于江,王樹聲
(上海交通大學(xué) 數(shù)學(xué)系,上海 200240)
*Fitz Hugh-Nagumo方程的小振幅行波解
于江,王樹聲
(上海交通大學(xué) 數(shù)學(xué)系,上海 200240)
論文主要討論了Fitz Hugh-Nagumo方程行波解.此時(shí),F(xiàn)itz Hugh-Nagumo系統(tǒng)可以轉(zhuǎn)化為三維非線性常微分方程組.使用中心流形定理、Lyapunov系數(shù)法對(duì)此系統(tǒng)進(jìn)行高維Hopf分支分析,給出了系統(tǒng)具有小振幅的周期解的參數(shù)條件.
Fitz Hugh-Nagumo方程;行波解;Hopf分支
近年來(lái),對(duì)于描述神經(jīng)脈沖傳導(dǎo)的Fitz Hugh-Nagumo方程
這里f(u)=u(u-1)(u-a),其中a是常數(shù),且0<a<1/2,b>0,d>0,其中b,d都是參數(shù),人們進(jìn)行了大量的研究.此方程是由Fitzhugh[1]和Nagumo[2]等引入的用來(lái)描述神經(jīng)表層刺激和沿軸突的神經(jīng)沖動(dòng)的傳播的最簡(jiǎn)單的數(shù)學(xué)模型之一.
Gao W和Wang J證明了Fitz Hugh-Nagumo系統(tǒng)前波解和脈沖解的存在性[3].林常、李繼彬等利用匹配漸近法,計(jì)算了Fitz Hugh神經(jīng)傳導(dǎo)方程的張馳振動(dòng)解的解析表達(dá)式和振動(dòng)周期,并給出了產(chǎn)生張馳振動(dòng)的參數(shù)區(qū)域[4].袁國(guó)勇等給出了兩個(gè)延遲耦合Fitz Hugh-Nagumo系統(tǒng)的動(dòng)力學(xué)行為[5].王慕潔、張仲研究了fitz Hugh-Nagumo系統(tǒng)的周期初值問(wèn)題,用Calerkin方法證明了其的存在唯一性[6].最近,J.Llibre和C.Valls給出了Fitz Hugh-Nagumo系統(tǒng)解析的首次積分[7].我們?cè)谖闹醒芯縁itz Hugh-Nagumo方程(1)小振幅行波解存在性.
考慮行波解(u,v)(x,t)=(u,v)(x+ct),其中c是實(shí)常數(shù),稱為傳播速度,于是系統(tǒng)(1)變形為
[1] Fitz Hugh R.Impulses and Physiological State in Theoretical Models of Nerve Membrane[J].BiophysJ,1961,1:445-467.
[2] Nagumo J,EL.An Active Pulse Transmission Line Simulating Nerve Axion[C]//proc.IRE,1962,50:2061-2070.
[3] Gao W,Wang J.Existence of Wavefronts and Impulse to Fitz Hugh Nagumo Equations[J].NonlinearAnal,2004,57:667-676.
[4] 林常,李繼彬,劉曾榮.Fitz Hugh神經(jīng)傳導(dǎo)方程的張馳振動(dòng)解[J].應(yīng)用數(shù)學(xué)和力學(xué),1985,6:1079-1086.
[5] 袁國(guó)勇,楊世平,王光瑞,等.兩延遲耦合Fitz Hugh-Nagumo系統(tǒng)的動(dòng)力學(xué)行為[J].物理學(xué)報(bào),1985,6:1510-1522.
[6] 王慕潔,張仲.Fitz Hugh-Nagumo神經(jīng)傳導(dǎo)方程的周期初值問(wèn)題[J].數(shù)理醫(yī)藥學(xué)雜志,2000,13:12-13.
[7] Llibre J,Valls C.Analytic first Integrals of the Fitz Hugh-Nagumo Systems[J].MathPhys,2009,60:237-245.
[8] 張芷芬,李承志,鄭志明,等.向量場(chǎng)的分岔理論基礎(chǔ)[M].北京:高等教育出版社,1997.
Traveling Wave with Small Amplitude of Fitz Hugh-Nagumo Equations
YU Jiang,WANG Shu-sheng
(DepartmentofMathematics,ShanghaiJiaotongUniversity,Shanghai200240,China)
The existence of traveling wave with small amplitude of Fitz Hugh-Nagumo equations is studied.After it is chnged into a three-dimensional nonlinear ordinary differential system,with the center manifold theorem and Lyapunov coefficient method,it is shown that there exist a small amplitude periodic solutions around a singular point of the system in the given parameters.
Fitz Hugh-Nagumo system;traveling wave;Hopf bifurcation
O175
A
0253-2395(2012)02-0200-06*
2012-03-13
國(guó)家自然科學(xué)基金(10971133);Program of Shanghai Subject Chief Scientist(10XD1406200)
于江(1967-),男,山西太原人,博士,教授,從事動(dòng)力系統(tǒng)分岔理論及其應(yīng)用研究.E-mail:jiangyu@sjtu.edu.cn