屈芝蓮
(寶雞職業(yè)技術(shù)學(xué)院基礎(chǔ)部,陜西寶雞 721013)
關(guān)于Smarandache指數(shù)函數(shù)ep(n)與除數(shù)和函數(shù)σt(n)的混合均值
屈芝蓮
(寶雞職業(yè)技術(shù)學(xué)院基礎(chǔ)部,陜西寶雞 721013)
利用初等方法研究了ep(n)與除數(shù)和函數(shù)σt(n)的混合均值,得到了ep(n)σt(n)的漸近公式.
Smarandache指數(shù)函數(shù);均值;漸近公式
對(duì)于任意給定的素?cái)?shù)p及正整數(shù)n,Smarandache指數(shù)函數(shù)ep(n)定義為最大的正整數(shù)α使得pα整除n,即
著名數(shù)論學(xué)家Smarandache F教授在文獻(xiàn)[1]的第68個(gè)問(wèn)題中要求研究數(shù)列{ep(n)}的性質(zhì),關(guān)于這個(gè)問(wèn)題文獻(xiàn)[2-5]已作了初步的研究,得到了如下的漸近公式
當(dāng)t=1時(shí),
設(shè)p為給定的素?cái)?shù),ζ(s)為Riemann Zeta-函數(shù).為了完成定理1的證明,需要下列引理
引理1對(duì)任意的實(shí)數(shù)x≥1及給定的整數(shù)t≥1,有漸近公式
當(dāng)t>1時(shí),
引理1得證.
引理2[3]設(shè)α為任意的正整數(shù),p為給定的素?cái)?shù),那么對(duì)任意的實(shí)數(shù)x≥1,有漸近公式
引理3設(shè)α為任意的正整數(shù),p為給定的素?cái)?shù),那么對(duì)任意的實(shí)數(shù)x≥1及給定的整數(shù)t≥1,有漸近公式
引理3得證.
由ep(n)的定義及引理1、引理2和引理3,有
當(dāng)t>1時(shí),
當(dāng)t=1時(shí),
即定理得證.
[1]F SMARANDACHE.Only problems not solutions[M].Chicago:Xiquan Publishing House,1993.
[2]LV Chuan.A number theoretic function and its mean value:proceeding of Research on Smarandache Preoblems in Number Theory,Xi’an,F(xiàn)ebruary 11 -14,2004[C].USA:Hexis,2004:33 -35.
[3]LV Chuan.On the mean value of an arithmetical function:proceeding of Research on Smarandache Preoblems in Number Theory,Xi’an,F(xiàn)ebruary 11 -14,2004[C].USA:Hexis,2004:89 -92.
[4]祁蘭,趙院娥.關(guān)于一個(gè)算術(shù)函數(shù)的混合均值[J].哈爾濱師范大學(xué)學(xué)報(bào):自然科學(xué)版,2005,21(5):8-9.
[5]WANG Xiao-ying.On the mean value of an arithmetical function:proceeding of Research on Smarandache Preoblems in Number Theory,Xi’an,F(xiàn)ebruary 11 -14,2004[C].USA:Hexis,2004:77 -79.
[6]PAN Xiao-wei,ZHANG Pei.An identity involving the function ep(n)[J].Scientia Magna,2007,3(3):26 -29.
[7]潘承洞,潘承彪.解析數(shù)論基礎(chǔ)[M].北京:科學(xué)出版社,1999.
Hybrid Mean Value of the Smarandache Exponent Function ep(n)and the Function σt(n)
QV Zhi-lian
(Department of Basic Theory,Baoji Vocational and Technical College,Baoji 721013,China)
In the report,the elementary methods were used to analysis the hybrid mean value of ep(n)and the function σt(n),two asymptotic formulas ofep(n)σt(n)were obtained.
Smarandache exponent function;mean value;asymptotic formula
O 156.4 < class="emphasis_bold">文獻(xiàn)標(biāo)志碼:A
A
1004-1729(2011)01-0004-04
2010-10-13
屈芝蓮(1958-),女,陜西扶風(fēng)人,寶雞職業(yè)技術(shù)學(xué)院副教授.