁控功能行為與居里溫度及馬氏體相變溫度密切相關(guān)。通過(guò)調(diào)整合金化學(xué)成分配比,整合合金居里溫度和馬氏體相變溫度間關(guān)系,以期達(dá)到優(yōu)化材料性能的目的。Ni-Mn-Ga合金功能相圖如圖2所示[25]。圖中條紋狀陰影部分的合金,電子原子比(electron/atom ratio)在7.3至7.8之間;虛線所圍區(qū)域合金具有可逆的馬氏體相變功能;灰色區(qū)域?yàn)殍F磁相;在黑色區(qū)域中,鐵磁相的飽和磁化強(qiáng)度最高。某些成分的Ni-Mn-Ga合金在室溫表現(xiàn)出了優(yōu)異的磁控功能行為[10-11,20],具有潛在實(shí)際應(yīng)用價(jià)值。
圖2 Ni-Mn-Ga合金功能相圖Fig.2 Functional phase diagram in Ni-Mn-Ga alloy system
2.2.1 母相
Ni-Mn-Ga合金屬于Heusler合金系列。其有序母相具有L21面心立方結(jié)構(gòu),空間群為225號(hào),F(xiàn)mm。晶格參數(shù) a0約為 0.58 nm[22,26]。標(biāo)準(zhǔn)化學(xué)計(jì)量比 Ni2MnGa合金,Ni原子占據(jù)8c的位置,Mn原子與Ga原子分別獨(dú)立占據(jù)4b和4a的等效位置,如表1所示[22,26]。
表1 Ni-Mn-Ga合金母相原子占位Table 1 Atomic positions of Ni-Mn-Ga alloy in the parent phase
2.2.2 馬氏體相
馬氏體相變過(guò)程中,由于Bain畸變,試樣晶體學(xué)對(duì)稱性降低。Ni-Mn-Ga合金低溫馬氏體相晶體結(jié)構(gòu)跟成分、溫度密切相關(guān)。按基元單胞分類,在Ni-Mn-Ga合金體系的馬氏體中發(fā)現(xiàn)了體心的四方(Tetragonal)結(jié)構(gòu)、正交(Orthorhombic)結(jié)構(gòu)、單斜(Monoclinic)結(jié)構(gòu)等晶體結(jié)構(gòu)。
馬氏體不但具有多種晶體結(jié)構(gòu),而且還具有不同調(diào)制周期的 超 級(jí) 晶胞。在 Ni49.6Mn29.2Ga21.2(Ms=303 K)[15],Ni50.3Mn26.0Ga23.7(Ms=247 K)[27],Ni1.95Mn1.19Ga0.86(Ms=331 K)[28]等成分中發(fā)現(xiàn)了5層調(diào)制結(jié)構(gòu)(10M);在 Ni48.8Mn31.4Ga19.8(Ms=337 K)[15], Ni48Mn30Ga22(Ms=269 K)[34],Ni54.3Mn20.5Ga25.2(Ms=276 K)[27]等成分中發(fā)現(xiàn)了 7 層 調(diào) 制 結(jié) 構(gòu) (14M);在 Ni45.7Mn37.2Ga17.1(Ms=390 K)[27],Ni53Mn25Ga22(Ms=386 K)[29]等成分中發(fā)現(xiàn)了非調(diào)制四方結(jié)構(gòu)(NM)。
調(diào)制結(jié)構(gòu)、非調(diào)制結(jié)構(gòu)與母相L21面心立方結(jié)構(gòu)晶體學(xué)關(guān)系如圖3所示[22]。調(diào)制結(jié)構(gòu)是在母相(110)C面沿[10]C方向進(jìn)行多層調(diào)制。Ge等[30]利用高分辨電子顯微鏡發(fā)現(xiàn),Ni48.9Mn30.8Ga20.3和 Ni49.5Mn28.6Ga21.9合金中不但存在5層調(diào)制結(jié)構(gòu),還存在7層,10層等不同周期的調(diào)制結(jié)構(gòu)。多種調(diào)制周期同時(shí)存在與材料內(nèi)部缺陷應(yīng)力等因素有關(guān)。該成分馬氏體顯微結(jié)構(gòu)由微米級(jí)孿晶構(gòu)成。Righi等[28]利用粉末 XRD 技術(shù)證明 Ni1.95Mn1.19Ga0.86合金為公度(Commensurate)5層調(diào)制結(jié)構(gòu),其調(diào)制矢量為q=0.398 6(5)c*;Ni2MnGa合金為非公度(Incommensurate)5層調(diào)制結(jié)構(gòu),其調(diào)制矢量為q=0.4248(2)c*。Richard等[31]發(fā)現(xiàn)正交結(jié)構(gòu)馬氏體的相變區(qū)間(Ms-Mf)要比四方結(jié)構(gòu)的寬,這是由于馬氏體為正交結(jié)構(gòu)的相變應(yīng)變(5%-6%)比馬氏體為四方結(jié)構(gòu)的相變應(yīng)變(4%)大而引起的。Mogylnyy等[32]通過(guò) XRD方法證明了Ni1.96Mn1.18Ga0.865 層調(diào)制結(jié)構(gòu)馬氏體中同時(shí)存在 3 種孿晶關(guān)系。Wedel等[33]利用TEM在同一樣品不同溫度下分別發(fā)現(xiàn)了5層以及7層調(diào)制結(jié)構(gòu),并且7層結(jié)構(gòu)出現(xiàn)的溫度要比5層結(jié)構(gòu)的溫度低。
圖3 母相L21面心立方結(jié)構(gòu)(001)投影圖:(a)L21晶胞,(b)體心四方晶胞,(c)~(d)正交結(jié)構(gòu)多層調(diào)制晶胞Fig.3 Projection on(001)of the ideal L21Heusler alloy structure:(a)the L21cell,(b)the body centered tetragonal unit cell,and(c)~(d)the two orthorhombic super-cells
在馬氏體相變之前,一些合金中發(fā)現(xiàn)預(yù)馬氏體相變(Pre-martensitic Phase Transition)[34-37]。預(yù)馬氏體相變表現(xiàn)為反常的[ζζ0]TA2聲子軟化(Phonon Softening)和形成平行{110}晶面間距幾個(gè)納米的條紋狀結(jié)構(gòu)(Tweed Microstructure)。Ni-Mn-Ga合金的預(yù)馬氏體相變受到了廣泛的關(guān)注。第一原理模擬[38]和基于朗道理論(Landau Theory)的維象模型(Phenomenological Model)[39]指出,預(yù)馬氏體相變是一級(jí)相變,由磁彈交互作用(Magnetoelastic Interaction)驅(qū)動(dòng)的。預(yù)馬氏體相變溫度可以由磁場(chǎng)或者靜水壓力場(chǎng)調(diào)節(jié),表現(xiàn)出一級(jí)相變的本質(zhì)[39-41]。Ni-Mn-Ga合金預(yù)馬氏體相變表現(xiàn)出很多奇特的物理性能。紫外光電譜儀(Ultraviolet Photoelectron Spectroscopy,UPS)實(shí)驗(yàn)研究了預(yù)馬氏體相變的電子結(jié)構(gòu)變化,發(fā)現(xiàn)了費(fèi)米能級(jí)(Fermi Level)以下的一個(gè)偽能隙(Pseudogap)[42]。非彈性中子散射(Inelastic Neutron Scattering)實(shí)驗(yàn)發(fā)現(xiàn)Ni-Mn-Ga合金預(yù)馬氏體相變時(shí),在波失量ζ約為1/3處[ζζ0]TA2聲子不完全軟化(Incomplete Softening)[43-44]。電子[45-46]、中子[22]及 XRD[47]發(fā)現(xiàn)了一些保持立方結(jié)構(gòu)晶體學(xué)對(duì)稱性的弱斑點(diǎn)或者弱峰。這些斑點(diǎn)或者峰的相對(duì)衍射矢量ζ為(1/3,1/3,0)。高分辨透射電子顯微鏡(High Resolution Transmission Electron Microscopy,HRTEM)在預(yù)馬氏體相中觀測(cè)到微米級(jí)調(diào)制疇結(jié)構(gòu)[44]。
1996年,Ullakko等[48]提出一種在大磁各向異性的鐵磁性形狀記憶合金中獲取巨磁感生應(yīng)變的一種機(jī)制。該機(jī)制指出,巨磁感生應(yīng)變可以通過(guò)磁場(chǎng)誘發(fā)鐵磁孿晶變體擇優(yōu)取向獲得。同年,Ullakko等[9]在 265 K,Ni2MnGa單晶四方馬氏體中,636 696 A/m(8 kOe)磁場(chǎng)強(qiáng)度下發(fā)現(xiàn)了0.2%的磁感生應(yīng)變。2000年,Murray等[10]在室溫下,非化學(xué)計(jì)量比 Ni47.4Mn32.1Ga20.5單晶 5層調(diào)制馬氏體中,約397 935 A/m(5 kOe)磁場(chǎng)強(qiáng)度,1 MPa外力協(xié)助下,發(fā)現(xiàn)了6%的磁感生應(yīng)變。2002年,Sozinov 等[11]在室溫下 Ni48.8Mn29.7Ga21.5單晶 7 層調(diào)制馬氏體中,795 780 A/m(10 kOe)磁場(chǎng)強(qiáng)度下,發(fā)現(xiàn)了9.5%的磁感生應(yīng)變。
馬氏體的晶體結(jié)構(gòu)直接影響材料的磁感生應(yīng)變功
Ni-Mn-Ga磁驅(qū)動(dòng)相變合金產(chǎn)生的磁感生應(yīng)變是通過(guò)相鄰孿晶變體孿晶界移動(dòng)產(chǎn)生的。如果磁場(chǎng)下相鄰孿晶變體的磁晶各向異性能(Magnetocrystalline Anisotropy Energy,MAE)Ku,大于這兩個(gè)孿晶變體間孿晶界移動(dòng)所需能量,那么磁場(chǎng)占優(yōu)孿晶變體就會(huì)以消耗相鄰孿晶變體為代價(jià)生長(zhǎng)[50]。這樣便產(chǎn)生宏觀變形。
表2 Ni-Mn-Ga單晶參數(shù)Table 2 Parameters for Ni-Mn-Ga single crystals
磁晶各向異性能最大值為磁場(chǎng)分別平行和垂直單變體馬氏體易磁化軸(Easy-Axis)時(shí),達(dá)到飽和磁化強(qiáng)度后,兩磁化強(qiáng)度包圍的面積,如圖4所示[10,50]。圖4中左圖為單變體馬氏體示意圖。H∥和H⊥分別代表施加磁場(chǎng)方向平行和垂直于單變體馬氏體易磁化軸。從圖中可以看出,磁晶各向異性能Ku,受限于飽和磁化強(qiáng)度Ms。換句話說(shuō),如果試樣達(dá)到飽和磁化強(qiáng)度,即便再增加磁場(chǎng),磁晶各向異性能也不會(huì)增加。磁晶各向異性能是取向相關(guān)的,因此磁感生應(yīng)變也是取向相關(guān)的。磁感生應(yīng)變達(dá)到最大值時(shí),試樣變?yōu)閱巫凅w馬氏體狀態(tài),并且其易磁化方向平行于外加磁場(chǎng)方向。
磁場(chǎng)驅(qū)動(dòng)孿晶界移動(dòng)示意圖如圖5所示[51]。圖5中,參數(shù)fi(i=1,2)代表變體①和②的體積分?jǐn)?shù)。在無(wú)外力作用下,馬氏體變體體積分?jǐn)?shù)f1=f2=1/2,稱之為平衡態(tài)。δf=f1-1/2代表孿晶界移動(dòng)導(dǎo)致的馬氏體變體體積分?jǐn)?shù)偏離平衡態(tài)的程度。兩相鄰孿晶自由能包括塞曼能、磁晶各向異性能、內(nèi)部彈性能、外力能等項(xiàng)[52]。通過(guò)孿晶界的移動(dòng),材料整體自由能最小化。獲得大磁感生應(yīng)變所需的條件是:大磁晶各向異性,大的飽和磁化強(qiáng)度和小的孿晶界移動(dòng)應(yīng)力閾值[51]。
圖4 磁場(chǎng)分別平行和垂直于Ni-Mn-Ga單變體馬氏體易磁化軸時(shí)試樣磁化強(qiáng)度隨磁場(chǎng)強(qiáng)度變化的示意圖Fig.4 Field dependence of magnetization in singlevariant martensitic Ni-Mn-Ga crystal with field applied parallel and perpendicular to easy-axis
Ni-Mn-Ga合金具有相變超彈性行為。Martynov等[60]研究了Ni-Mn-Ga(Ms=293 K)單晶在Ms附近不同溫度沿<100>C及<110>C方向單軸壓縮的應(yīng)力應(yīng)變關(guān)系,發(fā)現(xiàn)沿<100>C方向單軸壓縮,可以獲得6%的相變超彈性應(yīng)變;而沿<110>C方向單軸壓縮,只能獲得4%的相變超彈性應(yīng)變。Chernenko等[61]研究了兩種Ni-Mn-Ga單晶沿<100>C及<110>C單軸壓縮相變超彈性行為,實(shí)驗(yàn)發(fā)現(xiàn),應(yīng)力誘發(fā)馬氏體相變的閾值隨著測(cè)試溫度升高成線性關(guān)系。測(cè)試溫度越高于Ms,應(yīng)力閾值就越高。Karaman等[62]研究了溫度場(chǎng)、磁場(chǎng)耦合作用下Ni-Mn-Ga單晶相變超彈性行為,發(fā)現(xiàn)磁場(chǎng)使應(yīng)力誘發(fā)馬氏體相變閾值提高。
相變超彈性的本質(zhì)是應(yīng)力誘發(fā)可逆的馬氏體相變。一些學(xué)者通過(guò)應(yīng)力-應(yīng)變測(cè)試,在Ni2MnGa預(yù)馬氏體(Pre-Martensite,PM)相中發(fā)現(xiàn)兩階段超彈性行為[62-63]。日本大阪大學(xué)(Osaka University)Kakeshita課題組發(fā)現(xiàn)在應(yīng)力作用下,該合金在預(yù)馬氏體相與5層調(diào)制馬氏體相之間存在一個(gè)未知結(jié)構(gòu)的X相[63-64]。本課題組[65]基于同步輻射高能X射線漫散射技術(shù),通過(guò)構(gòu)建三維倒易空間特征斑點(diǎn)漫散射分布,原位研究了Ni2MnGa單晶預(yù)馬氏體相包括調(diào)制疇結(jié)構(gòu)在內(nèi)的晶體結(jié)構(gòu)隨單軸載荷的演化,發(fā)現(xiàn)調(diào)制疇擇優(yōu)再取向?qū)е骂A(yù)馬氏體相超彈性行為的機(jī)制,揭示兩階段變形機(jī)制分別為單軸壓應(yīng)力誘使預(yù)馬氏體調(diào)制疇擇優(yōu)再取向(即X相)和擇優(yōu)取向的預(yù)馬氏體調(diào)制疇向無(wú)公度5層調(diào)制馬氏體相的相變,如圖6所示。
圖6 高能X射線漫散射研究Ni-Mn-Ga合金超彈行為的三維倒易空間特征斑點(diǎn)分布圖Fig.6 Distribution diagram of three-dimensional reciprocal space characteristic spots for super-elasticity behaviours of Ni-Mn-Ga studied by high-energy X-ray diffuse scattering
Ni-Mn-Ga三元合金的系統(tǒng)研究取得了豐碩的成果。在三元塊體多晶和單晶的基礎(chǔ)上,人們尋求第四元素?fù)诫s等新成分和新加工工藝以改善其功能行為以及力學(xué)性能,開(kāi)發(fā)新的物理潛能。三元Ni-Mn-Ga合金,通過(guò)調(diào)節(jié)成分配比,其居里溫度最高只能達(dá)到370 K左右[17]。提高居里溫度,對(duì)制備高溫磁控記憶合金,增加飽和磁化強(qiáng)度,增加磁晶各向異性能至關(guān)重要。人們分別研究了Fe,Cu,Co,稀土Ti等元素?fù)诫s對(duì)材料晶體結(jié)構(gòu),相轉(zhuǎn)變溫度,磁性能等影響。吳光恒課題組[66]發(fā)現(xiàn)用少量Fe元素替代Mn,可以增強(qiáng)磁交互作用,提高居里溫度,降低馬氏體轉(zhuǎn)變溫度。并且,該課題組[67]在Ni-Mn-Fe-Ga薄帶中發(fā)現(xiàn)反?;魻栃?yīng)。Glavatskyy等[68]在Ni-Mn-Ga-Cu單晶中獲得了4%磁感生應(yīng)變。蔣成保課題組[69]通過(guò)選取合適的元素配比,成功制備出馬氏體相為順磁性,母相為鐵磁性的Ni-Mn-Ga-Cu合金。本課題組[70]發(fā)現(xiàn)適當(dāng)摻雜Co元素可以提高合金居里溫度,改善合金力學(xué)性能。吳光恒課題組[71]在Co摻雜Ni-Mn-Ga合金中發(fā)現(xiàn)由磁場(chǎng)驅(qū)動(dòng)的可逆馬氏體相變。蔡偉課題組[72]研究了稀土Dy元素對(duì)合金的影響,發(fā)現(xiàn)Dy元素可以顯著提高合金的馬氏體相變溫度,Dy摻雜對(duì)合金的晶體結(jié)構(gòu)影響不大。該課題組[73]還研究了Ti摻雜對(duì)Ni-Mn-Ga合金機(jī)械性能的影響,發(fā)現(xiàn)Ni3Ti顆粒析出產(chǎn)生強(qiáng)化,提高了材料的斷裂韌性。
對(duì)于Ni-Mn-Ga體系合金,不僅制備了塊狀材料,而且應(yīng)用新工藝制備了薄帶,粉體顆粒,納米顆粒,薄膜,多孔泡沫等。Rao等[74]用快速凝固的方法制備出Ni-Mn-Ga合金薄帶,并對(duì)其在結(jié)構(gòu)轉(zhuǎn)變,微觀組織,磁熱等方面進(jìn)行了研究。Solomon等[75-76]以液氬、液氮為電介質(zhì)用電火花腐蝕的方法,制備了Ni-Mn-Ga微米級(jí)別球形顆粒。在液氬中制備的小球?yàn)閷?shí)心,液氮中制備的小球?yàn)榭招?。?jīng)過(guò)973 K,5 h退火后,顆粒展示出熱彈馬氏體相變特征。本課題組[77-78]利用高能球磨及后續(xù)退火的方法,成功制備出Ni-Mn-Ga合金的納米顆粒,并通過(guò)高能X射線詳細(xì)研究了納米顆粒的相變特征。除了制備納米/微米級(jí)顆粒以外,國(guó)內(nèi)和國(guó)外的學(xué)者使用Si襯底濺射和分子束外延生長(zhǎng)的方法,分別制備出Ni-Mn-Ga薄膜,展示出良好的馬氏體相變行為以及磁感生應(yīng)變功能[79-81]。Dunand等[82-83]在特殊工藝制備的孔洞多晶Ni-Mn-Ga中,獲得了0.115%的磁感生應(yīng)變,比相應(yīng)的無(wú)孔洞多晶材料,磁感生應(yīng)變提高了近50倍。
Ni-Mn-Ga合金的磁感生應(yīng)變功能主要由磁晶各向異性能控制的馬氏體孿晶變體磁場(chǎng)下?lián)駜?yōu)取向所致。由此機(jī)制獲得磁感生應(yīng)變的應(yīng)力輸出較小,約為2~5 MPa[84]。近期日本東京大學(xué) Kainuma 等[13]在 Ni-Co-Mn-In合金體系中發(fā)現(xiàn)一種具有形狀記憶功能和大輸出應(yīng)力的新型磁驅(qū)動(dòng)相變合金。該結(jié)果在《NATURE》雜志報(bào)道后,引起廣泛關(guān)注。報(bào)道顯示:在8 T磁場(chǎng)下3 mm形變單晶內(nèi)可產(chǎn)生近3%的磁感生恢復(fù)應(yīng)變。之后Ni-Mn-X(X:In,Sn,Sb)等系列磁驅(qū)動(dòng)相變合金陸續(xù)被報(bào)道[85-87]。
以往研究的磁驅(qū)動(dòng)相變合金材料(如Ni-Mn-Ga基合金系)的馬氏體相為鐵磁相,其磁感生應(yīng)變效應(yīng)源自馬氏體變體在磁場(chǎng)誘發(fā)下發(fā)生變體重組。外磁場(chǎng)誘發(fā)的馬氏體變體重組,即使試樣達(dá)到飽和磁化強(qiáng)度,其磁晶各向異性能導(dǎo)致的磁感生應(yīng)變的應(yīng)力輸出也僅有幾個(gè)MPa。與Ni-Mn-Ga基合金磁感生應(yīng)變機(jī)理不同,Ni-Mn-X基合金系,尤其是加Co提高居里溫度的合金產(chǎn)生的磁感生應(yīng)變是通過(guò)磁場(chǎng)誘發(fā)從反鐵磁(或順磁)馬氏體相轉(zhuǎn)變成鐵磁母相的逆馬氏體相變產(chǎn)生的,其理論應(yīng)力輸出可達(dá)100 MPa。
本課題組[88-89]利用高能XRD技術(shù),原位研究多場(chǎng)(溫度場(chǎng),磁場(chǎng),應(yīng)力場(chǎng))耦合作用下,Ni-Co-Mn-In合金在晶體結(jié)構(gòu)、微觀結(jié)構(gòu)等方面的演變,實(shí)驗(yàn)證實(shí),275 K時(shí)在該體系合金中3 T磁場(chǎng)強(qiáng)度,可以誘發(fā)馬氏體相向母相的轉(zhuǎn)變,并且徹去磁場(chǎng)后,試樣恢復(fù)母相狀態(tài),如圖7所示。這說(shuō)明在275 K時(shí),磁場(chǎng)對(duì)Ni-Co-Mn-In合金可以誘發(fā)一個(gè)可逆的馬氏體相-母相的轉(zhuǎn)變。
圖7 275 K時(shí)Ni45Co5Mn36.6In13.4塊體多晶在不同磁場(chǎng)強(qiáng)度下母相和馬氏體相的二維XRD花樣Fig.7 XRD patterns of the parent austenite phase and the martensite in the polycrystalline Ni45Co5Mn36.6In13.4alloy collected at 275 K
Kainuma等[13]通過(guò)理論計(jì)算指出,Ni-Co-Mn-In合金中磁場(chǎng)誘發(fā)馬氏體相到母相的逆馬氏體相變過(guò)程中,應(yīng)力輸出可達(dá)100 MPa。我們[88-89]使用高能X射線原位研究50 MPa壓應(yīng)力狀態(tài)下,磁場(chǎng)誘發(fā)試樣相變行為。
利用可放入到超導(dǎo)磁體內(nèi)的加載臺(tái)(圖8a)對(duì)Ni-Co-Mn-In多晶樣品施加50 MPa的單軸壓縮應(yīng)力。275 K,50 MPa條件下Ni-Co-Mn-In多晶試樣的X射線二維衍射花樣隨磁場(chǎng)強(qiáng)度變化如圖8所示。從圖中可以看出,5 T磁場(chǎng)強(qiáng)度可以完全誘發(fā)馬氏體相向母相的轉(zhuǎn)變。所需磁場(chǎng)值比無(wú)壓縮應(yīng)力時(shí)的3 T提高了2 T,這說(shuō)明單軸壓應(yīng)力使磁場(chǎng)誘發(fā)逆馬氏體相變的閾值提高了。從另一個(gè)角度來(lái)說(shuō),外加應(yīng)力使馬氏體相更加穩(wěn)定。將磁場(chǎng)降低到0 T,試樣又從母相轉(zhuǎn)變?yōu)轳R氏體相。這說(shuō)明,在50 MPa壓應(yīng)力作用下,通過(guò)施加磁場(chǎng)依然可以獲得可逆的相變。
由溫度控制的馬氏體相變所產(chǎn)生的馬氏體變體內(nèi)部存在一些不可調(diào)和的彈性應(yīng)力。這些彈性應(yīng)力來(lái)自不同變體族間的相互作用。因此需要一個(gè)平衡應(yīng)力,使各個(gè)變體達(dá)到自洽穩(wěn)定狀態(tài)。我們發(fā)現(xiàn),Ni-Co-Mn-In合金中一個(gè)新的微觀“訓(xùn)練”機(jī)制,即通過(guò)在奧氏體轉(zhuǎn)變開(kāi)始溫度以下一定溫度范圍內(nèi),反復(fù)升降磁場(chǎng),可減少馬氏體變體間微觀應(yīng)力,以獲得自洽穩(wěn)定的馬氏體狀態(tài)[88-89]。
圖8 布置在超導(dǎo)磁體內(nèi)部的壓縮裝置示意圖(a)和275 K時(shí)Ni45Co5Mn36.6In13.4塊體多晶在50 MPa單軸壓縮應(yīng)力作用下施加不同磁場(chǎng)強(qiáng)度時(shí)的二維XRD花樣(b~i)Fig.8 Schematic illustration of the loading device aligned in a superconducting magnet(a)and XRD patterns in the polycrystallineNi45Co5Mn36.6In13.4alloy collected at 275 K with a uniaxial compression stress of 50 MPa(b ~ i)
在磁驅(qū)動(dòng)相變合金中發(fā)現(xiàn)磁感生應(yīng)變,因其具有作為智能材料的潛在應(yīng)用價(jià)值而被廣泛關(guān)注。獲得磁感生應(yīng)變有兩種眾所周知的機(jī)制。一種是鐵磁馬氏體變體在磁場(chǎng)驅(qū)動(dòng)下?lián)駜?yōu)取向,如 Ni-Mn-Ga[10-11],或 Fe-Pd[90];另一種是磁場(chǎng)誘發(fā)從反鐵磁(或順磁)相向鐵磁相轉(zhuǎn)變的 (逆)馬 氏 體 相 變, 如 Co-Ni-Al[91], 或 Ni-Co-Mn-In[13,88]。
鐵磁體本身具有大的磁化系數(shù),一個(gè)小的磁場(chǎng)就能產(chǎn)生較大的磁晶各向異性能。而反鐵磁體的磁化系數(shù)很小,小到可以跟塑料或者紙相比[92-93]。雖然反鐵磁體的磁化系數(shù)相對(duì)較低,但是通過(guò)X射線成像法在KNiF3和KCoF3反鐵磁化合物中,觀察到磁場(chǎng)可引起磁疇界(Magnetic Domain Wall)的移動(dòng)[94]。Lavrov 等[92]使用光學(xué)顯微鏡在經(jīng)典高溫超導(dǎo)體LaSrCuO中發(fā)現(xiàn)14 T磁場(chǎng)可以使反鐵磁孿晶界移動(dòng),并且通過(guò)XRD獲得的晶格參數(shù)計(jì)算出磁場(chǎng)可以使試樣沿特定方向收縮約1%。徐祖耀課題組[95]在Mn-Fe-Cu反鐵磁多晶中測(cè)試出1.6%的磁感生應(yīng)變,并將其歸因于磁場(chǎng)誘發(fā)孿晶界的移動(dòng)。日本大阪大學(xué)Kakeshita等[96]使用光學(xué)顯微鏡直接觀察到磁場(chǎng)可誘使CoO反鐵磁變體重新排布。磁場(chǎng)誘發(fā)孿晶界的移動(dòng)使磁場(chǎng)占優(yōu)的反鐵磁孿晶以消耗其它孿晶為代價(jià)優(yōu)先長(zhǎng)大,因而產(chǎn)生宏觀磁感生應(yīng)變。本課題組[97]應(yīng)用同步輻射高能XRD原位實(shí)驗(yàn)方法,在CoO反鐵磁單晶中發(fā)現(xiàn)強(qiáng)磁場(chǎng)作用下易磁化軸平行于磁場(chǎng)方向的馬氏體變體體積減小,揭示了磁場(chǎng)誘導(dǎo)反鐵磁馬氏體變體重新排布的晶體學(xué)規(guī)律。
雖然各國(guó)科學(xué)家在磁驅(qū)動(dòng)相變合金材料領(lǐng)域開(kāi)展相關(guān)研究已經(jīng)多年,取得了很多令人鼓舞的研究成果,但目前磁驅(qū)動(dòng)相變合金材料應(yīng)用和發(fā)展遭遇了兩個(gè)瓶頸:①利用變體選擇機(jī)理捕獲應(yīng)變的Ni-Mn-Ga材料體系輸出應(yīng)力只有2~5 MPa,能量密度與Terfenol-D材料相比并無(wú)明顯優(yōu)勢(shì);②磁驅(qū)動(dòng)相變應(yīng)變輸出的能量密度雖高,但所需磁場(chǎng)偏高,致使這類材料目前難以付諸實(shí)用。
最近西安交通大學(xué)任曉兵課題組通過(guò)跨學(xué)科對(duì)比研究,從實(shí)驗(yàn)上發(fā)現(xiàn)基于鐵電、鐵磁和鐵電物理機(jī)制的智能材料,如壓電陶瓷、磁致伸縮材料、形狀記憶合金等,不僅在序參量層次是平行的,而且在疇結(jié)構(gòu)到宏觀性能等各個(gè)層次上也是平行的,表明具有共同的物理基礎(chǔ)。由此提出基于準(zhǔn)同型相界(MPB)結(jié)構(gòu)失穩(wěn)和鐵性玻璃這一共同物理基礎(chǔ)的先進(jìn)智能材料設(shè)計(jì)理念。
我們認(rèn)為,今后磁驅(qū)動(dòng)相變合金材料的研究主攻方向?yàn)?在磁性MPB和馬氏體MPB相互耦合,自旋玻璃和應(yīng)變玻璃相互耦合的新物理環(huán)境中,通過(guò)探索多場(chǎng)作用下由于熱力學(xué)失穩(wěn)所帶來(lái)的晶體結(jié)構(gòu)、應(yīng)變疇及磁疇的演化規(guī)律,認(rèn)識(shí)晶格和各種微結(jié)構(gòu)單元與材料宏觀性能的相互關(guān)聯(lián)性,實(shí)現(xiàn)材料的優(yōu)化設(shè)計(jì)和性能提高。
References
[1]Buehler W J,Gilfrich J V,Wiley R C.Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys Near Composition TiNi[J].J Appl Phys,1963,34(5):1 475-1 477.
[2]http://www.sic.cas.cn/kxcb/kpwz/200908/t20090827_2448726.html,形狀記憶合金——“永不忘本”的神奇功能材料,中國(guó)科學(xué)院上海硅酸鹽研究所.
[3]Yang Dazhi(楊大智).Intelligent Materials and System(智能材料與智能系統(tǒng))[M],Tianjin:Tianjin University Press,2000,104-140.
[4]Chang L C,Read T A.The Gold-Cadmium Beta Phase[J].Trans AIME,1951,189:47-52.
[5]Lee I C,Chung I S.The Origin of Reverse Shape Memory Effect in a Cu-Zn-Al Alloy[J].Scr Metall,1989,23(2):161-166.
[6]Clark A E.Ferromagnetic Materials[M].Amsterdam:North-Holland,1981.
[7]Gao Zhiyong(高智勇),Wang Zhong(王 中),Zheng Yufeng(鄭玉峰),etal.磁性形狀記憶材料Ni-Mn-Ga研究現(xiàn)狀[J].Functional Materials(功能材料),2001,32(1):22-26.
[8]Ullakko K,Huang J K,Kokorin V V,etal.Magnetically Controlled Shape Memory Effect in Ni2MnGa intermetallics[J].Scr Mater,1997,36(10):1 133-1 138.
[9]Ullakko K,Huang J K,Kantner C,etal.Large Magnetic-Field-Induced Strains in Ni2MnGa Single Crystals[J].Appl Phys Lett,1996,69(13):1 966-1 968.
[10]Murray S J,Marioni M,Allen S M,etal.6%Magnetic-Field-Induced Strain by Twin-Boundary Motion in Ferromagnetic Ni-Mn-Ga[J].Appl Phys Lett,2000,77(6):886-888.
[11]Sozinov A,Likhachev A A,Lanska N,etal.Giant Magnetic-Field-Induced Strain in NiMnGa Seven-Layered Martensitic Phase[J].Appl Phys Lett,2002,80(10):1 746-1 748.
[12]Wang W H,Wu G H,Chen J L,etal.Intermartensitic Transformation and Magnetic-Field-Induced Strain in Ni52Mn24.5Ga23.5Single Crystals[J].Appl Phys Lett,2001,79(8):1 148-1 150.
[13]Kainuma R,Imano Y,Ito W,etal.Magnetic-Field-Induced Shape Recovery by Reverse Phase Transformation[J].Nature(London),2006,439(7079):957-960.
[14]Kittel C.Introduction to Solid State Phasics(Seventh Edition)[M].United States:John Wiley and Sons,Inc,1996,415-484.
[15]Lanska N,S?derberg O,Sozinov A,etal.Composition and Temperature Dependence of the Crystal Structure of Ni-Mn-Ga Alloys[J].J Appl Phys,2004,95(12):8 074-8 078.
[16]Albertini F,Pareti L,Paoluzi A,etal.Composition and Temperature Dependence of the Magnetocrystalline Anisotropy in Ni2+xMn1+yGa1+z(x+y+z=0)Heusler Alloys[J].Appl Phys Lett,2002,81(21):4 032-4 034.
[17]Jin X,Marioni M,Bono D,etal.Empirical Mapping of Ni-Mn-Ga Properties with Composition and Valence Electron Concentration[J].J Appl Phys,2002,91(10):8 222-8 224.
[18]Chernenko V A,Cesari E,Kokorin V V,etal.The Development of New Ferromagnetic Shape-Memory Alloys in Ni-Mn-Ga System[J].Scr Metall Mater,1995,33(8):1 239-1 244.
[19]Vasil'ev A N,Bozhko A D,Khovailo V V,etal.Structural and Magnetic Phase Transitions in Shape-Memory Alloys Ni2+xMn1-xGa[J].Phy Rev B,1999,59(2):1 113-1 120.
[20]Ullakko K,Ezer Y,Sozinov A,etal.Magnetic-Field-Induced Strains in Polycrystalline Ni-Mn-Ga at Room Temperature[J].Scr Mater,2001,44(3):475-480.
[21]Chernenko V A.Compositional Instability of Beta-Phase in Ni-Mn-Ga alloys[J].Scr Mater,1999,40(5):523-527.
[22]Brown P J,Crangle J,Kanomata T,etal.The Crystal Structure and Phase Transitions of the Magnetic Shape Memory Compound Ni2MnGa[J].J Phys:Condens Matter,2002,14(43):10 159-10 171.
[23]Jiang C B,Muhammad Y,Deng L F,etal.Composition Dependence on the Martensitic Structures of the Mn-rich NiMnGa Alloys[J].Acta Mater,2004,52(9):2 779-2 785.
[24]Wu S K,Yang S T.Effect of Composition on Transformation Temperatures of Ni-Mn-Ga Shape Memory Alloys[J].Mat Lett,2003,57(26-27):4 291-4 296.
[25]Takeuchi I,F(xiàn)amodu O O,Read J C,etal.The identification of Novel Compositions of Ferromagnetic Shape-Memory Alloys Using Composition Spreads[J].Nature Materials,2003,2(3):180-184.
[26]Cong D Y,Wang Y D,Zetterstr?m P,etal.Crystal Structures and Textures of Hhot Forged Ni48Mn30Ga22Alloy Investigated by Neutron Diffraction Technique[J].Mater Sci Tech,2005,21(12):1 412-1 416.
[27]Pons J,Chernenko V A,Santamarta R,etal.Crystal Structure of the Martensitic Phases in Ni-Mn-Ga Shape Memory Alloys[J].Acta Mater,2000,48(12):3 027-3 038.
[28]Righi L,Albertini F,Pareti L,etal.Commensurate and Incommensurate“5M”Modulated Crystal Structures in Ni-Mn-Ga Martensitic Phases[J].Acta Mater,2007,55(15):5 237-5 245.
[29]Cong D Y,Zetterstr?m P,Wang Y D,etal.Crystal Structure and Phase Transformation in the Ni53Mn25Ga22Shape Memory Alloy from 20 K to 473 K[J].Appl Phys Lett,2005,87(11):111 906(1-3).
[30]Ge Y,Jiang H,Sozinov A,etal.Crystal Structure and Macrotwin Interface of Five-Layered Martensite in Ni-Mn-Ga Magnetic Shape Memory alloy[J].Mater Sci Eng A,2006,438-440:961-964.
[31]Richard M,F(xiàn)euchtwanger J,Schlagel D,etal.Crystal Structure and Transformation Behavior of Ni-Mn-Ga Martensites[J].Scr Mater,2006,54(10):1 797-1 801.
[32]Mogylnyy G,Glavatskyy I,Glavatska N,etal.Crystal Structure and Twinning in Martensite of Ni1.96Mn1.18Ga0.86Magnetic Shape Memory alloy[J].Scr Mater,2003,48(10):1 427-1 432.
[33]Wedel B,Suzuki M,Murakami Y,etal.Low Temperature Crystal Structure of Ni-Mn-Ga Alloys[J].J Alloys Comp,1999,290(1-2):137-143.
[34]Shapiro S M,Larese J Z,Noda Y,etal.Neutron Scattering Study of Premartensitic Behavior in Ni-Al Alloys[J].Phys Rev Lett,1986,57(25):3 199-3 202.
[35]Otsuka K,Ren X.Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys[J].Prog Mater Sci,2005,50(5):511-678.
[36]Ma?osa L,Zarestky J,Lograsso T,etal.Lattice-Dynamical Study of the Premartensitic State of the Cu-Al-Be Alloys[J].Phys Rev B,1993,48(21):15 708-15 711.
[37]Lloveras P,Castán T,Porta M,etal.Influence of Elastic Anisotropy on Structural Nanoscale Textures[J].Phys Rev Lett,2008,100(16):165 707(1-4).
[38]Uijttewaal M A,Hickel T,Neugebauer J,etal.Understanding the Phase Transitions of the Ni2MnGa Magnetic Shape Memory System from First Principles[J].Phys Rev Lett,2009,102(3):035 702(1-4).
[39]Planes A,Obradó E,Gonzàlez-Comas A,etal.Premartensitic Transition Driven by Magnetoelastic Interaction in bcc Ferromagnetic Ni2MnGa[J].Phys Rev Lett,1997,79(20):3 926-3 929.
[40]Barandiaran J M,Chernenko V A,Lazpita P,etal.Magnetic Field Effect on Premartensitic Transition in Ni-Mn-Ga Alloys[J].Appl Phys Lett,2009,94(5):051 909(1-3).
[41]Chernenko V A,Besseghini S,Kanomata T,etal.Effect of High Hydrostatic Pressure on Premartensitic Transition in Ni2MnGa[J].Scripta Mater,2006,55(4):303-306.
[42]Opeil C P,Mihaila B,Schulze R K,etal.Combined Experimental and Theoretical Investigation of the Premartensitic Transition in Ni2MnGa[J].Phys Rev Lett,2008,100(16):165 703(1-4).
[43]Zheludev A,Shapiro S M,Wochner P,etal.Phonon Anomaly,Central Peak,and Microstructures in Ni2MnGa[J].Phys Rev B,1995,51(17):11 310-11 314.
[44]Zheludev A,Shapiro S M,Wochner P,etal.Precursor Effects and Premartensitic Transformation in Ni2MnGa[J].Phys Rev B,1996,54(21):15 045-15 050.
[45]Kokorin V V,Chernenko V A,Cesari E,etal.Pre-Martensitic State in Ni-Mn-Ga Alloys[J].J Phys:Condens Matter,1996,8(35):6 457-6 463.
[46]Chernenko V A,Pons J,Segui C,etal.Premartensitic Phenomena and Other Phase Transformations in Ni-Mn-Ga Alloys Studied by Dynamical Mechanical Analysis and Electron Diffraction[J].Acta Mater,2002,50(1):53-60.
[47]Fritsch G,Kokorin V V,Kempf A.Soft Modes in the Ni2MnGa Single-Crystals[J].J Phys:Condens Matter,1994,6(8):L107-L110.
[48]Ullakko K.Magnetically Controlled Shape Memory Alloys:A New Class of Actuator Materials[J].J Mater Eng Perform,1996,5(3):405-409.
[49]Sozinov A,Likhachev A A,Ullakko K.Crystal Structures and Magnetic Anisotropy Properties of Ni-Mn-Ga Martensitic Phases with Giant Magnetic-Field-Induced Strain[J].IEEE Trans on Magnetics,2002,38(5):2 814-2 816.
[50]Karaca H E,Karaman I,Basaran B,etal.The magnetic Field-Induced Phase Transformation in NiMnCoIn Magnetic Shape-Memory Alloys-A New Actuation Mechanism with Large Work Output[J].Adv Funct Mater,2009,19(7):983-998.
[51]O'Handley R C,Murray S J,Marioni M,etal.Phenomenology of Giant Magnetic-Field-Induced Strain in Ferromagnetic Shape-Memory Materials(Invited)[J].J Appl Phys,2000,87(9):4 712-4 717.
[52]O'Handley R C.Model for Strain and Magnetization in Magnetic Shape-Memory Alloys[J].J Appl Phys,1998,83(6):3 263-3 270.
[53]Aaltio I,Soderberg O,Ge Y L,etal.Twin Boundary Nucleation and Motion in Ni-Mn-Ga Magnetic Shape Memory Material with a Low Twinning Stress[J].Scr Mater,2010,62(1):9-12.
[54]Straka L,Lanska N,Ullakko K,etal.Twin Microstructure Dependent Mechanical Response in Ni-Mn-Ga Single Crystals[J].Appl Phys Lett,2010,96(13),131 903(1-3).
[55]Straka L,Heczko O,Hanninen H.Activation of Magnetic Shape Memory Effect in Ni-Mn-Ga Alloys by Mechanical and Magnetic Treatment[J].Acta Mater,2008,56(19),5 492-5 499.
[56]Chmielus M,Chernenko V A,Knowlton W B,etal.Training,Constraints,and High-Cycle Magneto-Mechanical Properties of Ni-Mn-Ga Magnetic Shape-Memory Alloys[J].Eur Phys J Spec Top,2008,158:79-85.
[57]Chmielus M,Rolfs K,Wimpory R,etal.Effects of Surface Roughness and Training on the Twinning Stress of Ni-Mn-Ga Single Crystals[J].Acta Mater,2010,58(11),3 952-2 962.
[58]Wang Y D,Brown D W,Choo H,etal.Experimental Evidence of Stress-Field-Induced Selection of Variants in Ni-Mn-Ga Ferro-magnetic Shape-Memory Alloys[J].Phys Rev B,2007,75(17):174 404(1-5).
[59]Nie Z H,Peng R L,Johansson S,etal.The Direct Evidence of Detwinning in Polycrystalline Ni-Mn-Ga Ferromagnetic Shape Memory Alloys during Deformation[J].J Appl Phys,2008,104(10):103 519(1-5).
[60]Martynov V V,Kokorin V V.The Crystal Structure of Thermallyand Stress-Induced Martensites in Ni2MnGa Single Crystals[J].J Phys III France,1992,2(5):739-749.
[61]Chernenko V A,L'vov V,Pons J,etal.Superelasticity in High-Temperature Ni-Mn-Ga Alloys[J].J Appl Phys,2003,93(5):2 394-2 399.
[62]Karaman I,Karaca H E,Basaran B,etal.Stress-Assisted Reversible MagneticField-Induced PhaseTransformation in Ni2MnGa Magnetic Shape Memory Alloys[J].Scr Mater,2006,55(4):403-406.
[63]Kim J,F(xiàn)ukuda T,Kakeshita T.A New Phase Induced in Ni2MnGa by Uniaxial Stress[J].Scripta Mater,2006,54(4):585-588.
[64]Kushida H,Terai T,F(xiàn)ukuda T,etal.Neutron Diffraction Study on Stress-Induced X-Phase in Ni2MnGa[J].Scripta Mater,2009,60(4):248-250.
[65]Nie Z H,Ren Y,Wang Y D,etal.Strain-Induced Dimensionality Crossover and Associated Pseudoelasticity in the Premartensitic Phase of the Ni2MnGa[J].Appl Phys Lett,2010,97(17):171 905(1-3).
[66]Wu G H,Wang W H,Chen J L,etal.Magnetic Properties and Shape Memory of Fe-Doped Ni52Mn24Ga24Single Crystals[J].Appl Phys Lett,2002,80(4):634-636.
[67]Zhu Z Y,Or S W,Wu G H.Anomalous Hall Effect in Quarternary Heusler-Type Ni50Mn17Fe8Ga25Melt-Spun Ribbons[J].Appl Phys Lett,2009,95(3):032 503(1-3).
[68]Glavatskyy I,Glavatska N,Dobrinsky A,etal.Crystal Structure and High-Temperature Magnetoplasticity in the New Ni-Mn-Ga-Cu Magnetic Shape Memory Alloys[J].Scr Mater,2007,56(7):565-568.
[69]Jiang C B,Wang J M,Li P P,etal.Search for Transformation from Paramagnetic Martensite to Ferromagnetic Austenite:NiMn-GaCu Alloys[J].Appl Phys Lett,2009,95(1):012 501(1-3).
[70]Cong D Y,Wang S,Wang Y D,etal.Martensitic and Magnetic Transformation in the Ni-Mn-Ga-Co Ferromagnetic Shape Memory Alloys[J].Mater Sci Eng A,2008,473(1-2):213-218.
[71]Yu S Y,Cao Z X,Ma L.Realization of Magnetic Field-Induced Reversible Martensitic Transformation in NiCoMnGa Alloys[J].Appl Phys Lett,2007,91(10):102 507(1-3).
[72]Gao L,Gao Z Y,Cai W,etal.Effect of Rare Earth Dy Addition on Microstructure and Martensitic Transformation of Polycrystalline Ni50Mn29Ga21-xDyxFerromagnetic Shape Memory Alloys[J].Mater Sci Eng A,2006,438-440:1 077-1 080.
[73]Gao Z Y,Dong G F,Cai W,etal.Martensitic Transformation and Mechanical Properties in an Aged Ni-Mn-Ga-Ti Ferromagnetic Shape Memory Alloy[J].J Alloys Comp,2009,481(1-2):44-47.
[74]Rao N V R,Gopalan R,Chandrasekaran V.Microstructure,Magnetic Properties and Magnetocaloric Effect in Melt-Spun Ni-Mn-Ga Ribbons[J].J Alloys Comp,2009,478(1/2):59-62.
[75]Solomon V C,Hong J I,Tang Y.Electron Microscopy Study of Spark-Eroded Ni-Mn-Ga Ferromagnetic Shape-Memory Alloy Particles[J].Scr Mater,2007,56(7):593-596.
[76]Solomon V C,Smith D J,Tang Y,etal.Microstructural Characterization of the Ni-Mn-Ga Ferromagnetic Shape Memory Alloy Powders[J].J Appl Phys,2004,95(11):6 954-6 956.
[77]Wang Y D,Ren Y,Nie Z H,etal.Structural Transition of Ferromagnetic Ni2MnGa Nanoparticles[J].J Appl Phys,2007,101(6):063 530(1-6).
[78]Liu D M,Nie Z H,Liu Y D,etal.New Sequences of phase Transition in Ni-Mn-Ga Ferromagnetic Shape Memory Nanoparticles[J].Metall Mater Trans A,2008,39A(2):466-469.
[79]Patil S I,Tan D,Lofland S E,etal.Ferromagnetic Resonance in Ni-Mn-Ga Films[J].Appl Phys Lett,2002,81(7):1 279-1 281.
[80]Tello P G,Castano F J,O'Handley R C,etal.Ni-Mn-Ga Thin Films Produced by Pulsed Laser Deposition[J].J Appl Phys,2002,91(10):8 234-8 236.
[81]Dong J W,Xie J Q,Lu J,etal.Shape Memory and Ferromagnetic Shape Memory Effects in Single-Crystal Ni2MnGa Thin Films[J].J Appl Phys,2004,95(5):2 593-2 600.
[82]Boonyongmaneerat Y,Chmielus M,Dunand D C,etal.Increasing Magnetoplasticity in Polycrystalline Ni-Mn-Ga by Reducing Internal Constraints through Porosity[J].Phys Rev Lett,2007,99(24):247 201(1-4).
[83]Chmielus M,Zhang X X,Witherspoon C,etal.Giant Magnetic-Field-Induced Strains in Polycrystalline Ni-Mn-Ga Foams[J].Nature Materials,2009,8(11):863-866.
[84]Karaca H E,Karaman I,Basaran B,etal.Magnetic Field and Stress Induced Martensite Reorientation in NiMnGa Ferromagnetic Shape Memory Alloy Single Crystals[J].Acta Mater,2006,54(1):233-245.
[85]Kainuma R,Imano Y,Ito W,etal.Metamagnetic Shape Memory Effect in a Heusler-Type Ni43Co7Mn39Sn11Polycrystalline Alloy[J].Appl Phys Lett,2006,88(19):192 513(1-3).
[86]Oikawa K,Ito W,Imano Y,etal.Effect of Magnetic Field on Martensitic Transition of Ni46Mn41In13Heusler Alloy[J].Appl Phys Lett,2006,88(12):122 507(1-3).
[87]Koyama K,Watanabe K,Kanomata T,etal.Observation of Field-Induced Reverse Transformation in Ferromagnetic Shape Memory Alloy Ni50Mn36Sn14[J].Appl Phys Lett,2006,88(13):132 505(1-3).
[88]Wang Y D,Ren Y,Huang E W,etal.Direct Evidence on Magnetic-Field-Induced Phase Transition in a NiCoMnIn Ferromagnetic Shape Memory Alloy under a Stress Field[J].Appl Phys Lett,2007,90(10):101 917(1-3).
[89]Wang Y D,Huang E W,Ren Y,etal.In Situ High-Energy XRay Studies of Magnetic-Field-Induced Phase Transition in a Ferromagnetic Shape Memory Ni-Co-Mn-In Alloy[J].Acta Mater,2008,56(4):913-923.
[90]Yamamoto T,Taya M.Reversible Strain Induced by Martensite Variant Rearrangement under Magnetic Field and Mechanical Loading of Fe-Pd Single Crystals[J].Appl Phys Lett,2007,90(25):251 905(1-3).
[91]Oikawa K,Wulff L,Iijima T,etal.Promising Ferromagnetic Ni-Co-Al Shape Memory Alloy System[J].Appl Phys Lett,2001,79(20):3 290-3 292.
[92]Lavrov A N,Komiya S,Ando Y.Antiferromagnets-Magnetic Shape-Memory Effects in a Crystal[J].Nature(London),2002,418(6896):385-386.
[93]Lavrov A N,Ando Y,Komiya S,etal.Unusual Magnetic Susceptibility Anisotropy in Untwinned La2-xSrxCuO4Single Crystals in the Lightly Doped Region[J].Phys Rev Lett,2001,87(1):017 007(1-4).
[94]Safa M,Tanner B K.Antiferromagnetic Domain Wall Motion in KNiF3and KCoF3Observed by X-Ray Synchrotron Topography[J].Phil Mag B,1978,37(6):739-750.
[95]Zhang J H,Peng W Y,Hsu T H.The Magnetic Field Induced Strain Without Prestress and with stress in a Polycrystalline Mn-Fe-Cu Antiferromagnetic Alloy[J].Appl Phys Lett,2008,93(12):122 510(1-3).
[96]Kakeshita T,Terai T,F(xiàn)ukuda T.Giant Strain Associated with Microstructure Control by Magnetic Field in Fe-31.2Pd,CoO and Nd0.5Sr0.5MnO3[J].J Magn Magn Mater,2009,321(7):769-772.
[97]Nie Z H,Ren Y,Terai T,etal.Evidence for Preferential Rearrangements of Martensite Variants by Magnetic Field in the Antiferromagnetic CoO Crystal[J].Appl Phys Lett,2009,95(5):051 914(1-3).
Progress of Magnetic Field-Driven Phase Transformation Materials
NIE Zhihua1,WANG Yandong1,LIU Dongmei2
(1.School of Materials Science and Engineering,Beijing Institute of Technology,Beijing 100081,China)
(2.State Key Laboratory for Fabrication and Processing of Nonferrous Metals,General Research Institute for Nonferrous Metals,Beijing 100088,China)
Magnetic field-driven phase transformation material is a class of smart material which combines the functional behaviors of ferroelastic shape memory and magnetostriction.The large magnetic field-induced strain obtained in magnetic field-driven phase transformation materials can be achieved through two mechanisms,which include reorientation of martensitic variants caused by the magnetic field-induced twin boundary motion and shape memory effect via magnetic field-induced first order phase transformation.Heusler-type Ni-Mn-X(X=Ga or In)magnetic field-driven phase transformation alloys are potential candidates for magnetic sensors and actuators,owing to their large magnetic field-induced strain,high energy density and rapid response and so on.The research progresses of magnetic field-driven phase transformation materials,including Ni-Mn-Ga alloys,Ni-Co-Mn-In alloys and antiferromagnets,are summarized.And recent researches from our group are introduced,which are focused on in-situ studies of magnetic field-driven phase transformation materials using high-energy x-ray diffraction and neutron scattering techniques.At last,future trends of magnetic field-driven phase transformation alloy are prospected.
magnetic field-driven phase transformation;magnetic field-induced strain;martensitic transformation;shape memory alloy;super-elasticity
TG139.6
A
1674-3962(2012)03-0015-11
2012-01-07
科技部973計(jì)劃項(xiàng)目(2012CB619405);國(guó)家自然科學(xué)基金面上項(xiàng)目(50971031);國(guó)家自然科學(xué)基金青年基金項(xiàng)目(51001015)
聶志華,男,1982年生,博士
王沿東,男,1966年生,教授,博士生導(dǎo)師