韓冰,王莉,李十中,王二強,仉磊,李天成
清華大學核能與新能源技術研究院新能源所,北京 100084
先進固體發(fā)酵技術(ASSF)生產甜高粱乙醇
韓冰,王莉,李十中,王二強,仉磊,李天成
清華大學核能與新能源技術研究院新能源所,北京 100084
介紹了利用高產能源作物甜高粱生產燃料乙醇的先進固態(tài)發(fā)酵(ASSF)技術,從甜高粱莖稈保存、菌種、反應器,到固體發(fā)酵過程的數學模擬和工程放大進行了系統(tǒng)研究。篩選出高效產乙醇的菌種CGMCC1949,固體發(fā)酵時間低于30 h,乙醇收率高于92%;優(yōu)選出貯存甜高粱莖稈的有效方法,通過抑菌處理,厭氧貯存200 d 糖分損失小于5%;對固態(tài)發(fā)酵過程進行了數學模擬,設計并優(yōu)化了固體發(fā)酵設備,成功進行了工程放大試驗,并且基于ASPEN軟件對該技術進行了技術經濟評價,結果表明ASSF法生產甜高粱乙醇在技術、工程和經濟上均具有充分的可行性和明顯優(yōu)勢。
甜高粱,先進固態(tài)發(fā)酵,燃料乙醇
Abstract:A robust strain of the speciesSaccharomyces cerevisiaeCGMCC1949 was screened and identified, and advanced solid state fermentation(ASSF)technology for fuel ethanol production from sweet sorghum stalks was thus developed.The fermentation time was shortened to less than 30 h, and ethanol yield was 92% of its theoretical maximum.And in the meantime,the cost-effective storage was established for sweet sorghum stalks, with less than 5% sugar loss after 200 days of storage, making the plant operation could extend up to 200 days without feedstock shortage.With the fermentation kinetics and heat-mass transfer models, modeling of the ASSF process was investigated, and the rotating drum bioreactor was designed.Furthermore, the ASSF technology was successfully applied in the pilot plant in which the rotating drum bioreactor was scaled up to 127 m3, and ethanol yield of 91% was achieved.At the end, techno-economic analysis(TEA)conducted by ASPEN indicated that ethanol production from sweet sorghum stalks by the ASSF is economically competitive.
Keywords:sweet sorghum stalks, advanced solid state fermentation(ASSF), ethanol production
生物燃料是目前唯一大規(guī)模替代石油的可再生燃料[1],甜高粱燃料乙醇被國際公認是從糧食向秸稈類木質纖維素原料過渡的1.5代生物燃料[2]。甜高粱是碳四(C4)作物,具有很高的光合效率,是目前世界上生物學產量最高的作物之一[3],一般甜高粱莖稈畝產量為5~7 t,高粱籽粒平均畝產量200 kg。甜高粱還具有耐干旱、耐水澇、抗鹽堿等多重抗逆性,其用水量僅是甘蔗的1/7,生長期僅為100~120 d[4],而含糖量與甘蔗相當。
利用甜高粱莖稈生產乙醇主要采用固態(tài)和液態(tài)2種發(fā)酵方式[5]。液態(tài)發(fā)酵是利用榨取的甜高粱莖汁進行發(fā)酵。印度[6]是較早研究甜高粱液態(tài)發(fā)酵制乙醇技術的國家之一,篩選出了高產乙醇酵母菌NCIM3319,但自1960年至今,該技術一直沒有突破性進展,發(fā)酵時間長達48~72 h,乙醇濃度僅為6%(V/V)。Bulawayo等[7]研究了不同菌種利用甜高粱莖汁生產燃料乙醇的情況;Laopaiboon等[8]對甜高粱莖汁液態(tài)發(fā)酵生產乙醇的方式進行了研究;Mohite等[9]用固定化酵母發(fā)酵含糖 11.5%的甜高粱汁,產物乙醇濃度為2.4 g/L(W/V);侯霖等[10]對甜高粱汁液發(fā)酵產乙醇進行工藝條件優(yōu)化,結果甜高粱莖汁糖濃度為17.8%,接種量10%,pH值4.5,發(fā)酵時間48 h,發(fā)酵液的乙醇濃度可達到10.2%,殘?zhí)菨舛?%。盡管液體發(fā)酵技術相對比較成熟,但是存在以下缺點:榨汁能耗高、糖汁保存難、稈渣中殘?zhí)歉?、發(fā)酵過程中糖利用率偏低、產生大量污水[11-12]。
固態(tài)發(fā)酵(Solid-state fermentation,SSF)[5]是指在沒有或幾乎沒有自由流動水的狀態(tài)下進行的一種或多種微生物發(fā)酵生產乙醇的過程。固態(tài)發(fā)酵與深層液態(tài)發(fā)酵相比較,有廢水少、環(huán)境污染小、設備簡單、能耗低、糖利用率高、預處理及后處理工藝簡單等特點[13-16]。Reidenbach[17]比較了甜高粱莖稈切段和榨汁 2種工藝的乙醇生產效率,結果表明切成1 cm長的小段進行發(fā)酵乙醇產率最高,即固態(tài)發(fā)酵比液態(tài)發(fā)酵的產率高。然而,固態(tài)發(fā)酵技術也存在如下缺點:微生物生長受營養(yǎng)擴散的限制、易出現代謝熱積累導致的過熱現象、發(fā)酵過程的自動化控制難度稍高、技術開發(fā)經驗少等。
目前對固體發(fā)酵的研究主要集中在工藝上,即通過優(yōu)化溫度、接種量、原料粒度、pH值、營養(yǎng)物質等條件,實現糖和乙醇的高效轉化。如任麗等[18]通過優(yōu)化甜高粱莖稈固體發(fā)酵條件,獲得發(fā)酵時間4~5 d、可發(fā)酵糖利用率達到 47.6%、平均出酒率48.4 kg/t的成果。董永勝等[19]通過選育耐酸耐高溫酵母、添加糖化酶和纖維素酶,將發(fā)酵時間縮短為4 d,乙醇產量達到6.5%(V/V)。然而,要實現甜高粱莖稈固態(tài)發(fā)酵制備燃料乙醇技術的商業(yè)化應用,除了要研發(fā)可自動化控制的固態(tài)發(fā)酵工藝以外,還要突破 3個技術瓶頸:高耐受性、高乙醇產率優(yōu)良菌株的選育,發(fā)酵過程可控的生物反應器,以及高效實用甜高粱莖稈原料貯存技術的優(yōu)選。
針對甜高粱莖稈固態(tài)發(fā)酵制備乙醇技術的 3個關鍵性難題,清華大學研發(fā)了國際領先的先進固態(tài)發(fā)酵ASSF(Advanced solid state fermentation)生產乙醇技術,篩選出了高產乙醇酵母菌株 CGMCC1949,開發(fā)了轉鼓式固態(tài)發(fā)酵罐系統(tǒng),實現了甜高粱燃料乙醇的高效清潔轉化和自動化控制,并在實驗室搖瓶實驗的基礎上建立了發(fā)酵動力學和傳質傳熱的數學模型,在工程放大中成功取得了預期成果。
試驗使用的優(yōu)良酵母菌是實驗室專有菌株[20],從甜高粱莖稈中篩選出來,經過糖發(fā)酵等實驗[21],與菌種鑒定手冊[22]對照,確認為釀酒酵母;并且對該菌株進行基因測序分析,使用Blast在線軟件進行相似性分析,測序結果查詢GenBank數據庫,證實篩選出的菌株為釀酒酵母,命名為CGMCC 1949。該菌株具有如下優(yōu)點:1)乙醇產率高;2)能夠耐受較高的糖濃度;3)生長 pH 范圍寬泛,可以在pH 3~10范圍內生長;4)固態(tài)發(fā)酵效率高,在不添加水和營養(yǎng)物質的情況下,其甜高粱莖稈固體發(fā)酵產乙醇的周期僅為24 h,乙醇產率高達94.5%。河南天冠燃料乙醇有限公司通過對幾株釀酒酵母發(fā)酵能力和耐受性能的實驗比較,發(fā)現南陽酵母1308生產性能最好[23]。將本實驗室專有的CGMCC 1949菌株與南陽酵母1308進行發(fā)酵能力的比較,取甜高粱莖稈粉碎料100 g于500 mL三角瓶中,115℃滅菌20 min,按10%的接種率接入已經培養(yǎng)好的種子液,30℃靜置發(fā)酵,如圖1所示,二者發(fā)酵過程的失重量接近,證明CGMCC 1949的固態(tài)發(fā)酵能力與優(yōu)良菌株1308相當,而CGMCC 1949在糖濃度和pH耐受性方面具有更大優(yōu)勢:CGMCC 1949在液態(tài)基質中可以耐受400 g/L的葡萄糖,而普通酵母的耐受濃度僅為300 g/L左右;CGMCC 1949可以在pH 3~10內生長發(fā)酵,而菌株1308的正常發(fā)酵pH范圍是3~7。
圖1 CGMCC 1949與模式菌株1308發(fā)酵過程失重比較Fig.1 Comparison of the weight loss during the ethanol fermentations withS.cerevisiaeCGMCC 1949 and 1308.
原料的高效貯存與持續(xù)供給是甜高粱燃料乙醇技術商業(yè)化進程中首要解決的問題[24]。原料甜高粱莖稈的組成[4]如表1所示,可發(fā)酵糖含量高達16%。研究比較了多種方法對新鮮甜高粱莖稈中糖分的保存效果,包括整稈打捆自然堆放[25]、粉碎青貯保存[26]、添加防腐劑抑菌[27]、臭氧滅菌處理[28]、Co60輻照保存[29]。測定方法為:總糖測定采用 DNS法[30-32],總糖提取采用浸提法,總糖計算采用干基標準[33]。優(yōu)選出了3種較好的儲存技術,其保存效果如圖2所示。A和B是添加化學防腐劑厭氧保存,D是經過氧化處理后厭氧保存,參照C未經任何處理。結果表明,甜高粱自然保存的糖含量會降低81.65%,而運用上述3種方法對原料甜高粱進行長達 6~7個月的儲存,總糖損耗率小于 5%,實現了甜高粱乙醇連續(xù)生產7個月的工業(yè)化生產要求。
表1 甜高粱莖稈的組成Table 1 Compositionaof sweet sorghum stalks
圖2 三種優(yōu)選貯存方法A、B、D與參照C的總糖含量隨保存時間的變化趨勢Fig.2 Time-courses of the total sugar decrease for the three storage methods A, B and D with C as a reference.
本文對 ASSF技術進行了系統(tǒng)地研究:首先,利用搖瓶實驗進行發(fā)酵條件優(yōu)化、建立固態(tài)發(fā)酵動力學模型[34];然后,對多種發(fā)酵罐的傳質、傳熱進行數學模擬,優(yōu)選出轉鼓式發(fā)酵罐作為固態(tài)發(fā)酵反應器[35-37];基于實驗室50 L轉鼓式發(fā)酵罐的實驗數據,對轉鼓式發(fā)酵罐的數學模型進行修正,并在此基礎上完成了工業(yè)規(guī)模發(fā)酵反應器的設計和乙醇生產的工藝包。
發(fā)酵動力學是工業(yè)放大過程中設計、操作和模擬優(yōu)化的基礎,基于本實驗室專有的高效酵母CGMCC1949,對甜高粱莖稈分批固態(tài)發(fā)酵制取乙醇的發(fā)酵過程進行分析。將甜高粱莖稈剝皮后粉碎混合均勻,取100 g于500 mL三角瓶中,115℃滅菌30 min,按10%的接種量接入已培養(yǎng)好的種子液,30℃靜置發(fā)酵。圖3是固態(tài)發(fā)酵過程中菌體濃度、底物總糖濃度、產物乙醇濃度隨時間變化的曲線[35]。
根據固態(tài)發(fā)酵實驗結果,分別采用 Logistic方程[38]、Leufeking-Piret方程[39]和類似 Luedeking-Piret方程,建立了描述固態(tài)發(fā)酵過程中菌體生長、底物消耗和產物生成的動力學模型方程,并利用最小二乘法對模型參數進行非線性擬合,結果表明模型預測值和實驗值擬合良好[35],菌體生長、糖分消耗,乙醇生成3條曲線的相關指數R2分別是0.83、0.996 和 0.994,如圖4~6 所示[36,38]。
圖3 發(fā)酵過程中菌體量、底物總糖濃度和乙醇濃度變化Fig.3 Time-courses of biomass, total sugars and ethanol during the ASSF process.
圖4 發(fā)酵過程中菌體濃度模型計算值和實驗值的比較Fig.4 Comparison of the cell concentration between the experimental results and model predications.
圖5 發(fā)酵過程中總糖消耗模型計算值和實驗值的比較Fig.5 Comparison of the total sugar decrease between the experimental results and model predications.
圖6 發(fā)酵過程中乙醇產生模型計算值和實驗值的比較Fig.6 Comparison of the ethanol production between the experimental results and model predications.
針對固態(tài)發(fā)酵傳質傳熱差這一核心問題,對多種發(fā)酵罐建模比較,優(yōu)選出了轉鼓式發(fā)酵反應器。利用內徑30 cm容積50 L轉鼓式發(fā)酵罐進行試驗:取12 kg甜高粱莖稈粉碎料,控制進罐溫度為28℃,接種量10%,發(fā)酵初始以5 r/min的轉速旋轉20 min,使粉碎料與菌液混合均勻,在發(fā)酵約10 h由于溫度過高,控制發(fā)酵罐旋轉20 min加速傳熱,用熱電偶測定罐內不同位置處的溫度,從圖7的溫升曲線可以看出發(fā)酵溫度很好地控制在 26℃~36℃之間,滿足發(fā)酵的最佳溫度范圍。
圖7 轉動時發(fā)酵罐內基質溫升曲線Fig.7 Temperature-time curve of the substrate monitored within the rotating drum bioreactor.
為了模擬發(fā)酵罐內的溫升情況,運用均相模型進行物料床層衡算,發(fā)酵罐頂部氣相衡算以及發(fā)酵罐器壁和保溫層衡算[40],列出如下5個常微分方程,并采用四階龍格-庫塔法積分求解,做出發(fā)酵罐內床層物料溫度變化曲線模擬值(圖8)??梢钥闯?,罐內物料溫升小于7℃,與實測溫升完全吻合,并且在適合酵母菌活性表達的溫度范圍之內。運用離散元的方法建立固態(tài)發(fā)酵罐內固體顆粒的運動和傳質的非均相模型,將固體粉碎料模擬為直徑2 mm的球形顆粒,研究抄板尺寸、裝填系數、轉速等發(fā)酵罐結構和操作參數對物料混合效果的影響并進行優(yōu)化[40]。
2009年底,在內蒙古鄂爾多斯成功運行了127 m3規(guī)模發(fā)酵罐的示范工程,收獲了理想的試驗效果。發(fā)酵罐直徑3 m,長18 m,裝填量約55%,原料初始入罐溫度25℃,接種量為10%,用熱電偶測定發(fā)酵過程中罐內物料溫度,為了有效控制發(fā)酵溫度,防止基質溫度過高而影響發(fā)酵效果,每間隔3 h自動控制發(fā)酵罐旋轉5~10 min,實測溫度曲線如圖9所示,尖峰處對應旋轉狀態(tài),可以看出旋轉可以有效改善發(fā)酵傳熱現象,物料溫度明顯降低,罐內溫度分布與數學模擬結果相同。發(fā)酵試驗結果如表2所示,發(fā)酵時間在30 h以內,可發(fā)酵糖轉化率超過92%,理論產99.5%的燃料乙醇828.06 kg,實際乙醇收率90.86%,按甜高粱莖稈中可發(fā)酵總糖含量14%~15%計,平均15~16 t莖稈生產1 t燃料乙醇,表明 ASSF技術的工程實用性和經濟可行性都具有明顯優(yōu)勢。
1) 物料床層衡算:
圖8 發(fā)酵罐內床層溫度數學模型計算值曲線Fig.8 Temperature-time curve of the substrate within the rotating drum bioreactor predicted by the heat-mass transfer model.
圖9 中試發(fā)酵罐內床層溫度變化曲線Fig.9 Temperature-time curve of the substrate monitored within the pilot bioreactor.
表2 甜高粱乙醇中試試驗結果Table 2 The operation results of the sweet sorghum ethanol pilot plant
甜高粱乙醇ASSF生產1 t燃料乙醇投入能耗13 758.3 MJ,產出能耗46 065 MJ(表3),能量投入產出比為1∶2.78,因稈渣可以作為鍋爐燃料抵消蒸餾、干燥過程能耗,實際能量投入產出比為1∶23。
經國外合作機構應用ASPEN軟件對ASSF技術生產甜高粱乙醇進行技術經濟分析(TEA),并計算出了隨著原料甜高粱的價格波動所對應的最低乙醇售價,如表4,5所示,按每噸甜高粱200元計算,乙醇的生產成本為4.35元/kg(已含10%利稅,如免稅則為 3.95元/kg),而國內玉米、木薯乙醇成本為5.3~5.8元/kg,由此可見該技術不僅具有能量產出高特點,而且還具有很好的經濟效益。
表3 甜高粱乙醇ASSF工藝能量投入產出衡算Table 3 The energy input and output of the ASSF sweet sorghum ethanol process
針對甜高粱乙醇生產技術的 3個瓶頸問題,篩選出高效產乙醇的優(yōu)良菌株 CGMCC1949,使甜高粱莖稈固體發(fā)酵乙醇時間縮短至30 h以內,比用玉米發(fā)酵生產乙醇的時間(55 h)縮短40%以上,乙醇收率高于理論值的 94%,而玉米乙醇收率一般為91.5%;優(yōu)選出高效貯存甜高粱莖稈的方法,貯存200天糖分損失小于5%;建立了發(fā)酵動力學模型,發(fā)酵罐內基質的傳熱和傳質模型,基于模型設計了轉鼓式固態(tài)發(fā)酵設備,實現了固態(tài)發(fā)酵的機械化生產和自動化控制;并完成了從實驗室搖瓶優(yōu)化工藝條件[41],到5 m3中試,再到127 m3的工程示范的逐級放大研究,試驗結果表明無明顯放大效應,發(fā)酵過程的數學模型可以成功地用于工業(yè)化生產。綜上分析,ASSF技術生產甜高粱乙醇在工程、技術、經濟上都具有很大優(yōu)勢,具有廣闊的發(fā)展前景。
表4 基于ASPEN軟件的甜高粱乙醇ASSF工藝成本核算Table 4 Economic analysis of the ASSF sweet sorghum ethanol process
表5 甜高粱乙醇成本隨原料價格的波動Table 5 Variation of ethanol production cost with the price of sweet sorghum feedstock
REFERENCES
[1]Mamma D, Christakopoulos P, Koullas D.An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol.Biomass Bioenergy, 1995, 8(2):99?103.
[2]Raze AM, Bushiest SY.Potential of some sweet sorghum varieties for syrup and ethanol production in Egypt.Sugar Tech, 2009, 11(3): 239?245.
[3]Ban JY, Yu JL, Zhang X,et al.Ethanol production from sweet sorghum residual.Front Chem Eng China2008,2(4): 452?455.
[4]Bella E, Koalas DP, Monties B,et al.Structure and composition of sweet sorghum stalk components.Ind Crops Prod, 1997, 6: 297?302.
[5]Chen HZ.Principles and Application of Modern Solid-State Fermentation.Beijing: Chemical Industry Press, 2004: 3?4.陳洪章.現代固態(tài)發(fā)酵原理及應用.北京: 化學工業(yè)出版社, 2004: 3?4.
[6]Ravish AK, Nimbkar N.Sweet sorghum at the Nimbkar Agricultural Research Institute(NARI).
[7]Bulawayo B, Bvochora JM, Muzondo MI,et al.Ethanol production by fermentation of sweet-stem sorghum juice using various yeast strains.World J Microb Biot, 1996, 12:357?360.
[8]Laopaiboon L, Thanonkeo P, Jaisil P,et al.Ethanol production from sweet sorghum juice in batch and fed-batch fermentation bySaccharomyces cerevisiae.World J Microb Biot, 2007, 23(10): 1497?1501.
[9]Mohite U.Continuous conversion of sweet sorghum juice to ethanol using immobilized yeast cells.Biotechnol Bioeng, 26(9): 1126?1127.
[10]Jin H, Hou L, Liu YQ,et al.Study of fuel ethanol production by sweet sorghum stalk.Liquor-Making Sci Technol, 2009,(7): 17?20.金花, 侯霖, 劉一清, 等.甜高粱莖稈生產燃料乙醇的研究.釀酒科技, 2009,(7): 17?20.
[11]Thomas KC, Hynes SH.Production of fuel alcohol from wheat by VHG technology.Appl Biochem Biotech, 1993,43(3): 221?226.
[12]Schmidt O, Anger MH.Experimental and theoretical investigations of submerged fermentation and synthesis of pectinolytic enzymes byAspergillus niger.Appl Microbiol Biotechnol, 1995, 43(3): 424?430.
[13]Madhya SR, Kieran MD.Solid-state fermentation for enhanced production of lactase using indigenously isolatedGanodermasp.Appl Biochem Biotechnol, 2007,143(1): 16?26.
[14]Hang YD, Lee CY.Solid-state fermentation of grape pomace for ethanol production.Biotechnol Lett, 1986,8(1): 53?56.
[15]Fabian JC, Vanier CF.Response surface analysis for the production of an selective lipase fromAspergillums nigerby solid-state fermentation.J Microbiol, 2009, 47(5):563?571.
[16]Liu L, Sun JS.The ethanol production from sweet sorghum stalk.Prog Chem, 2007, 19(7): 1109?1115.劉莉, 孫君社.甜高粱莖稈生產燃料乙醇.化學進展,2007, 19(7): 1109?1115.
[17]Redenbach VG.Sugarcane or sweet sorghum processing techniques for ethanol production.Trans ASAE, 1985,28(2): 571?575.
[18]Ren L, Tian RH.Research on solid fermentation of sweet sorghum stalks to produce ethanol.Liquor-Making Sci Technol, 2008,(2): 52?54.任麗, 田瑞華.甜高粱秸稈固體發(fā)酵生產乙醇工藝研究.釀酒科技, 2008,(2): 52?54.
[19]Dong YS, Liu TJ.Study on forgo straw producing fuel ethanol on solid-state fermentation.Liquor Making, 2007,34(4): 44?46.董永勝, 劉同軍.甜高粱秸稈固態(tài)發(fā)酵生產燃料乙醇的工藝研究.中國釀造, 2007, 34(4): 44?46.
[20]Khanindra RB.Biochemical and molecular genetic assessment of yeast strains used by certain tribal communities of assam in alcohol production.2009.
[21]Tsai SP, Coleman RD.Strain screening and development for industrial lactic acid fermentation.Appl Biochem Biotechnol, 1993, 39-40(1): 323?335.
[22]Bergey’s Manual of Systemaic Bacteriology.8th ed.Beijing: Science Press, 1984.伯杰氏細菌鑒定手冊.8版.北京: 科學出版社, 1984.
[23]Kang DL, Zhao L.Comparison of the fermentation performance of several strains of alcohol yeast.Liquor-Making Sci Technol, 2006,(2): 40?43.康東亮, 趙凌.幾株酒精酵母的發(fā)酵性能比較.釀酒科技, 2006,(2): 40?43.
[24]Liu, L.The fuel ethanol production from sweet sorghum stalk.Prog Chem, 2007, 19(7/8): 1109?1115.
[25]Ma HT, Huang RD.Sweet sorghum-energy source of EU in the future.World Agriculture, 1994, 8: 13?16.馬鴻圖, 黃瑞冬.甜高粱?歐共體未來能源所在.世界農業(yè), 1994, 8: 13?16.
[26]Schmidt J, Sipco J.Preservation of sugar content in ensiled sweet sorghum.Bioresour Technol, 1997,(60):9?13.
[27]Wang TT, Liu RH, Shen F.Effects of preservatives and ethanol fermentation on conservation of sweet sorghum stem juice.Jiangsu Agri Sci, 2006,(3): 159?161.汪彤彤, 劉榮厚, 沈飛.防腐劑對甜高粱莖稈汁液貯存及酒精發(fā)酵的影響.江蘇業(yè)科學, 2006,(3): 159?161.
[28]Zhao LQ, Han YM.Study on effects of different concentration ozone on storage quality of curcumas melon.Food Sci, 2007, 28(2): 343?345.趙麗芹, 韓育梅.不同濃度臭氧對河套蜜瓜貯藏品質影響的研究.食品科學, 2007, 28(2): 343?345.
[29]Zheng XZ, Ling Q, Luo ZZ.Study on the preservation effect of radiation technology on fresh day Lily.J Univ South China, 2008, 22(4): 57?59.鄭賢利, 凌球, 羅治平.鮮黃花菜輻照保鮮研究.南華大學學報, 2008, 22(4): 57?59.
[30]Sun WW, Cao WQ.Colorimetric determination of water-soluble total sugar in corn stalk with 3,5-dinitrosalicylic acid.Food Res Dev, 2006, 27(6):120?123.孫偉偉, 曹維強.DNS法測定玉米秸稈中總糖.食品研究與開發(fā), 2006, 27(6): 120?123.
[31]Cronin DA, Smith S.A simple and rapid procedure for the analysis of reducing, total and individual sugars in potatoes.Potato Res, 1979, 22(2): 99?105.
[32]Gong YW, Wa G.Pretreatment and saccharification of rice hulls for the production of fermentable sugars.Biotechnol Bioproc E, 2009, 14(6): 828?834.
[33]Wang EQ, Li TC.Appropriate characterization of water and sugar content of sweet sorghum stalks under natural storage.Xiandai Nongye Keji, 2009(17): 9?11.王二強, 李天成.甜高粱稈自然貯存過程中水分和糖分的基準描述.現代農業(yè)科技, 2009(17): 9?11.
[34]Geng X, Li TC, Li SZ,et al.Acta Ener Sol Sin, 2010,31(2): 257?262.耿欣, 李天成, 李十中, 等.甜高粱莖桿固態(tài)發(fā)酵制取燃料乙醇過程分析與中試研究.太陽能學報, 2010,31(2): 257?262.
[35]Wang EQ, Geng X, Li SZ.Kinetics study on solid state batch fermentation of sweet sorghum stalks to produce ethanol.Food Ferment Ind, 2009, 35(10): 1?4.王二強, 耿欣, 李十中.甜高粱分批固態(tài)發(fā)酵制乙醇動力學研究.食品與發(fā)酵工業(yè), 2009, 35(10): 1?4.
[36]Staffer LD.Selection of aeration and stirring conditions in fermentation processes.Pharm Chem J, 1972, 6(4): 242?246.
[37]Wei CJ, Chen LS.Dynamic analysis of mathematical model of ethanol fermentation with gas stripping.Nonlinear Dynamics, 2009, 57(1/2): 13?23.
[38]Hao JB, Zhou YJ.Study on the kinetics of cellulase production by solid-state fermentation.Renew Energ,2009, 27(1): 27?31.郝俊斌, 周玉杰.纖維素酶固態(tài)發(fā)酵動力學的研究.可再生能源, 2009, 27(1): 27?31.
[39]Zhang LF, Liu Z.Kinetic study on ethanol batch fermentation with thermo-tolerant yeast.Biochnology,2005, 15(5): 72?75.張立峰, 劉振.耐高溫酵母乙醇間歇發(fā)酵動力學研究.生物技術, 2005, 15(5): 72?75.
[40]Wang EQ, Li SZ.Modeling of rotating drum bioreactor for anaerobic solid-state fermentation.Appl Energ, 2010,87(9): 2839?2845.
[41]Salvia DA.Dilute ammonia pretreatment of sorghum and its effectiveness on enzyme hydrolysis and ethanol fermentation.Appl Biochem Biotechnol, 2010, 161(1/8):67?74.
Ethanol production from sweet sorghum stalks by advanced solid state fermentation(ASSF)technology
Bing Han, Li Wang, Shizhong Li, Erqiang Wang, Lei Zhang, and Tiancheng Li
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Received:May 25, 2010;Accepted:June 23, 2010
Supported by:National Projects of International Cooperation(No.S2010GR0393), 948 Items of Agricultural Department(No.2008-G2).
Corresponding author:Shizhong Li.Tel: +86-10-62772123; Fax: +86-10-80194050; E-mail: Szli@tsinghua.edu.cn國家重大國際合作項目(No.S2010GR0393),農業(yè)部948項目(No.2008-G2)資助。