李 松, 方志杰, 程 杰
(南京理工大學(xué) 化工學(xué)院,江蘇 南京 210094)
稀有酮糖是指自然界中少量存在的酮糖及其衍生物,這類物質(zhì)通常都具有很高的生物活性:如從鱷梨果實(shí)中提取的D-甘露庚酮糖[1],可以通過調(diào)節(jié)生物體內(nèi)的胰島素分泌達(dá)到治愈肥胖的目的,同時(shí)還具有抗癌、預(yù)防和治療一些先天免疫疾病的功效[2,3];利用蛋白質(zhì)中的氨基與D-阿洛酮糖結(jié)合,增加水溶性促進(jìn)分子間交聯(lián),是目前新興的研究熱點(diǎn)[4];此外大多稀有己酮糖還是新型低熱量吸收甜味劑[5,6]。
雖然稀有酮糖具有如此優(yōu)秀的生物活性,但是由于天然分布極少,單純依靠分離提取遠(yuǎn)不能滿足人們的需要。Robert和Horace[7]以低碳的赤蘚糖或樹膠醛糖為原料,與二羥基丙酮或硝化甘油醇進(jìn)行親核加成增長(zhǎng)碳鏈制備高碳酮糖。由于加成的立體選擇性較差,導(dǎo)致差向異構(gòu)產(chǎn)物較多,分離難度大;Dieter課題組[8]通過非糖物質(zhì)分子間的羥醛縮合反應(yīng),制備稀有己酮糖,但是此過程需要多個(gè)手性中心的構(gòu)建,對(duì)反應(yīng)條件及試劑要求較為苛刻。本課題組近期也利用烯烴選擇性氧化得到α-羥基酮結(jié)構(gòu)合成D-甘露庚酮糖[9]。如何找到一種通用簡(jiǎn)便的方法合成稀有酮糖及衍生物一直是有機(jī)合成工作者的努力目標(biāo)。
Morin課題組[10]報(bào)道了一種通過甲基鋰與二碘甲烷對(duì)內(nèi)酯羰基加成,從而增長(zhǎng)碳鏈的方法。我們?cè)谄涔ぷ骰A(chǔ)上進(jìn)行了改進(jìn),選擇較甲基鋰更易制得的正丁基鋰,與二碘甲烷生成碘甲基鋰對(duì)糖酸內(nèi)酯羰基進(jìn)行加成增長(zhǎng)碳鏈,再在堿性環(huán)境中水解即可得到重要稀有酮糖中間體(3a~3e, Scheme 1),其結(jié)構(gòu)經(jīng)NMR確認(rèn)。3不僅可通過進(jìn)一步脫保護(hù)得到稀有酮糖,還可以直接用作其它重要天然產(chǎn)物的合成砌塊。
Scheme 1
Bruker DRX300型核磁共振儀(CDCl3為溶劑,TMS為內(nèi)標(biāo))。
全芐基保護(hù)的糖酸內(nèi)酯(1a~1e)按文獻(xiàn)[11]方法自制;其余所用試劑均為分析純。
在三口瓶中加入1 2.79 mmol,無(wú)水甲苯60 mL,二碘甲烷0.53 mL(6.39mmol),攪拌下于-78 ℃冷卻10 min, N2保護(hù)下緩慢滴加1.6 mol·L-1正丁基鋰(5.60 mmol)的正己烷溶液3.5 mL,滴畢,于-65 ℃反應(yīng)1.5 h。加入飽和NH4Cl溶液15 mL,于室溫?cái)嚢?0 min后用二氯甲烷(2×20 mL)萃取,合并有機(jī)相,用無(wú)水Na2SO4干燥,濃縮得淡黃色糖漿狀液體2。
2用乙腈(35 mL)溶解后加入1 mol·L-1氫氧化鈉溶液15 mL,水10 mL,攪拌下于室溫反應(yīng)3 h。用1 mol·L-1鹽酸調(diào)節(jié)至pH 8,用乙酸乙酯(3×20 mL)萃取,合并萃取液,用無(wú)水Na2SO4干燥,濃縮后經(jīng)硅膠柱層析[洗脫劑:V(乙酸乙酯) ∶V(石油醚)=1 ∶2]分離得淡黃色糖漿狀液體3。
3,4,6-三-O-芐基-阿洛酮糖(3a): 總產(chǎn)率32%;1H NMRδ: 1.26(br, 1H), 2.09(br, 1H), 3.50~3.84(m, 3H), 4.00~4.14(m, 1H), 4.21~4.28(m, 1H), 4.32~4.44(m, 1H), 4.48~4.54(m, 1H), 4.56~4.64(m, 3H), 4.67~4.80(m, 1H), 4.90(dd,J=12.21 Hz, 27.54 Hz, 1H), 5.05~5.10(m, 1H), 7.18~7.39(m, 15H);13C NMRδ: 60.53, 67.02, 71.53, 72.66, 73.32, 73.59, 74.07, 75.85, 97.36, 127.54, 127.56, 136.84, 137.11, 137.36。
3,4,6-三-O-芐基-山梨酮糖(3b): 總產(chǎn)率41%;1H NMRδ: 2.18(br, 1H), 2.57(br, 1H), 3.23~3.51(m, 2H), 3.58~3.79(m, 3H), 3.88~4.14(m, 2H), 4.45~4.69(m, 4H), 4.73~5.09(m, 2H), 7.18~7.34(m, 15H);13C NMRδ: 60.66, 65.02, 71.16, 73.07, 74.26, 75.17, 75.40, 78.26, 97.10, 126.72, 129.26, 137.98, 137.62, 137.48。
3,4,5,7-四-O-芐基-葡萄庚酮糖(3c): 總產(chǎn)率42%;1H NMRδ: 2.13(br, 1H), 2.78(br, 1H), 3.46(d,J=12.90 Hz, 1H), 3.54(d,J=9.42 Hz, 1H), 3.60~3.67(m, 2H), 3.75~3.88(m, 1H), 3.97(m, 1H), 4.03(d,J=9.42 Hz, 1H), 4.08~4.13(m, 1H), 4.43~4.55(m, 3H), 4.58~4.67(m, 1H), 4.74(s, 1H), 4.82(d, J=10.92 Hz, 1H), 4.87~4.95(m, 2H), 7.00~7.29(m, 20H);13C NMRδ: 65.51, 68.82, 71.13, 73.30, 74.83, 75.32, 75.56, 78.30, 78.94, 83.32, 97.36, 127.55, 128.41, 138.54, 138.34, 138.12, 137.72。
3,4,5,7-四-O-芐基-甘露庚酮糖(3d): 總產(chǎn)率40%;1H NMRδ: 1.86(br, 1H), 2.61(br, 1H), 3.26(d,J=11.37 Hz, 1H), 3.40~3.62(m, 1H), 3.65~3.71(m, 2H), 3.79(d,J=9.18 Hz, 1H), 3.88(d,J=9.42 Hz, 1H), 3.94~4.02(m, 1H), 4.11(dd,J=2.67 Hz, 9.18 Hz, 1H), 4.46~4.54(m, 3H), 4.57~4.67(m, 2H), 4.82(d,J=10.68 Hz, 1H), 4.88(d,J=4.41 Hz, 1H), 4.94(d,J=11.64 Hz, 1H), 7.16~7.38(m, 20H);13C NMRδ: 65.34, 68.80, 71.39, 71.80, 72.29, 73.41, 73.97, 74.48, 75.33, 80.65, 96.27, 126.58, 127.47, 137.09, 137.35, 137.43, 137.52。
3,4,5,7-四-O-芐基-半乳庚酮糖(3e): 總產(chǎn)率41%;1H NMRδ: 1.68(br, 2H), 3.34~3.54(m, 3H), 3.59~3.70(m, 2H), 4.00(d,J=1.62 Hz, 2H), 4.10~4.15(m, 1H), 4.30~4.40(m, 1H), 4.44(d,J=3.36 Hz, 1H), 4.49~4.78(m, 5H), 4.94(d,J=11.28 Hz, 1H), 7.20~7.38(m, 20H);13C NMRδ: 65.69, 68.62, 70.04, 72.36, 73.18, 74.28, 74.32, 75.23, 75.43, 80.52, 97.47, 127.31, 128.20, 137.60, 137.72, 138.13, 138.46。
由于甲基鋰的制備原料碘甲烷是氣體,在實(shí)驗(yàn)室中很難進(jìn)行定量操作,因而我們選擇了較甲基鋰更易制得的正丁基鋰作為反應(yīng)試劑,兩步反應(yīng)取得了中等產(chǎn)率。
碘甲基鋰試劑熱穩(wěn)定性差,反應(yīng)需要在-60 ℃下進(jìn)行,否則會(huì)分解失效;第一步加成完畢得到中間體極性與原料相近,給分離帶來(lái)一定難度,因此我們采取不經(jīng)提純直接水解的方法,大大降低了分離難度;由鹵素轉(zhuǎn)變?yōu)榱u基方法很多,其中以強(qiáng)堿環(huán)境下水解最為簡(jiǎn)便有效[12],所以我們采取在1 mol·L-1氫氧化鈉溶液環(huán)境下,對(duì)碘代亞甲基進(jìn)行水解,即得到重要稀有己酮糖及庚酮糖中間體,這五種芐基保護(hù)稀有己酮糖和庚酮糖中間體均系首次由此方法合成。
[1] Stankovic L, Bilik V. Occurrence and preparation of D-manno-heptulose[J].Chemicke Listy,1986,80:520-527.
[2] Board M, Colquhoun A, Newsholme E A. High km glucose-phosphorylating(glucokinase) activities in a range of tumor cell lines and inhibition of rates of tumor growth by the specific enzyme inhibitor mannoheptulose[J].Cancer Research,1995,55:3278-3285.
[3] Xu L Z, Weber I T, Harrison R W,etal. Sugar specificity of humanb-cell glucokinase:Correlation of molecular models with kinetic measurements[J].Biochemistry,1995,34:6083-6092.
[4] Yuanxia S, Shigerru H, Ken I. Modification of ovalbumin with a rare ketohexose through the Maillard reaction:Effect on protein structure and gel properties[J].J Agric Food Chem,2004,52:1293-1299.
[5] Matuso T, Baba Y, Hashiguchi M,etal. Dietary D-psicose, a C-3 epimer of D-fructose,suppresses the activity of hepatic lipogenic enzymes in rats[J].Asia Pacific J Clin Nutr,2001,10:233-237.
[6] Buetusiwa T M, Wayoon P, Khim L,etal. Efficient biosynthesis of D-allose from D-psicose by cross-linked recombinant L-rhamnose isomerase:Separation of product by ethanol crystallization[J].Journal of Bioscience and Bioengineering,2006,4:340-345.
[7] Schaffer R, Sbell H S. Synthesis of higher ketoses by aldol reactions.Ⅰ.Three D-heptuloses[J].J Org Chem,1962,27:3268-3270.
[8] Dieter E, Christoph G. Direct organocatalyst De novo synthesis of carbohydrates[J].Angew Chem Int Ed,2005,44:1210-1212.
[9] Cheng J, Fang Z J, Li S,etal. An effcient synthesis of D-mannoheptulose via oxidation of an olefnated sugar with potassium permanganate in aqueous acetone[J].Carbohydr Res,2009,344:2093-2095.
[10] Bernard B, Christophe M. Iodomethylation of lactones;application to the synthesis of 1-deoxy-1-iodo-2-uloses[J]. Synlett,2000,11:1691-1693.
[11] Hiroyoshi K, Hewitt G. Synthesis with partially benzylated augars.Ⅷ.Substitution at C-5 in an aldose.The synthesis of 5-O-methyl-D-glucofuranose derivatives[J].J Org Chem,1967,32:2531-2534.
[12] Kampf A, Dimant E. Hydroxymethylation of 2,3 ∶5,6-di-O-isopropylidene-D-mannono-1,4-lactone.A synthesis of D-manno-heptulose[J].Carbohydr Res,1974,32:380-382.