陳保衛(wèi)
2.環(huán)境化學(xué)與生態(tài)毒理學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,北京,100085)
中國(guó)關(guān)于砷的研究進(jìn)展
陳保衛(wèi)1
2.環(huán)境化學(xué)與生態(tài)毒理學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,北京,100085)
綜述了近年來(lái)有關(guān)中國(guó)的砷污染狀況、相關(guān)的分析監(jiān)測(cè)技術(shù)及砷化合物毒性的研究進(jìn)展.在中國(guó)部分地區(qū),長(zhǎng)期砷暴露導(dǎo)致了嚴(yán)重的區(qū)域性的砷中毒,主要的暴露途徑是飲用水、食物和煤炭的燃燒.樣品前處理、砷的富集和形態(tài)分析技術(shù)的豐富和發(fā)展,為環(huán)境科學(xué)、毒理學(xué)和流行病學(xué)的研究提供了可靠的技術(shù)支持.生物檢測(cè)是一種直接有效的污染物健康風(fēng)險(xiǎn)評(píng)估方法,尿樣、血液、唾液、頭發(fā)和指甲中的砷及生理生化指標(biāo)直接反映了暴露主體的砷暴露程度和砷相關(guān)的損傷程度.在砷的生物代謝過(guò)程中,產(chǎn)生活性氧和自由基,導(dǎo)致氧化應(yīng)激的提高,影響亞鐵血紅蛋白的生物合成,導(dǎo)致細(xì)胞膜的過(guò)氧化,線粒體相關(guān)的細(xì)胞凋亡,DNA的氧化損傷而產(chǎn)生基因突變.砷中毒的易受程度,與年齡、營(yíng)養(yǎng)狀況、硒的攝入相關(guān).砷化合物能穿過(guò)胎盤屏障影響胎兒的發(fā)育,穿過(guò)腦血屏障影響智力發(fā)育和導(dǎo)致神經(jīng)毒性.慢性砷中毒的機(jī)理還有待進(jìn)一步的研究.
砷污染,生物地球化學(xué)循環(huán),砷形態(tài)分析,生物監(jiān)測(cè),毒理學(xué),氧化應(yīng)激,食物,水,煤炭.
砷被國(guó)際癌癥研究機(jī)構(gòu)劃分為一類致癌物(對(duì)人類致癌).在中國(guó),飲用水和煤炭燃燒引起的砷污染導(dǎo)致了嚴(yán)重的區(qū)域性砷中毒問(wèn)題.近幾年,環(huán)境科學(xué)、分析化學(xué)、生物學(xué)、流行性病學(xué)、醫(yī)學(xué)等領(lǐng)域的科研人員相互協(xié)作,在詳細(xì)調(diào)查并解決中國(guó)的砷污染,研究并治療砷引起的中毒問(wèn)題方面取得了顯著成果.近來(lái),劉廣良和蔡勇綜述了環(huán)境中砷與溶解有機(jī)質(zhì)的絡(luò)合作用的研究進(jìn)展[1],劉文菊和趙方杰綜述了植物砷吸收與代謝的研究進(jìn)展[2],本文則主要概述中國(guó)砷污染狀況、相關(guān)的分析監(jiān)測(cè)手段及砷化合物的毒性效應(yīng).
在世界上一些國(guó)家和地區(qū),地下水被用作主要的飲用水源以解決飲用水匱乏問(wèn)題.然而,地下水中的砷,引發(fā)了全球性的健康問(wèn)題.在孟加拉、印度、中國(guó)、蒙古、越南、泰國(guó)、柬埔寨、智利、阿根廷、墨西哥、甚至在德國(guó)和美國(guó)等發(fā)達(dá)國(guó)家,飲用水中的砷估計(jì)影響到約一億人的健康[3].早在1980年,在中國(guó)新疆的奎屯,就發(fā)現(xiàn)飲用水導(dǎo)致了區(qū)域性的砷中毒[4],遠(yuǎn)早于1996年孟加拉和印度的區(qū)域性砷中毒的報(bào)道.隨后,相繼在內(nèi)蒙古、山西、吉林、青海和寧夏發(fā)現(xiàn)區(qū)域性的飲用水砷中毒問(wèn)題[4].在內(nèi)蒙古巴盟地區(qū),飲用水中砷的含量竟高達(dá)826 μg·L-1[5].在中國(guó),大約有三百萬(wàn)人暴露于高濃度的砷,主要分布在農(nóng)村地區(qū)[6].孫貴范等人抽樣檢測(cè)了飲用水砷中毒嚴(yán)重地區(qū)的39514口水井中的砷濃度,如果以50 μg·L-1作為砷在飲用水中的安全標(biāo)準(zhǔn),山西省超過(guò)50%的水井超標(biāo),之后依次是吉林省(12.21%),內(nèi)蒙古(11.30%),青海(8.33%),新疆(4.77%),寧夏(1.06%)[4].而超過(guò)世界衛(wèi)生組織(WHO)的飲用水砷標(biāo)準(zhǔn)(10 μg·L-1)的水井將會(huì)更多.在中國(guó),特別是農(nóng)村地區(qū),降低飲用水中的砷仍是亟待解決的問(wèn)題.
中國(guó)是最大的煤炭生產(chǎn)和消耗國(guó)之一,煤炭是中國(guó)主要的能源.然而,煤炭中存在一些有毒元素如砷和汞.煤炭中砷的含量,與煤礦的地理位置密切相關(guān).何濱等從中國(guó)北部、東北和東部的主要煤礦收集了 33 個(gè)燃煤樣品,砷的濃度從 55.71 μg·g-1到 156.72 μg·g-1,其中,東北地區(qū)的煤炭含有較高濃度的砷[7].鄭寶山等從中國(guó)26個(gè)省的主要煤礦采集了297個(gè)樣品,砷含量的范圍是0.24—71 μg·g-1,其中東北和南部地區(qū)的煤的砷含量較高[8].煤炭引起的砷中毒,是中國(guó)特殊的砷健康問(wèn)題.在中國(guó),一些居民在通風(fēng)條件差的環(huán)境下使用煤做飯、取暖、烘干食物,引發(fā)了嚴(yán)重的區(qū)域性砷中毒,貴州地區(qū)尤為嚴(yán)重[4,9].在貴州西南地區(qū),煤中砷的含量可高達(dá) 35000 μg·g-1,廚房空氣中砷的含量可達(dá)到0.46 mg·m-3.此外,在食物烘干的過(guò)程中,煤炭中的砷化合物會(huì)在食物上沉積與富集,成為當(dāng)?shù)鼐用窳硪粋€(gè)主要的砷暴露途徑[9].在貴州興仁縣,煤炭中砷的含量為56.3 μg·g-1,由于燃煤引起的空氣和食物中高濃度的砷,導(dǎo)致了30%的居民砷中毒[10].煤炭中砷引起的砷中毒作為中國(guó)特殊的健康問(wèn)題,已經(jīng)引起了國(guó)內(nèi)外科學(xué)家的廣泛關(guān)注.
人類的工業(yè)生產(chǎn)和采礦活動(dòng)也會(huì)導(dǎo)致嚴(yán)重的砷污染.湖南郴州工業(yè)區(qū),土壤中的砷高達(dá)1217 mg·kg-1[11].在汕頭一個(gè)廢棄的鎢礦,土壤中砷的含量可高達(dá) 935 mg·kg-1,地下水中砷的含量可達(dá)到325 μg·L-1[12].由于這些嚴(yán)重的砷污染,造成了當(dāng)?shù)胤N植的大米中高含量的砷.此外,作為殺蟲劑和除草劑,以及木材防腐劑、養(yǎng)殖業(yè)的抗生素,砷化合物被廣泛使用,也導(dǎo)致了嚴(yán)重的砷污染.這些砷污染應(yīng)引起重視,以避免類似的問(wèn)題發(fā)生.
地殼中的砷,及人為的砷污染,可以從巖層和土壤滲入到地下水,也可以被植物吸收進(jìn)入食物鏈,參與生物地球化學(xué)循環(huán).通常在地殼和巖石中,砷以穩(wěn)定的移動(dòng)性差的形態(tài)存在,例如AsFeS.但是,在氧化和微生物的作用下,砷能被轉(zhuǎn)化為水溶性的砷而進(jìn)入水環(huán)境中[13-14].地下水中天然源的砷濃度,與當(dāng)?shù)氐牡乩項(xiàng)l件和氣候密切相關(guān)[15].在水環(huán)境中,砷的形態(tài)取決于它所處的環(huán)境條件.在氧化條件下,砷主要以砷酸鹽的形態(tài)存在,而在還原條件下,則主要是亞砷酸鹽的形態(tài)[13,16].
研究表明,植物對(duì)不同的砷化合物的吸收途徑不同.磷和砷是同族元素,磷酸鹽和五價(jià)的砷酸鹽具有相似的化學(xué)性質(zhì),五價(jià)砷酸鹽主要通過(guò)磷酸鹽通道被植物吸收[17-18].亞砷酸和硅酸有相近的高解離常數(shù),而且二者分子大小結(jié)構(gòu)相似.三價(jià)的砷吸收則是通過(guò)水通道和硅酸鹽通道完成的[19-20].水通道蛋白和硅酸轉(zhuǎn)運(yùn)蛋白在酵母上表達(dá),明顯提高了酵母對(duì)亞砷酸的吸收[20-21].植物也可以通過(guò)水通道吸收甲基砷[22],但是與無(wú)機(jī)砷的吸收相比較,甲基砷的吸收速率較慢[23].土壤中磷酸鹽和草酸鹽可以促進(jìn)砷化合物從砷污染的土壤上的解離,使砷更容易從土壤中遷出,同時(shí)也提高小麥對(duì)砷的吸收,導(dǎo)致砷在小麥中的積累[24].中國(guó)的蜈蚣草對(duì)砷化合物有極高的生物富集效率,可被應(yīng)用于砷污染的植物修復(fù)[25-26].在一些砷污染嚴(yán)重的地區(qū),大米是主要的食物,然而通過(guò)根部的吸收,砷化合物能從土壤遷移到大米中,食用大米成為一個(gè)重要的砷攝入途徑[27-28].在中國(guó)郴州工業(yè)區(qū),大米中砷的含量高達(dá)7.5 mg·kg-1,遠(yuǎn)遠(yuǎn)高于可允許的最高值 1.0 mg·kg-1[11].汕頭廢棄鎢礦的周邊地區(qū),大米中砷的含量也達(dá)到了1.09 mg·kg-1[12].對(duì)不同基因型大米的研究表明,大米的基因型和根部的通風(fēng)狀況影響了砷在大米中富集和形態(tài)[29].污染物的生物富集效應(yīng),也強(qiáng)化了調(diào)查蔬菜中砷含量的必要性,在郴州工業(yè)區(qū),砷在南瓜、包心菜、茄子、燈籠椒、豆角和青蔥中的富集因子分別是 51.5、20.1、6.3、12.3、5.8、7.2[11].苑春剛等調(diào)查了中國(guó)18個(gè)省的47個(gè)茶葉樣品,砷的含量為0—4.81 μg·g-1,然而使用沸水泡茶,僅有少量的砷從茶葉中浸出,因而飲茶相關(guān)的砷的健康風(fēng)險(xiǎn)較低[30].
砷在被植物吸收后,在植物內(nèi)的主要形態(tài)為無(wú)機(jī)三價(jià)砷.水稻和番茄根部三價(jià)砷的相對(duì)濃度高達(dá)92%—99%[31],在擬南芥的根部,五價(jià)的無(wú)機(jī)砷被還原為三價(jià)砷,進(jìn)一步和植物螯合劑絡(luò)合,有效地阻止了砷從根部到芽的遷移[32].盡管數(shù)據(jù)表明,大多數(shù)植物具有較強(qiáng)的砷還原能力,但是具體的機(jī)理還不詳.近來(lái),水稻[33]、絨毛草[34]、蜈蚣草[35]中,與植物內(nèi)的砷還原酶相關(guān)的 ACR2 基因序列被分離和克隆,為砷在植物內(nèi)的還原提供了分子生物學(xué)依據(jù).剪股穎(Agrostis capillaries)的體外實(shí)驗(yàn)表明,在S-腺苷-L-甲硫氨酸存在的條件下,其葉的提取物具有砷甲基化活性,而根的提取物則沒(méi)有[36].但是,關(guān)于無(wú)機(jī)砷是否能在植物體內(nèi)被甲基化,尚無(wú)可靠的證據(jù)[2].除了飲用水中的砷,植物中的砷,特別是可食用的植物中的砷,例如水稻,成為人類砷暴露的另一個(gè)重要途徑.食物中的砷被人體吸收后,在甲基轉(zhuǎn)移酶和砷還原酶的參與下,被代謝為二甲基砷并主要通過(guò)尿液排出[9-12,37].
微生物在砷化合物的遷移與轉(zhuǎn)化中起到不可取代的作用.近期的研究表明,在地?zé)岘h(huán)境中,嗜極性真核藻類可以氧化還原并甲基化無(wú)機(jī)砷,并在該藻類中發(fā)現(xiàn)了兩種甲基轉(zhuǎn)移酶,為它的高砷耐受性提供了分子生物學(xué)依據(jù)[38];在淡水環(huán)境中,嗜熱性原生動(dòng)物四膜蟲也具有甲基化無(wú)機(jī)砷的能力[39].微生物的砷暴露實(shí)驗(yàn)表明,微生物可以將水溶性的砷轉(zhuǎn)化為揮發(fā)性的砷化合物,從而導(dǎo)致砷從水相向氣相中遷移[40].2010年12月2日,Sciencexpress發(fā)表了一篇題為“一種用砷取代磷可以生長(zhǎng)的微生物”的報(bào)道,引起了轟動(dòng).該菌提取于美國(guó)加州的Mono Lake,湖中含有很高的鹽分和平均200 μmol·L-1的砷.Wolfe-Simon等人用該湖中的底泥作為種菌,不向培養(yǎng)液中加PO3-4,而是逐步提高培養(yǎng)液中砷的濃度,通過(guò)多級(jí)轉(zhuǎn)移和培養(yǎng),得到能耐受高濃度砷的菌[41].這一現(xiàn)象并不奇怪,類似現(xiàn)象曾有報(bào)道[42].引起媒體廣泛的關(guān)注和評(píng)論是因?yàn)閃olfe-Simon等人聲稱砷可能取代DNA中的磷,暗示該結(jié)果對(duì)理解生命的起源和進(jìn)化具有重要的意義.盡管該工作有一定的價(jià)值,但是并沒(méi)有直接和清楚地證明砷取代了DNA骨架中的磷.間接的電泳結(jié)果并不能排除吸附等因素.此外,在細(xì)菌的接種和培養(yǎng)的過(guò)程中,雖然沒(méi)有向培養(yǎng)液中加入PO3-4,但是培養(yǎng)液中磷的平均背景濃度可達(dá)到3.1 μmol·L-1,這是因?yàn)殡s質(zhì)來(lái)自于培養(yǎng)試劑,如葡萄糖,維生素,鹽和微量元素.培養(yǎng)液中3.1 μmol·L-1的磷是否能滿足細(xì)菌內(nèi)DNA的合成還需要更深入的研究.
砷化合物進(jìn)入生物地球化學(xué)循環(huán),經(jīng)過(guò)氧化還原、甲基化、硫化等一系列的反應(yīng),產(chǎn)生了無(wú)機(jī)砷、甲基砷、砷的氫化物、硫砷、砷糖、砷堿等不同形態(tài)的砷化合物,對(duì)砷的分析技術(shù)提出了嚴(yán)峻的挑戰(zhàn).此外,由于不同的化學(xué)形態(tài)具有不同的毒性,砷的形態(tài)分析,可以提供更準(zhǔn)確的風(fēng)險(xiǎn)評(píng)估,并推動(dòng)流行病學(xué)和毒理學(xué)的研究.目前,液相色譜是主要的砷形態(tài)分離技術(shù).砷的主要檢測(cè)技術(shù)包括原子光譜(原子吸收和原子熒光)、電感耦合等離子體質(zhì)譜、有機(jī)質(zhì)譜[43-45].這幾種檢測(cè)技術(shù)各有優(yōu)勢(shì),例如,原子熒光光譜具有運(yùn)行成本低、儀器價(jià)格低廉、便于維護(hù)的特點(diǎn),電感耦合等離子體質(zhì)譜則具有檢測(cè)限低、線性范圍寬、穩(wěn)定的優(yōu)點(diǎn),有機(jī)質(zhì)譜(電噴霧)則能提供化合物的結(jié)構(gòu)信息,便于化合物的定性.原子熒光光譜技術(shù)逐步被完善,實(shí)現(xiàn)砷與其它多種元素的同時(shí)測(cè)定[46-47].另外,在線結(jié)合原子質(zhì)譜和有機(jī)質(zhì)譜,同時(shí)進(jìn)行定量和定性分析,是砷檢測(cè)技術(shù)的一個(gè)發(fā)展方向[48].李峰等發(fā)展了微芯片毛細(xì)管電泳技術(shù),用來(lái)進(jìn)行砷形態(tài)分析,具有快速分析、試劑和樣品消耗少的特點(diǎn)[49].在樣品的前處理和富集方面,土壤樣品的在線順序提取、中空纖維膜液相微萃取、雙毛細(xì)管柱微萃取、有序介孔材料和新型烷基硅材料在砷的富集和分離上的應(yīng)用,提高了樣品分析的自動(dòng)化程度,降低了檢測(cè)限,豐富了分析手段[50-56].在砷的生物地球化學(xué)循環(huán)過(guò)程中,也形成一些氣態(tài)的砷化合物,由于氣態(tài)砷化合物的濃度較低,不便于收集,是分析測(cè)定的難點(diǎn).苑春剛等把細(xì)菌培養(yǎng)裝置,氫化物產(chǎn)生內(nèi)標(biāo),冷阱捕集,電感耦合等離子體質(zhì)譜檢測(cè)串聯(lián)起來(lái),實(shí)現(xiàn)了氣態(tài)砷化合物直接的準(zhǔn)確的測(cè)定[40].
生物標(biāo)志物可測(cè)定污染物在生物體內(nèi)的濃度和相應(yīng)的生理生化指標(biāo).由于生活習(xí)慣和對(duì)砷的吸收效率的差異,簡(jiǎn)單的環(huán)境監(jiān)測(cè),很難準(zhǔn)確的估計(jì)個(gè)體所承擔(dān)的健康風(fēng)險(xiǎn).然而,生物標(biāo)志物可以直接體現(xiàn)主體對(duì)砷的暴露程度,準(zhǔn)確反映個(gè)體差異.目前,血液、尿液、頭發(fā)、指甲及唾液中的砷已經(jīng)被用作砷暴露的生物標(biāo)志物[57].
砷在血液中的濃度一般較低,半衰期短,而且血液基質(zhì)復(fù)雜,含有大量的細(xì)胞和蛋白,這些都提高了血砷的分析難度,特別對(duì)于血液中砷的形態(tài)分析.但是,血砷能反映近期高劑量和長(zhǎng)期某種固定方式的砷暴露.Li等人調(diào)查了內(nèi)蒙古飲用水高砷污染區(qū)居民的血砷濃度,平均濃度為43.54 μg·L-1,關(guān)聯(lián)分析表明二級(jí)甲基化指數(shù)與皮膚損傷程度呈負(fù)相關(guān)性,為砷流行病學(xué)的調(diào)查提供更有益的檢測(cè)手段[58].
唾液的主要成分是水,基質(zhì)簡(jiǎn)單,采樣方式溫和、簡(jiǎn)單方便,是一種合適的砷暴露生物標(biāo)志物.然而,對(duì)唾液中砷的研究并不太多.Yuan等人建立了唾液中砷分析的前處理方法,并使用液相色譜與靈敏的電感耦合等離子體質(zhì)譜和電噴霧有機(jī)質(zhì)譜聯(lián)用技術(shù)對(duì)內(nèi)蒙古地區(qū)的唾液樣品進(jìn)行了分析,在唾液中檢測(cè)到三價(jià)的和五價(jià)的無(wú)機(jī)砷、一甲基砷和二甲基砷化合物,發(fā)現(xiàn)唾液中的砷濃度與個(gè)體砷暴露程度相關(guān);此外,唾液中砷的含量與地域性的皮膚病高發(fā)病率顯著相關(guān)[5].
頭發(fā)和指甲中的角質(zhì)蛋白含有巰基基團(tuán),一些砷化合物可以與巰基結(jié)合,從而在頭發(fā)和指甲內(nèi)積累.頭發(fā)和指甲,便于收集,儲(chǔ)存和運(yùn)輸方便.由于砷膽堿不會(huì)在頭發(fā)和指甲中積累,消除了砷膽堿對(duì)調(diào)查結(jié)果的干擾.但是,缺點(diǎn)是如何去除頭發(fā)和指甲的外部砷污染,對(duì)于形態(tài)分析則要考慮如何提高砷化合物的萃取效率,并保持其形態(tài)不發(fā)生轉(zhuǎn)化.在貴州煤炭引起的砷中毒地區(qū)[10],居民頭發(fā)中砷的含量達(dá)到 7.99 mg·g-1;在汕頭廢棄的鎢礦地區(qū)[12],居民頭發(fā)中的砷達(dá)到 2.92 mg·g-1,都高于頭發(fā)中砷的中毒評(píng)價(jià)標(biāo)準(zhǔn) 1 mg·g-1.在郴州工業(yè)區(qū)[11],95%的調(diào)查對(duì)象頭發(fā)中砷的濃度超過(guò) 1 mg·g-1.此外,研究表明頭發(fā)中砷的濃度與尿砷的濃度有很好的相關(guān)性,證明頭發(fā)中的砷是可用的砷暴露生物標(biāo)志物[10].
尿砷的半衰期比血砷更長(zhǎng)、尿樣采集簡(jiǎn)單方便、基質(zhì)干擾小.這些優(yōu)點(diǎn)使尿液中的砷形態(tài)成為最常用的砷暴露生物標(biāo)志物.但是要控制調(diào)查個(gè)體的飲食,以排除食用海產(chǎn)品對(duì)調(diào)查結(jié)果的影響,確定尿樣的收集時(shí)間,使用肌氨酸酐或比重對(duì)尿砷的濃度進(jìn)行校正.在內(nèi)蒙古飲用水污染嚴(yán)重的地區(qū)、汕頭廢棄的礦區(qū)、郴州工業(yè)區(qū)、貴州煤砷中毒嚴(yán)重的地區(qū),居民尿液中的砷都遠(yuǎn)遠(yuǎn)高于對(duì)照組,反映了當(dāng)?shù)鼐用裢ㄟ^(guò)各種途徑攝入了高劑量的砷化合物[9-12,37,59].此外,除了測(cè)定尿樣中砷的濃度外,還可以測(cè)定尿樣中與砷的代謝相關(guān)的生理生化指標(biāo),指示砷中毒或更具體的何種類型的損傷.砷可以影響人體內(nèi)亞鐵血紅素的生物合成,從而人體尿樣中卟啉的濃度可以作為砷的生物標(biāo)志物[60].丙二醛是脂質(zhì)過(guò)氧化作用的副產(chǎn)物,因此尿樣中丙二醛濃度可以指示砷引起的氧化應(yīng)激程度[61].尿樣中的脫氧尿苷(8-hydroxy-2-deoxyguanosine(8-OHdG))可以指示砷引起的DNA氧化損傷[62-63].
在中國(guó)部分地區(qū),飲用水和燃煤導(dǎo)致嚴(yán)重的區(qū)域性慢性砷中毒.研究表明,長(zhǎng)期砷暴露,可以引起皮膚色素高度沉著、色素脫失、高度角質(zhì)化等皮膚損傷,外周血管和心血管疾病、黑足病、高血壓、動(dòng)脈硬化等血管病,提高皮膚癌、肺癌和膀胱癌的發(fā)病率,還包括一些非特異性的癥狀,反應(yīng)遲鈍、記憶力減退、消化系統(tǒng)如腹痛、腹瀉、消化不良[6,57,64].在極少的亞急性砷中毒事件中,初始階段中毒者主要表現(xiàn)腸胃反應(yīng)、白血球減少、肝部和泌尿系統(tǒng)損傷,隨后發(fā)生更為嚴(yán)重的周邊神經(jīng)系統(tǒng)病變[65].
砷中毒,不僅取決于砷的暴露程度和暴露形態(tài),而且還與環(huán)境因素、暴露主體的基因、營(yíng)養(yǎng)等因素密切相關(guān).硒與砷有拮抗作用,低硒的攝入,抑制了無(wú)機(jī)砷在人體內(nèi)的生物甲基化,提高了砷引起的皮膚損傷風(fēng)險(xiǎn)[66-67].注射還原型谷胱甘肽和甲硫氨酸可以提高肝和非肝組織的砷甲基化能力,從而降低砷的毒性[68].補(bǔ)充葉酸可以減輕亞砷酸鹽引起的肝細(xì)胞毒性,包括細(xì)胞凋亡、線粒體跨膜電位降低、細(xì)胞色素的流失和細(xì)胞活性的降低[69].砷的毒性效應(yīng)與年齡密切相關(guān).在同樣的暴露水平下,與成年人相比,兒童的尿砷含有更高比例的二甲基砷和更高的二級(jí)甲基化指數(shù)[59].在砷中毒嚴(yán)重的貴州省,年輕人的尿樣中明顯含有更高濃度的卟啉和丙二醛,表明年輕人是砷引起的氧化損傷的易受性群體[60-61].在內(nèi)蒙古飲用水砷污染地區(qū),兒童血液中含有更低的還原型谷胱甘肽.砷除了對(duì)兒童造成皮膚損傷,還將導(dǎo)致兒童的認(rèn)知遲緩、智商降低、心理成長(zhǎng)緩慢、記憶力低下[6].動(dòng)物實(shí)驗(yàn)表明,母體中的砷可以穿過(guò)胎盤屏障,直接影響懷孕期幼鼠的前期發(fā)育,而且還會(huì)穿過(guò)腦血屏障,影響大腦和智力的發(fā)育[70].幼鼠的產(chǎn)前和產(chǎn)后砷暴露,導(dǎo)致腦皮層和大腦海馬狀突起中丙二醛和神經(jīng)傳遞素代謝酶(乙酰膽堿酶)濃度升高,還原型谷胱甘肽的濃度降低,從而影響幼鼠的神經(jīng)行為、學(xué)習(xí)能力、記憶力[71-72].
動(dòng)物模型是研究化合物毒性常用的方法.但是由于物種間基因的差異而導(dǎo)致代謝的差異,很難用動(dòng)物毒性的數(shù)據(jù)去準(zhǔn)確地評(píng)估對(duì)人類的風(fēng)險(xiǎn).甲基轉(zhuǎn)移酶參與無(wú)機(jī)砷的生物甲基化過(guò)程,盡管人類甲基轉(zhuǎn)移酶與老鼠的甲基轉(zhuǎn)移酶在結(jié)構(gòu)上高度相似,但是在酶蛋白結(jié)構(gòu)中,半胱氨酸殘基的數(shù)量和位置上存在細(xì)微的差異,可能導(dǎo)致了物種間砷的代謝和毒性的差異[73].同樣的現(xiàn)象也出現(xiàn)在血紅蛋白中,與人類血紅蛋白比較,老鼠血紅蛋白含有13α半胱氨酸殘基,導(dǎo)致了對(duì)砷化合物更高的親合性,使砷在老鼠血紅細(xì)胞中高度積累,改變了砷在體內(nèi)的分布[74-75].
氧化應(yīng)激是一個(gè)重要的砷致病機(jī)理.在砷的生物代謝過(guò)程中,可以產(chǎn)生活性氧和自由基,導(dǎo)致各種形式的損傷.氧化應(yīng)激的提高,可以影響亞鐵血紅蛋白的生物合成[60],導(dǎo)致細(xì)胞膜上的磷脂分子不飽和脂肪酸過(guò)氧化[57,61],線粒體相關(guān)的細(xì)胞凋亡[76-78],抑制過(guò)氧化氫酶的表達(dá)和活性[79],對(duì) DNA 產(chǎn)生氧化損傷從而導(dǎo)致基因突變[62-63,80].硒蛋白在生物體內(nèi)可以起到抗氧化、氧化還原調(diào)控和解毒作用,砷暴露可以誘導(dǎo)硒蛋白在人體內(nèi)的表達(dá);葉酸是一種有效的自由基捕獲劑,可以修復(fù)巰基和抑制脂的過(guò)氧化;因而,攝入硒和葉酸可以緩解砷中毒癥狀[69,81].谷胱甘肽S轉(zhuǎn)移酶,在砷的生物代謝和細(xì)胞緩解氧化壓力方面起到重要的作用.但是谷胱甘肽S轉(zhuǎn)移酶的多態(tài)性不能解釋砷代謝和毒性在個(gè)體上的差異[82].DNA-β聚合酶參與DNA的氧化損傷的修復(fù),它的過(guò)度表達(dá)可以有效降低砷引起的基因毒性,保護(hù)染色體的完整性[83].
砷化合物(三氧化二砷)是一種環(huán)境中廣泛存在的有毒物質(zhì),但是在藥學(xué)上卻有很高的應(yīng)用價(jià)值.在中國(guó)傳統(tǒng)醫(yī)學(xué)中,應(yīng)用三氧化二砷治療牛皮癬、風(fēng)濕病及梅毒等疾病的歷史悠久.近來(lái),發(fā)現(xiàn)三氧化二砷對(duì)急性早幼粒體白血病有特殊療效,為這個(gè)古老的藥物注入了新的生命力[84].病理學(xué)研究表明,三氧化二砷能夠誘導(dǎo)癌變細(xì)胞的線粒體DNA突變和凋亡,及未成熟的早幼粒體細(xì)胞繼續(xù)分化[85-86].進(jìn)一步的分子生物學(xué)研究表明,染色體易位后,致癌性的融合蛋白PML-RARα被表達(dá),從而阻礙了早幼粒體細(xì)胞的進(jìn)一步分化.在病人接受砷治療后,砷與癌蛋白結(jié)合提高了癌蛋白與遍在蛋白的相互作用,從而導(dǎo)致了癌蛋白的遍在化和降解,使早幼粒體細(xì)胞得到進(jìn)一步分化[87].三氧化二砷還可以抑制DNA甲基化酶的活性,從而提高癌變細(xì)胞內(nèi)腫瘤抑制基因的表達(dá)[88].
砷化合物的環(huán)境行為及其引發(fā)的健康問(wèn)題,仍將是今后研究的熱點(diǎn).隨著分析技術(shù)和前處理技術(shù)的不斷完善和改進(jìn),能實(shí)現(xiàn)對(duì)不同基質(zhì)的多種樣品進(jìn)行準(zhǔn)確的形態(tài)分析,可以準(zhǔn)確地評(píng)估環(huán)境砷污染程度,評(píng)價(jià)生物標(biāo)志物的準(zhǔn)確性和可靠性,從而準(zhǔn)確地評(píng)價(jià)砷暴露程度,為流行病學(xué)和毒理學(xué)的研究奠定堅(jiān)實(shí)的基礎(chǔ)和技術(shù)支持.研究低劑量長(zhǎng)期慢性砷暴露的毒性效應(yīng),發(fā)展合適的模型去評(píng)價(jià)單一或多砷形態(tài)暴露后在生物體內(nèi)不同濃度多砷形態(tài)(攝入形態(tài)和代謝產(chǎn)物)的綜合毒性效應(yīng),研究低劑量的砷對(duì)嬰兒和兒童發(fā)育的影響,根據(jù)地域差異和種族差異制定不同的砷攝入安全標(biāo)準(zhǔn),建立和完善降低飲用水中砷的方法和技術(shù),深入研究砷的制毒機(jī)理和治療白血病的機(jī)理,都值得關(guān)注.
[1]Liu G,Cai Y.Complexation of arsenic with dissolved organic matter in the environment[J].Environmental Chemistry,2011,30:50-55
[2]Liu W,Zhao F.A brief review of arsenic uptake and metabolism in plants[J].Environmental Chemistry,2011,30:56-62
[3]Bundschuh J,Armienta M A,Birkle P.Natural arsenic in groundwaters of Latin America-occurrence,health impact and remediation,Interdisciplinary Book Series:“Arsenic in the Environment”[M].USA:CRC Press Taylor and Francis,2009:742
[4]Sun G.Arsenic contamination and arsenicosis in China[J].Toxicol Appl Pharmacol,2004,198:268-271
[5]Yuan C,Lu X,Oro N,et al.Arsenic speciation analysis in human saliva[J].Clin Chem,2008,54:163-171
[6]Sun G,Li X,Pi J.Current research problems of chronic arsenicosis in China[J].J Health Population and Nutrition,2006,24:176-181
[7]He B,Liang L,Jiang G.Distributions of arsenic and selenium in selected Chinese coal mines[J].Sci Total Environ,2002,296:19-26
[8]Wang M,Zheng B,Wang B,et al.Arsenic concentrations in Chinese coals[J].Sci Total Environ,2006,357:96-102
[9]Baoshan Z,Binbin W,Zhenhua D,et al.Endemic arsenosis caused by indoor combustion of high-as coal in Guizhou Province,P.R.China[J].Environ Geochem Health,2005,27:521-528
[10]Shraim A,Cui X,Li S,et al.Arsenic speciation in the urine and hair of individuals exposed to airborne arsenic through coal-burning in Guizhou,PR China[J].Toxicol Lett,2003,137:35-48
[11]Liao X Y,Chen T B,Xie H,et al.Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City,Southern China[J].Environ Int,2005,31:791-798
[12]Liu C P,Luo C L,Gao Y,et al.Arsenic contamination and potential health risk implications at an abandoned tungsten mine,southern China[J].Environ Pollut,2010,158:820-826
[13]Duker A A,Carranza E J,Hale M.Arsenic geochemistry and health[J].Environ Int,2005,31:631-641
[14]Islam F S,Gault A G,Boothman C,et al.Role of metal-reducing bacteria in arsenic release from Bengal delta sediments[J].Nature,2004,430:68-71
[15]Welch A H,Westjohn D B,Helsel D R,et al.Arsenic in ground water of the United States:Occurrence and geochemistry[J].Ground Water,2000,38:589-604
[16]Ferguson J F,Gavis J.A review of the arsenic cycle in natural waters[J].Water Research,1972,6:1259-1274
[17]Asher C J,Reay P F.Arsenic uptake by barley seedlings[J].Australian Journal of Plant Physiology,1979,6:459-466
[18]Ullricheberius C I,Sanz A,Novacky A J.Evaluation of arsenate-associated and vanadate-associated changes of electrical membranepotential and phosphate-transport in lemna-gibba-G1[J].Journal of Experimental Botany,1989,40:119-128
[19]Meharg A A,Jardine L.Arsenite transport into paddy rice(Oryza sativa)roots[J].New Phytologist,2003,157:39-44
[20]Ma J F,Yamaji N,Mitani N,et al.Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J].Proc Natl Acad Sci U S A,2008,105:9931-9935
[21]Bienert G P,Thorsen M,Schussler M D,et al.A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3and Sb(OH)3across membranes[J].BMC Biol,2008,6:26
[22]Li R Y,Ago Y,Liu W J,et al.The rice aquaporin Lsi1 mediates uptake of methylated arsenic species[J].Plant Physiol,2009,150:2071-2080
[23]Raab A,Williams P N,Meharg A,et al.Uptake and translocation of inorganic and methylated arsenic species by plants[J].Environmental Chemistry,2007,4:197-203
[24]Tao Y,Zhang S,Jian W,et al.Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat[J].Chemosphere,2006,65:1281-1287
[25]Ma L Q,Komar K M,Tu C,et al.A fern that hyperaccumulates arsenic[J].Nature,2001,409:579
[26]Salido A L,Hasty K L,Lim J M,et al.Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns(Pteris vittata)and Indian mustard(Brassica juncea)[J].Int J Phytoremediation,2003,5:89-103
[27]Kim K W,Bang S,Zhu Y,et al.Arsenic geochemistry,transport mechanism in the soil-plant system,human and animal health issues[J].Environ Int,2009,35:453-454
[28]Norton G J,Islam M R,Duan G,et al.Arsenic shoot-grain relationships in field grown rice cultivars[J].Environ Sci Technol,2010,44:1471-1477
[29]Wu C,Ye Z,Shu W,et al.Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes[J].J Exp Bot,2011,62:2889-2898
[30]Yuan C,Gao E,He B,et al.Arsenic species and leaching characters in tea(Camellia sinensis)[J].Food Chem Toxicol,2007,45:2381-2389
[31]Xu X Y,McGrath S P,Zhao F J.Rapid reduction of arsenate in the medium mediated by plant roots[J].New Phytol,2007,176:590-599
[32]Liu W J,Wood B A,Raab A,et al.Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis[J].Plant Physiol,2010,152:2211-2221
[33]Duan G L,Zhou Y,Tong Y P,et al.A CDC25 homologue from rice functions as an arsenate reductase[J].New Phytol,2007,174:311-321
[34]Bleeker P M,Hakvoort H W,Bliek M,et al.Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus[J].Plant J,2006,45:917-929
[35]Ellis D R,Gumaelius L,Indriolo E,et al.A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata[J].Plant Physiol,2006,141:1544-1554
[36]Wu J H,Zhang R,Lilley R M.Methylation of arsenic in vitro by cell extracts from bentgrass(Agrostis tenuis):effect of acute exposure of plants to arsenate[J].Functional Plant Biology,2002,29:73-80
[37]Xi S,Zheng Q,Zhang Q,et al.Metabolic profile and assessment of occupational arsenic exposure in copper-and steel-smelting workers in China[J].Int Arch Occup Environ Health,2011,84:347-353
[38]Qin J,Lehr C R,Yuan C,et al.Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga[J].Proc Natl Acad Sci U S A,2009,106:5213-5217
[39]Yin X X,Zhang Y Y,Yang J,et al.Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila[J].Environ Pollut,2011,159:837-840
[40]Yuan C,Lu X,Qin J,et al.Volatile arsenic species released from Escherichia coli expressing the AsⅢ S-adenosylmethionine methyltransferase gene[J].Environ Sci Technol,2008,42:3201-3206
[41]Wolfe-Simon F,Blum J S,Kulp T R,et al.A bacterium that can grow by using arsenic instead of phosphorus[J].Science,2010,332:1163-1166
[42]Oremland R S,Stolz J F,Hollibaugh J T.The microbial arsenic cycle in Mono Lake,California[J].FEMS Microbiol Ecol,2004,48:15-27
[43]苑春剛,Le X C.砷形態(tài)分析[J].化學(xué)進(jìn)展,2009,21:467-474
[44]Liang J,Wang Q,Huang B.Concentration of hazardous heavy metals in environmental samples collected in Xiamen,China,as determined by vapor generation non-dispersive atomic fluorescence spectrometry[J].Analytic Sciences,2004,20:85-88
[45]Gong Z,Lu X,Ma M,et al.Arsenic speciation analysis[J].Talanta,2002,58:77-96
[46]王振華,何濱,史建波.液相色譜-雙通道原子熒光檢測(cè)聯(lián)用法同時(shí)測(cè)定砷和硒的形態(tài)[J].色譜,2009,27:711-716
[47]Wang F,Zhang G.Simultaneous quantitative analysis of arsenic,bismuth,selenium,and tellurium in soil samples using multi-channel hydride-generation atomic fluorescence spectrometry[J].Appl Spectrosc,2011,65:315-319
[48]Wang Z W,Zhang H Q,Li X F.Study of interactions between arsenicals and thioredoxins(human and E.coli)using mass spectrometry[J].Rapid Communication in Mass Spectrometry,2007,21:3658-3666
[49]Li F,Wang D D,Yan X P,et al.Speciation analysis of inorganic arsenic by microchip capillary electrophoresis coupled with hydride generation atomic fluorescence spectrometry[J].J Chromatogr A,2005,1081:232-237
[50]Dong L M,Yan X P.On-line coupling of flow injection sequential extraction to hydride generation atomic fluorescence spectrometry for fractionation of arsenic in soils[J].Talanta,2005,65:627-631
[51]Jiang H,Hu B,Chen B,et al.Hollow fiber liquid phase microextraction combined with electrothermal atomic absorption spectrometry for the speciation of arsenic(Ⅲ)and arsenic(Ⅴ)in fresh waters and human hair extracts[J].Anal Chim Acta,2009,634:15-21
[52]Zheng F,Hu B.Dual-column capillary microextraction(CME)combined with electrothermal vaporization inductively coupled plasma mass spectrometry(ETV-ICP-MS)for the speciation of arsenic in human hair extracts[J].J Mass Spectrom,2010,45:205-214
[53]Chen D,Huang C,He M,et al.Separation and preconcentration of inorganic arsenic species in natural water samples with 3-(2-aminoethylamino)propyltrimethoxysilane modified ordered mesoporous silica micro-column and their determination by inductively coupled plasma optical emission spectrometry[J].J Hazard Mater,2009,164:1146-1151
[54]Hu W,Zheng F,Hu B.Simultaneous separation and speciation of inorganic As(Ⅲ)/As(Ⅴ)and Cr(Ⅲ)/Cr(Ⅵ)in natural waters utilizing capillary microextraction on ordered mesoporous Al2O3prior to their on-line determination by ICP-MS[J].J Hazard Mater,2008,151:58-64
[55]Xiong C,He M,Hu B.On-line separation and preconcentration of inorganic arsenic and selenium species in natural water samples with CTAB-modified alkyl silica microcolumn and determination by inductively coupled plasma-optical emission spectrometry[J].Talanta,2008,76:772-779
[56]Mao X,Chen B,Huang C,et al.Titania immobilized polypropylene hollow fiber as a disposable coating for stir bar sorptive extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry speciation of arsenic in chicken tissues[J].J Chromatogr A,2011,1218:1-9
[57]陳保衛(wèi),那仁滿都拉,呂美玲 等.砷的代謝機(jī)制、毒性和生物檢測(cè)[J].化學(xué)進(jìn)展,2009,21:474-382
[58]Li X,Li B,Xu Y,et al.Arsenic methylation capacity and its correlation with skin lesions induced by contaminated drinking water consumption in residents of chronic arsenicosis area[J].Environ Toxicol,2009,26:118-123
[59]Sun G,Xu Y,Li X,et al.Urinary arsenic metabolites in children and adults exposed to arsenic in drinking water in Inner Mongolia,China[J].Environ Health Perspect,2007,115:648-652
[60]Ng J C,Wang J P,Zheng B,et al.Urinary porphyrins as biomarkers for arsenic exposure among susceptible populations in Guizhou province,China[J].Toxicol Appl Pharmacol,2005,206:176-184
[61]Wang J P,Maddalena R,Zheng B,et al.Arsenicosis status and urinary malondialdehyde(MDA)in people exposed to arsenic contaminated-coal in China[J].Environ Int,2009,35:502-506
[62]Li X,Pi J,Li B,et al.Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning[J].Bull Environ Contam Toxicol,2008,81:406-411
[63]Xu Y,Wang Y,Zheng Q,et al.Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults[J].Toxicol Appl Pharmacol,2008,232:142-149
[64]Mao G,Guo X,Kang R,et al.Prevalence of disability in an arsenic exposure area in Inner Mongolia,China[J].Chemosphere,2010,80:978-981
[65]Xu Y,Wang Y,Zheng Q,et al.Clinical manifestations and arsenic methylation after a rare subacute arsenic poisoning accident[J].Toxicol Sci,2008,103:278-284
[66]Huang Z,Pei Q,Sun G,et al.Low selenium status affects arsenic metabolites in an arsenic exposed population with skin lesions[J].Clin Chim Acta,2008,387:139-144
[67]Xue W,Wang Z,Chen Q,et al.High selenium status in individuals exposed to arsenic through coal-burning in Shaanxi(PR of China)modulates antioxidant enzymes,heme oxygenase-1 and DNA damage[J].Clin Chim Acta,2010,411:1312-1318
[68]Jin Y,Zhao F,Zhong Y,et al.Effects of exogenous GSH and methionine on methylation of inorganic arsenic in mice exposed to arsenite through drinking water[J].Environ Toxicol,2010,25:361-366
[69]Xu Y,Wang H,Wang Y,et al.Effects of folate on arsenic toxicity in Chang human hepatocytes:involvement of folate antioxidant properties[J].Toxicol Lett,2010,195:44-50
[70]Xi S,Jin Y,Lv X,et al.Distribution and speciation of arsenic by transplacental and early life exposure to inorganic arsenic in offspring rats[J].Biol Trace Elem Res,2010,134:84-97
[71]Xi S,Sun W,Wang F,et al.Transplacental and early life exposure to inorganic arsenic affected development and behavior in offspring rats[J].Arch Toxicol,2009,83:549-556
[72]Xi S,Guo L,Qi R,et al.Prenatal and early life arsenic exposure induced oxidative damage and altered activities and mRNA expressions of neurotransmitter metabolic enzymes in offspring rat brain[J].J Biochem Mol Toxicol,2010,24:368-378
[73]Song X,Geng Z,Zhu J,et al.Structure-function roles of four cysteine residues in the human arsenic(+3 oxidation state)methyltransferase(hAS3MT)by site-directed mutagenesis[J].Chem Biol Interact,2009,179:321-328
[74]Lu M,Wang H,Li X F,et al.Binding of dimethylarsinous acid to cys-13alpha of rat hemoglobin is responsible for the retention of arsenic in rat blood[J].Chem Res Toxicol,2007,20:27-37
[75]Lu M,Wang H,Li X F,et al.Evidence of hemoglobin binding to arsenic as a basis for the accumulation of arsenic in rat blood[J].Chem Res Toxicol,2004,17:1733-1742
[76]Wang Y,Xu Y,Wang H,et al.Arsenic induces mitochondria-dependent apoptosis by reactive oxygen species generation rather than glutathione depletion in Chang human hepatocytes[J].Arch Toxicol,2009,83:899-908
[77]Lu T H,Su C C,Chen Y W,et al.Arsenic induces pancreatic beta-cell apoptosis via the oxidative stress-regulated mitochondriadependent and endoplasmic reticulum stress-triggered signaling pathways[J].Toxicol Lett,2011,201:15-26
[78]Shi Y,Wei Y,Qu S,et al.Arsenic induces apoptosis of human umbilical vein endothelial cells through mitochondrial pathways[J].Cardiovasc Toxicol,2010,10:153-160
[79]Wang Y,Wei Y,Zhang H,et al.Arsenic trioxide induces apoptosis of p53 null osteosarcoma MG63 cells through the inhibition of catalase[J].Med Oncol,2011
[80]Wen W,Che W,Lu L,et al.Increased damage of exon 5 of p53 gene in workers from an arsenic plant[J].Mutat Res,2008,643:36-40
[81]Huang Z,Li J,Zhang S,et al.Inorganic arsenic modulates the expression of selenoproteins in mouse embryonic stem cell[J].Toxicol Lett,2009,187:69-76
[82]Xu Y,Li X,Zheng Q,et al.Lack of association of glutathione-S-transferase omega 1(A140D)and omega 2(N142D)gene polymorphisms with urinary arsenic profile and oxidative stress status in arsenic-exposed population[J].Mutat Res,2009,679:44-49
[83]Lai Y,Zhao W,Chen C,et al.Role of DNA polymerase beta in the genotoxicity of arsenic[J].Environ Mol Mutagen,2011,52:460-468
[84]Hu X M,Liu F,Ma R.Application and assessment of Chinese arsenic drugs in treating malignant hematopathy in China[J].Chin J Integr Med,2010,16:368-377
[85]Chen G Q,Zhou L,Styblo M,et al.Methylated metabolites of arsenic trioxide are more potent than arsenic trioxide as apoptotic but not differentiation inducers in leukemia and lymphoma cells[J].Cancer Res,2003,63:1853-1859
[86]Meng R,Zhou J,Sui M,et al.Arsenic trioxide promotes mitochondrial DNA mutation and cell apoptosis in primary APL cells and NB4 cell line[J].Sci China Life Sci,2010,53:87-93
[87]Zhang X W,Yan X J,Zhou Z R,et al.Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML[J].Science,2010,328:240-243
[88]Fu H Y,Shen J Z,Wu Y,et al.Arsenic trioxide inhibits DNA methyltransferase and restores expression of methylation-silenced CDKN2B/CDKN2A genes in human hematologic malignant cells[J].Oncol Rep,2010,24:335-343
Le X.Chris1,2*
(1.Division of Analytic and Environmental Toxicology,Department of Laboratory Medicine and Pathology,University of Alberta,Edmonton,Alberta,T6G 2G3,Canada
RECENT PROGRESS IN ARSENIC RESEARCH IN CHINA
CHEN Baowei1LE X.Chris1,2
(1.Division of Analytic and Environmental Toxicology,Department of Laboratory Medicine and Pathology,University of Alberta,Edmonton,Alberta,T6G 2G3,Canada;2.State Key Laboratory of Environmental Chemistry and Ecotoxicology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing,100085,China)
This review summarizes recent research conducted on environmental arsenic in China,covering the topics of environmental contamination,human exposure,speciation analysis,biomonitoring,biotransformation,and toxicity of arsenic compounds.Chronic exposure to arsenic through ingestion of drinking water and contaminated food,and/or inhalation of contaminated air due to coal combustion is responsible for endemic arsenicosis in several areas of China.Progress has been made in analytical techniques for speciation analysis,increasing the number of studies on environmental chemistry,toxicology,and epidemiology of arsenic.Urine,blood,saliva, hair, and nail have been analyzed for arsenic species to assess arsenic exposure.Epidemiological,biochemical,and animal studies have linked excess arsenic exposure with the elevated levels of oxidation stress,as measured by oxidative damage to DNA and peroxidation of cell membrane.Arsenic was shown to pass through the blood brain barrier and placenta affecting pre-natal development of the fetus,as well as post-natal development of child.The exact mechanisms of chronic arsenic toxicity are complicated and remain to be elucidated.
arsenic contamination,biogeochemical cycling,arsenic speciation analysis,biomonitoring,toxicology,oxidative stress,water,food,coal,environment,China.
2011年3月17日收稿.
* 通訊聯(lián)系人,Tel:+1-780-492-6416,E-mail:xc.le@ualberta.ca