余小玲, 姜世勃,2, 劉叔文△
(1南方醫(yī)科大學(xué)藥學(xué)院, 廣東 廣州 510515; 2紐約血液中心LFK研究所,美國(guó) 紐約 NY 10065)
·綜述·
HIV相關(guān)癡呆的發(fā)病機(jī)制及藥物治療靶點(diǎn)*
余小玲1, 姜世勃1,2, 劉叔文1△
(1南方醫(yī)科大學(xué)藥學(xué)院, 廣東 廣州 510515;2紐約血液中心LFK研究所,美國(guó) 紐約 NY 10065)
HIV相關(guān)癡呆; gp120; 趨化因子; 神經(jīng)損傷
隨著艾滋病(acquired immune deficiency syndrome, AIDS) 的全球性暴發(fā)流行,HIV相關(guān)神經(jīng)系統(tǒng)功能障礙,主要為HIV相關(guān)癡呆(HIV-associated dementia, HAD)和更加嚴(yán)重的HIV相關(guān)神經(jīng)認(rèn)知紊亂(HIV-associated neurocognitive disorders, HAND),逐漸被人們所認(rèn)識(shí)并研究。HAD為艾滋病晚期的一種神經(jīng)系統(tǒng)并發(fā)癥,病人表現(xiàn)為認(rèn)知和行為功能障礙、性格改變、短期記憶喪失等。目前認(rèn)為,HAD將在全球范圍內(nèi)成為40歲左右人群癡呆的主要原因,并成為艾滋病患者一個(gè)重要的獨(dú)立死亡因素[1],從而帶來(lái)系列的社會(huì)問(wèn)題。雖然高效抗逆轉(zhuǎn)錄病毒治療方法(highly active antiretroviral therapy, HAART)在臨床上的廣泛應(yīng)用使HAD的發(fā)病率有所下降[2],但其對(duì)神經(jīng)系統(tǒng)并無(wú)完全的保護(hù)作用。由于HAART能使病人生存期延長(zhǎng),HAD的發(fā)病率最終還將上升[3]。目前,一種輕型神經(jīng)系統(tǒng)功能損傷疾病,即微小認(rèn)知和行為功能障礙(minor cognitive motor disorder, MCMD)的發(fā)病率逐漸升高,成為AIDS致死的重要危險(xiǎn)因素[1]。HIV導(dǎo)致神經(jīng)損傷的機(jī)制尚不清楚。HIV進(jìn)入中樞神經(jīng)系統(tǒng)后感染單核細(xì)胞和小膠質(zhì)細(xì)胞,這兩種細(xì)胞被HIV病毒顆粒、病毒蛋白及免疫活化等因素激活后釋放系列毒性因子引起神經(jīng)損傷[4]。本文綜述了關(guān)于HAD的研究進(jìn)展,包括巨噬細(xì)胞和小膠質(zhì)細(xì)胞活化引起的神經(jīng)損傷以及病毒蛋白和炎癥因子直接或間接引起的神經(jīng)元死亡。這些機(jī)制的闡明,將為預(yù)防和治療HAD提供更多重要的藥物作用靶點(diǎn)。
艾滋病患者尸檢表明大腦是HIV僅次于肺部的第二大易感器官[5]。HIV靶向作用于中樞神經(jīng)系統(tǒng), 是因?yàn)樯窠?jīng)細(xì)胞和小膠質(zhì)細(xì)胞能表達(dá)HIV進(jìn)入細(xì)胞所必須的趨化因子輔助受體(如CXCR4)[6]。HIV還能感染神經(jīng)系統(tǒng)的其它結(jié)構(gòu)功能區(qū)域,包括海馬和顱底皮質(zhì)[7]。核磁共振研究表明HIV陽(yáng)性且認(rèn)知功能障礙的病人,其基底神經(jīng)節(jié)結(jié)構(gòu)破裂[8]。目前已知大腦主要有5種細(xì)胞:巨噬細(xì)胞、星型膠質(zhì)細(xì)胞、小膠質(zhì)細(xì)胞、少突膠質(zhì)細(xì)胞及神經(jīng)元,其中巨噬細(xì)胞和小膠質(zhì)細(xì)胞最易感染HIV。HIV在感染早期就進(jìn)入大腦,可能是單核細(xì)胞趨化蛋白(monocyte chemoattractant protein-1,MCP-1)之類的趨化因子調(diào)節(jié)外周血單核細(xì)胞(peripheral blood mononuclear cells,PBMC)穿過(guò)血腦屏障進(jìn)入大腦的[9]。已有研究證明,人類HIV感染者和感染猴免疫缺陷病毒(simian immunodeficiency virus, SIV)恒河猴的大腦中,受感染的淋巴細(xì)胞和單核細(xì)胞來(lái)源于外周血液[10]。由于人類大腦微血管內(nèi)皮細(xì)胞缺乏介導(dǎo)HIV進(jìn)入的受體CD4,中樞神經(jīng)系統(tǒng)淋巴細(xì)胞感染HIV的機(jī)制仍不明確[11]。
1.1巨噬細(xì)胞和小膠質(zhì)細(xì)胞 大腦微血管周圍的巨噬細(xì)胞和小膠質(zhì)細(xì)胞是HIV感染中樞神經(jīng)系統(tǒng)最重要的因素。動(dòng)物模型表明SIV并不能從血管周圍細(xì)胞傳播到實(shí)質(zhì)小膠質(zhì)細(xì)胞中去[12]。但有研究者通過(guò)免疫染色發(fā)現(xiàn),某些患者的實(shí)質(zhì)小膠質(zhì)細(xì)胞大范圍感染HIV,而血管周圍區(qū)域的感染卻很受限[13]。這些具有免疫活性、且能感染HIV的小膠質(zhì)細(xì)胞,到底是來(lái)源于外周血,還是在中樞神經(jīng)系統(tǒng)直接受到感染的仍不清楚。體外研究發(fā)現(xiàn)HIV可以在來(lái)源于嬰兒或胚胎的原始小膠質(zhì)細(xì)胞中復(fù)制[14]。小膠質(zhì)細(xì)胞和巨噬細(xì)胞一樣也能表達(dá)和HIV感染相關(guān)的受體和輔助受體,如CD4和CCR5,以及一些其它的趨化因子受體CCR3、CCR2b等[15]。體外原代培養(yǎng)的小膠質(zhì)細(xì)胞對(duì)R5型HIV病毒株比對(duì)X4型病毒株易感。
1.2星形膠質(zhì)細(xì)胞 星形膠質(zhì)細(xì)胞表面無(wú)CD4受體,但是它能表達(dá)HIV感染相關(guān)的輔助受體CXCR4、CCR5。已經(jīng)在gp120轉(zhuǎn)基因小鼠模型的大腦組織中發(fā)現(xiàn)星形膠質(zhì)細(xì)胞的凋亡[16]。在HAD患者尸解的大腦皮層組織中,能被抗活化caspase-3抗體標(biāo)記的星形膠質(zhì)細(xì)胞數(shù)目持續(xù)增多,表明這群細(xì)胞處于損傷過(guò)程中。有研究證實(shí)星形膠質(zhì)細(xì)胞能夠感染HIV,免疫染色可發(fā)現(xiàn)HIV結(jié)構(gòu)蛋白,但病毒和細(xì)胞間相互作用機(jī)制還不明確[17]。應(yīng)用原位雜交和原位PCR技術(shù)發(fā)現(xiàn),星形膠質(zhì)細(xì)胞中存在HIV特異性核酸。此外還有研究報(bào)道在此種細(xì)胞中檢測(cè)出病毒的Nef (negative factor)蛋白[18]。然而這些都不足以證明星形膠質(zhì)細(xì)胞是直接感染HIV而損傷的,其損傷機(jī)制可能和其它途徑有關(guān)。
1.3神經(jīng)元 由于在HAD患者腦組織中并無(wú)神經(jīng)元直接感染HIV,其損傷的機(jī)制仍在研究中。少數(shù)研究發(fā)現(xiàn)神經(jīng)元中有HIV的DNA及其相關(guān)蛋白,如Tat (transcriptional transactivator)、Nef、Vpr (viral protein R)、gp120等存在[19]。研究認(rèn)為大腦中感染神經(jīng)元的檢測(cè)可能比較復(fù)雜,因?yàn)槭芨腥镜纳窠?jīng)元會(huì)發(fā)生丟失。目前關(guān)于神經(jīng)元損傷的機(jī)制存在兩種有爭(zhēng)議的假說(shuō),一種是“直接效應(yīng)”,即HIV直接感染神經(jīng)元引起的損傷,另一種是其它途徑即“間接損傷”, 也稱作“旁觀者效應(yīng)”。盡管已有體外實(shí)驗(yàn)證實(shí)HIV可以感染來(lái)自嬰兒或胚胎的原始神經(jīng)元[20],大多數(shù)實(shí)驗(yàn)傾向于支持后者觀點(diǎn)。
1.4少突膠質(zhì)細(xì)胞 少突膠質(zhì)細(xì)胞表面不表達(dá)CD4受體,其損傷機(jī)制也不清楚。它在活體內(nèi)是否感染HIV存在著很大的爭(zhēng)議。盡管有研究表明可以用原位PCR技術(shù)在HAD患者的少突膠質(zhì)細(xì)胞中檢測(cè)到HIV的核酸[19],但另有報(bào)道卻稱在其中無(wú)法檢測(cè)到任何HIV相關(guān)標(biāo)記物[21]。在體外實(shí)驗(yàn)中,人少突膠質(zhì)細(xì)胞可以感染HIV R5型和X4型病毒株。
神經(jīng)元不表達(dá)HIV侵襲細(xì)胞的主要受體分子CD4,在HAD患者中沒(méi)有發(fā)現(xiàn)神經(jīng)元感染HIV,使得AIDS病人神經(jīng)損傷機(jī)制更顯復(fù)雜。如前所述,AIDS的神經(jīng)損傷機(jī)制分為 “直接效應(yīng)”和“間接效應(yīng)”兩種,大腦微血管周圍巨噬細(xì)胞和小膠質(zhì)細(xì)胞感染HIV后通過(guò)產(chǎn)生特異性病毒蛋白gp120、Tat或Vpr直接引起神經(jīng)系統(tǒng)損傷,星形膠質(zhì)細(xì)胞可能通過(guò)此途徑引起神經(jīng)系統(tǒng)損傷。而神經(jīng)元大多是通過(guò)一系列炎癥反應(yīng)間接損傷的,趨化因子及其受體在其中起了關(guān)鍵作用。
2.1HIV的Tat蛋白 HIV的Tat蛋白在感染細(xì)胞的胞核活化后大量分泌,它在低劑量即可對(duì)神經(jīng)元造成直接或間接損傷[22]。Tat主要通過(guò)調(diào)節(jié)大腦微血管內(nèi)皮細(xì)胞緊接蛋白claudin-1及claudin-5的表達(dá)而改變內(nèi)皮細(xì)胞的滲透性和血腦屏障的功能,導(dǎo)致炎癥細(xì)胞和因子進(jìn)入中樞神經(jīng)系統(tǒng)[23]。Tat的神經(jīng)毒性還可以通過(guò)增加胞內(nèi)鈣引起活性氧增加和caspase活化,從而啟動(dòng)一系列細(xì)胞凋亡途徑。此外,Tat還可以刺激單核巨噬細(xì)胞產(chǎn)生TNF-α、IL-1及一些趨化因子,引起具有神經(jīng)毒性的炎癥級(jí)聯(lián)反應(yīng)[22]。
2.2HIV的Vpr蛋白 HIV的Vpr蛋白功能復(fù)雜,它誘發(fā)細(xì)胞周期終止、促進(jìn)轉(zhuǎn)錄和整合復(fù)合物的形成。Vpr分泌后可能參與神經(jīng)損傷的發(fā)病機(jī)制,因?yàn)樗茉跐撛诘母腥炯?xì)胞中大量生成和活化,并促進(jìn)周圍細(xì)胞的死亡[24]。無(wú)論是細(xì)胞內(nèi)還是細(xì)胞外的Vpr都可以通過(guò)caspase-8依賴的機(jī)制誘發(fā)人神經(jīng)元前體細(xì)胞及分化成熟的神經(jīng)元凋亡[25]。與Tat不同的是,Vpr可以在HAD患者的腦脊液中檢測(cè)到。Vpr在細(xì)胞分裂的G2/M期誘導(dǎo)細(xì)胞周期停滯而使細(xì)胞死亡,還可以活化癌癥相關(guān)蛋白BRCA1,使DNA 損傷蛋白α(GADD45α)的表達(dá)上調(diào)[26]。Vpr還可通過(guò)改變線粒體的滲透性,導(dǎo)致大量細(xì)胞色素C釋放,引起神經(jīng)細(xì)胞凋亡[27]。Vpr和Tat共同作用可增加神經(jīng)細(xì)胞因乙醇暴露而介導(dǎo)的細(xì)胞凋亡[28]。
2.3HIV 包膜蛋白gp120和 gp41 HIV的包膜糖蛋白復(fù)合物gp160已經(jīng)明確有神經(jīng)毒性,包括gp120和gp41兩部分。HIV gp120是一種可溶性包膜蛋白,HIV感染細(xì)胞后大量脫落,其神經(jīng)毒性已被大量實(shí)驗(yàn)證實(shí)[29,30]。HIV-1與過(guò)度表達(dá)gp120的轉(zhuǎn)基因小鼠的神經(jīng)病理?yè)p害與HAD患者的腦組織很相似[31]。HIV gp120直接與NMDA受體相互作用引起神經(jīng)損傷,或與趨化因子受體結(jié)合后活化巨噬細(xì)胞、小膠質(zhì)細(xì)胞,引起系列炎性細(xì)胞因子(如TNF-α,IL-1等)的釋放。這些細(xì)胞因子可以刺激巨噬細(xì)胞釋放L-cysteine,用藥物阻止IL-1或用抗體中和TNF-α后可抑制其釋放。L-cysteine通過(guò)激活NMDM 受體導(dǎo)致神經(jīng)元凋亡。TNF-α也可以直接引起神經(jīng)元凋亡。HAD相關(guān)炎性因子的相互作用研究發(fā)現(xiàn),TNF-α能和HIV Tat蛋白聯(lián)合作用促進(jìn)神經(jīng)元損傷,這種效應(yīng)可以被抗氧化劑阻斷[32]。與Tat蛋白相似的是,gp120也可以通過(guò)擾亂細(xì)胞膜和內(nèi)質(zhì)網(wǎng)膜上的鈣調(diào)節(jié)系統(tǒng),引起鈣穩(wěn)態(tài)失衡而介導(dǎo)神經(jīng)元死亡[33]。HIV gp120與星形膠質(zhì)細(xì)胞結(jié)合后刺激誘生型NO合酶的活化及花生四烯酸的釋放,從而使星形膠質(zhì)細(xì)胞和神經(jīng)元攝入大量谷氨酸。細(xì)胞內(nèi)谷氨酸濃度增加可活化神經(jīng)元興奮性氨基酸受體而引起神經(jīng)毒性。
HIV-1跨膜糖蛋白gp41與HAD也相關(guān)。研究表明在有神經(jīng)膠質(zhì)存在的情況下,較低濃度的gp41對(duì)神經(jīng)元有致死性的作用,星形膠質(zhì)細(xì)胞暴露于gp41羧基端時(shí)會(huì)引起谷氨酸轉(zhuǎn)運(yùn)及釋放缺陷。HIV gp41引發(fā)神經(jīng)毒性的機(jī)制包括iNOS的活化、NO的形成、谷胱甘肽的缺失及阻斷線粒體功能等[34]。
2.4HIV相關(guān)的趨化因子受體 趨化因子受體是HIV進(jìn)入中樞神經(jīng)系統(tǒng)的重要輔助因子。它們參與了很多神經(jīng)系統(tǒng)疾病的發(fā)病機(jī)制,如多發(fā)性硬化癥、阿爾茨海默病等,因此在HAD發(fā)病機(jī)制研究中也成為焦點(diǎn)。在HAD患者大腦中,CXCR族趨化因子主要在神經(jīng)元上表達(dá)[35]。用半定量免疫組化分析大腦中HIV相關(guān)輔助受體的表達(dá)發(fā)現(xiàn),海馬區(qū)神經(jīng)元CCR2、CCR3和CXCR4為陽(yáng)性,但只有原始小膠質(zhì)細(xì)胞表達(dá)CCR5[36]。HAD患者比非HAD患者的HIV感染者CX3L和fractalkine/CX3CL1的表達(dá)量高。其中,兒童病人的神經(jīng)元表達(dá)fractalkine/CX3CL1上調(diào),而成人患者星形膠質(zhì)細(xì)胞表達(dá)fractalkine/CX3CL1過(guò)高,但其與HIV感染和引起神經(jīng)損傷的機(jī)制仍不明確。CCR5主要在大腦中的神經(jīng)元、小膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞上表達(dá),在HAD的發(fā)病機(jī)制中的作用存在更多爭(zhēng)議。體外實(shí)驗(yàn)中,巨噬細(xì)胞炎癥蛋白(macrophage inflammatory protein,MIP)-1α/β在活化CCR5后對(duì)gp120介導(dǎo)的神經(jīng)元凋亡有保護(hù)作用[37]。另有實(shí)驗(yàn)證實(shí),引起神經(jīng)毒性的HIV病毒株與CCR5親和力較高,說(shuō)明這些病毒株為巨噬細(xì)胞嗜性[38]。CCR5活化后與特異性配基結(jié)合可以誘導(dǎo)成神經(jīng)細(xì)胞瘤凋亡而不能引起纖維母細(xì)胞的凋亡[39],因此推測(cè)CCR5可能作為神經(jīng)凋亡受體,在HIV引起的神經(jīng)損傷中起作用。
雖然目前HAART暫時(shí)減少了HAD的發(fā)病率,但長(zhǎng)期使用導(dǎo)致MCMD發(fā)病率升高的問(wèn)題令人堪憂?;贖AD發(fā)病機(jī)制的相關(guān)研究,一些防止神經(jīng)損傷的治療方法值得進(jìn)一步探索,包括NMDA受體阻滯劑、拮抗趨化因子、趨化因子受體及細(xì)胞因子受體的藥物,抑制自由基、一氧化氮和活性氧族的抗氧化劑等。
NMDA受體拮抗劑在活體內(nèi)外都可以抑制HIV感染巨噬細(xì)胞或HIV gp120介導(dǎo)的神經(jīng)損傷。美金剛(memantine)可以抑制NMDA受體的活性,在美國(guó)NIH的資助下其注射劑已在HAD患者上進(jìn)行了大規(guī)模、多中心的臨床試驗(yàn),結(jié)果很令人期待,其第2代改良劑型目前也在研發(fā)中[40]。另有研究證明,一種神經(jīng)激肽-1受體拮抗劑,阿瑞匹坦(aprepitant),可抑制HIV-1感染小膠質(zhì)細(xì)胞和巨噬細(xì)胞而引起的神經(jīng)損傷[41]。
某些趨化因子可以保護(hù)神經(jīng)系統(tǒng)免受損傷,如fractalkine在體外可以阻斷gp120介導(dǎo)的神經(jīng)元凋亡,還有一些趨化因子能改善NMDA受體介導(dǎo)的神經(jīng)毒性癥狀[42]。因此,某些特定的趨化因子可能應(yīng)用到HAD的治療中來(lái)。
神經(jīng)元凋亡是系列神經(jīng)系統(tǒng)疾病包括HAD在內(nèi)的共同特征。半胱天冬酶(caspase)是凋亡過(guò)程中的關(guān)鍵酶系,因此caspase抑制劑在抑制神經(jīng)元凋亡引起的神經(jīng)損傷中有重要作用[43]。另外,鈣通道阻滯劑通過(guò)減少鈣內(nèi)流,維持細(xì)胞內(nèi)鈣穩(wěn)態(tài),而電壓門控性通道阻滯劑則能通過(guò)抑制巨噬細(xì)胞產(chǎn)生細(xì)胞因子,改善巨噬細(xì)胞相關(guān)的神經(jīng)功能損傷[44]。此外,一些抑制自由基和活性氧族對(duì)神經(jīng)系統(tǒng)造成損傷的抗氧化劑等,都有可能開(kāi)發(fā)成治療HAD的藥物。
到目前為止,至少有22項(xiàng)臨床試驗(yàn)涉及到HIV感染的神經(jīng)系統(tǒng)并發(fā)癥,包括HAD的治療(http://clinicaltrials.gov)。這些試驗(yàn)中有16項(xiàng)已完成,但迄今沒(méi)有1個(gè)治療方案能夠防止或逆轉(zhuǎn)HIV導(dǎo)致的神經(jīng)認(rèn)知功能損害。經(jīng)皮吸收的單胺氧化酶-β(MAO-β)抑制劑selegiline是最近評(píng)估用于治療與HIV相關(guān)的認(rèn)知障礙的藥物之一[45]。馬拉維羅(maraviroc)是第1個(gè)批準(zhǔn)用于HIV治療的CCR5抑制劑,在中樞神經(jīng)系統(tǒng)中濃度較低,但在腸道相關(guān)淋巴組織(gut-associated lymphoid tissue, GALT)可以富集。以前有研究證明腸道機(jī)會(huì)性感染的出現(xiàn)和大量?jī)?nèi)毒素的釋放可加快HAD的進(jìn)程,因此采用馬拉維羅治療可望通過(guò)保護(hù)腸道相關(guān)的淋巴組織來(lái)間接預(yù)防和治療HAD[46]。
總之,HIV相關(guān)癡呆發(fā)病機(jī)制的闡明,將為該疾病的治療提供更多的藥物治療靶點(diǎn),促進(jìn)創(chuàng)新藥物的研發(fā),在后HAART時(shí)代,延長(zhǎng)艾滋病人的生命,并改善其生活質(zhì)量。
[1] Venkataramana A, Sacktor N. Human immunodeficiency virus-associated dementia: clinical aspects, biology, and treatment[J]. Handb Clin Neurol, 2008, 89: 799-806.
[2] Sacktor N, Lyles RH, Skolasky R, et al. HIV-associated neurologic disease incidence changes:Multicenter AIDS Cohort Study, 1990-1998[J]. Neurology, 2001, 56(2): 257-260.
[3] Vivithanaporn P, Heo G, Gamble J, et al. Neurologic disease burden in treated HIV/AIDS predicts survival: a population-based study[J]. Neurology, 2010, 75(13): 1150-1158.
[4] Kraft-Terry SD, Stothert AR, Buch S, et al. HIV-1 neuroimmunity in the era of antiretroviral therapy[J]. Neurobiol Dis,2010, 37(3): 542-548.
[5] Masliah E, DeTeresa RM, Mallory ME, et al. Changes in pathological findings at autopsy in AIDS cases for the last 15 years[J]. AIDS, 2000, 14(1): 69-74.
[6] Hult B, Chana G, Masliah E, et al. Neurobiology of HIV[J]. Int Rev Psychiatry, 2008, 20(1): 3-13.
[7] Thompson PM, Dutton RA, Hayashi KM, et al. Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+T lymphocyte decline[J]. Proc Natl Acad Sci USA, 2005, 102(43): 15647-15652.
[8] Paul RH, Yiannoutsos CT, Miller EN, et al. Proton MRS and neuropsychological correlates in AIDS dementia complex: evidence of subcortical specificity[J]. J Neuropsychiatry Clin Neurosci, 2007, 19(3): 283-292.
[9] Wesselingh SL, Glass JD. Localization of HIV-1 DNA and tumor necrosis factor-alpha mRNA in human brain using polymerase chain reactioninsituhybridization and immunocytochemistry[J]. Methods Mol Biol, 2000, 123: 323-337.
[10]Cheney PD, Riazi M, Marcario JM. Behavioral and neurophysiological hallmarks of simian immunodeficiency virus infection in macaque monkeys[J]. J Neurovirol, 2008, 14(4): 301-308.
[11]Wodarz D, Hall SE, Usuku K, et al. Cytotoxic T-cell abundance and virus load in human immunodeficiency virus type 1 and human T-cell leukaemia virus type 1[J]. Proc Biol Sci, 2001, 268(1473): 1215-1221.
[12]Williams KC, Corey S, Westmoreland SV, et al. Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS[J]. J Exp Med, 2001, 193(8): 905-915.
[13]Morris A, Marsden M, Halcrow K, et al. Mosaic structure of the human immunodeficiency virus type 1 genome infecting lymphoid cells and the brain: evidence for frequentinvivorecombination events in the evolution of regional populations[J]. J Virol, 1999, 73(10): 8720-8731.
[14]McCarthy M, He J, Wood C. HIV-1 strain-associated variability in infection of primary neuroglia[J]. J Neurovirol, 1998, 4(1): 80-89.
[15]Hauser KF, El-Hage N, Stiene-Martin A, et al. HIV-1 neuropathogenesis: glial mechanisms revealed through substance abuse[J]. J Neurochem, 2007, 100(3): 567-586.
[16]Alirezaei M, Kiosses WB, Fox HS. Decreased neuronal autophagy in HIV dementia: a mechanism of indirect neurotoxicity[J]. Autophagy, 2008, 4(7): 963-966.
[17]Dou H, Morehead J, Bradley J, et al. Neuropathologic and neuroinflammatory activities of HIV-1-infected human astrocytes in murine brain[J]. Glia, 2006, 54(2): 81-93.
[18]Trillo-Pazos G, Diamanturos A, Rislove L, et al. Detection of HIV-1 DNA in microglia/macrophages, astrocytes and neurons isolated from brain tissue with HIV-1 encephalitis by laser capture microdissection[J]. Brain Pathol, 2003, 13(2): 144-154.
[19]Becker JL, Steigbigel RT, Nuovo GJ.Insitudetection of PCR-amplified HIV-1 and EBV nucleic acids in hyperplastic lymph nodes and in AIDS-related lymphoma[J]. J Histochem Cytochem, 1996, 44(10): 1085-1089.
[20]Ensoli F, Cafaro A, Fiorelli V, et al. HIV-1 infection of primary human neuroblasts[J]. Virology, 1995, 210(1):221-225.
[21]Neumann M, Afonina E, Ceccherini-Silberstein F, et al. Nucleocytoplasmic transport in human astrocytes: decreased nuclear uptake of the HIV Rev shuttle protein[J]. J Cell Sci, 2001, 114(Pt 9): 1717-1729.
[22]Nath A. Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia[J]. J Infect Dis, 2002, 186(Suppl 2): S193-S198.
[23]Toborek M, Lee YW, Flora G, et al. Mechanisms of the blood-brain barrier disruption in HIV-1 infection[J]. Cell Mol Neurobiol, 2005, 25(1): 181-199.
[24]Sherman MP, De Noronha CM, Williams SA, et al. Insights into the biology of HIV-1 viral protein R[J]. DNA Cell Biol, 2002, 21(9): 679-688.
[25]Patel CA, Mukhtar M, Harley S, et al. Lentiviral expression of HIV-1 Vpr induces apoptosis in human neurons[J]. J Neurovirol, 2002, 8(2): 86-99.
[26]Andersen JL, Zimmerman ES, DeHart JL, et al. ATR and GADD45α mediate HIV-1 Vpr-induced apoptosis[J]. Cell Death Differ, 2005, 12(4): 326-334.
[27]Jacotot E, Ravagnan L, Loeffler M, et al. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore[J]. J Exp Med, 2000, 191(1): 33-46.
[28]Acheampong E, Mukhtar M, Parveen Z, et al. Ethanol strongly potentiates apoptosis induced by HIV-1 proteins in primary human brain microvascular endothelial cells[J]. Virology, 2002, 304(2): 222-234.
[29]Dreyer EB, Kaiser PK, Offermann JT, et al. HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists[J]. Science, 1990, 248(4953): 364-367.
[30]Chen W, Tang Z, Fortina P, et al. Ethanol potentiates HIV-1 gp120-induced apoptosis in human neurons via both the death receptor and NMDA receptor pathways[J]. Virology, 2005, 334(1): 59-73.
[31]Cioni C, Annunziata P. Circulating gp120 alters the blood-brain barrier permeability in HIV-1 gp120 transgenic mice[J]. Neurosci Lett, 2002, 330(3): 299-301.
[32]Jajoo S, Mukherjea D, Brewer GJ, et al. Pertussis toxin B-oligomer suppresses human immunodeficiency virus-1 Tat-induced neuronal apoptosis through feedback inhibition of phospholipase C-β by protein kinase C[J]. Neuroscience, 2008, 151(2): 525-532.
[33]Haughey NJ, Mattson MP. Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins Tat and gp120[J]. J Acquir Immune Defic Syndr, 2002, 31(Suppl 2): S55-S61.
[34]Sung JH, Shin SA, Park HK, et al. Protective effect of glutathione in HIV-1 lytic peptide 1-induced cell death in human neuronal cells[J]. J Neurovirol, 2001, 7(5): 454-465.
[35]Tochikura TS, Motokawa K, Naito Y, et al. Differential CXCR4 expression and function in subpopulations of the feline lymphoma cell line 3201 susceptible to feline immunodeficiency virus[J]. J Feline Med Surg, 2010, 12(4): 269-277.
[36]van der Meer P, Ulrich AM, Gonzalez-Scarano F, et al. Immunohistochemical analysis of CCR2, CCR3, CCR5, and CXCR4 in the human brain: potential mechanisms for HIV dementia[J]. Exp Mol Pathol, 2000, 69(3): 192-201.
[37]Yi Y, Lee C, Liu QH, et al. Chemokine receptor utilization and macrophage signaling by human immunodeficiency virus type 1 gp120: Implications for neuropathogenesis[J]. J Neurovirol, 2004, 10(Suppl 1): 91-96.
[38]Zhang K, Rana F, Silva C, et al. Human immunodeficiency virus type 1 envelope-mediated neuronal death: uncoupling of viral replication and neurotoxicity[J]. J Virol, 2003, 77(12): 6899-6912.
[39]Cartier L, Hartley O, Dubois-Dauphin M, et al. Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases[J]. Brain Res Brain Res Rev, 2005, 48(1): 16-42.
[40]Taggart DP, Browne SM, Wade DT, et al. Neuroprotection during cardiac surgery: a randomised trial of a platelet activating factor antagonist[J]. Heart, 2003, 89(8): 897-900.
[41]Wang X, Douglas SD, Song L, et al. Neurokinin-1 receptor antagonist (aprepitant) suppresses HIV-1 infection of microglia/macrophages[J]. J Neuroimmune Pharmacol, 2008, 3(4): 257-264.
[42]Dou H, Kingsley JD, Mosley RL, et al. Neuroprotective strategies for HIV-1 associated dementia[J]. Neurotox Res, 2004, 6(7-8): 503-521.
[43]Tian C, Erdmann N, Zhao J, et al. HIV-infected macrophages mediate neuronal apoptosis through mitochondrial glutaminase[J]. J Neurochem, 2008, 105(3): 994-1005.
[44]Irvine E, Keblesh J, Liu J, et al. Voltage-gated potassium channel modulation of neurotoxic activity in human immunodeficiency virus type-1(HIV-1)-infected macrophages[J]. J Neuroimmune Pharmacol, 2007, 2(3): 265-269.
[45]Evans SR, Yeh TM, Sacktor N, et al. Selegiline transdermal system (STS) for HIV-associated cognitive impairment: open-label report of ACTG 5090[J]. HIV Clin Trial, 2007, 8(6): 437-446.
[46]Walker DK, Bowers SJ, Mitchell RJ, et al. Preclinical assessment of the distribution of maraviroc to potential human immunodeficiency virus (HIV) sanctuary sites in the central nervous system (CNS) and gut-associated lymphoid tissue (GALT) [J]. Xenobiotica, 2008, 38(10): 1330-1339.
PathogenesisofHIV-associateddementiaanditspotentialdrugtargets
YU Xiao-ling1, JIANG Shi-bo1,2, LIU Shu-wen1
(1SchoolofPharmaceuticalSciences,SouthernMedicalUniversity,Guangzhou510515,China;2LFKResearchInstitute,NewYorkBloodCenter,NewYork,NY10065,USA.E-mail:liusw@smu.edu.cn)
HIV-associated dementia (HAD) is a serious complication of AIDS patients. With the wide application of highly active antiretroviral therapy (HAART), the replication of HIV is under effective control and the incidence of HAD is also declined. However, a relatively mild HIV-associated symptom of dementia, called minor cognitively motor disorder (MCMD), become the problem and can not be neglected in the treatment of AIDS. The neural injury caused by HIV may be mediated mainly by macrophages, microglia and astrocytes, though we can not rule out the direct damage on neurons by HIV proteins. To date, the precise mechanism of neural damage caused by HIV remains unclear. The present review tries to figure out the recent progress of pathogenesis and potential drug targets for HAD.
HIV-associated dementia; gp120; Chemokines; Nerve injury
1000-4718(2011)04-0798-05
R962
A
10.3969/j.issn.1000-4718.2011.04.035
2010-08-11
2010-11-11
國(guó)家自然科學(xué)基金-廣東省聯(lián)合基金重點(diǎn)項(xiàng)目(No.U0832001);霍英東高等院校青年教師基金資助項(xiàng)目(No.111045)
△通訊作者: Tel:020-61648538;E-mail:liusw@smu.edu.cn