許 朋,薛 麗,何 勇,姜年權(quán)
(溫州大學(xué)物理與電子信息工程學(xué)院,浙江溫州 325035)
兩體糾纏態(tài)的應(yīng)用
許 朋,薛 麗,何 勇,姜年權(quán)?
(溫州大學(xué)物理與電子信息工程學(xué)院,浙江溫州 325035)
給出了兩體糾纏態(tài)的性質(zhì)與產(chǎn)生方法,用正規(guī)乘積技術(shù)得到了兩體與三體連續(xù)變量糾纏態(tài)在坐標(biāo)表象下的分解形式,展現(xiàn)了它們的完全性與正交歸一性,提出了用三個(gè)兩體糾纏態(tài)作為通道傳輸一種連續(xù)變量三體糾纏態(tài)的方案.
兩體糾纏態(tài);連續(xù)變量;量子傳輸
最初的一些量子信息處理方案都是針對離散變量的量子體系提出的.近年來,連續(xù)變量的量子信息處理方案引起了廣泛關(guān)注,連續(xù)變量體系的量子隱型傳輸[1]、糾纏交換[2]、量子計(jì)算[3]等被相繼提出.在量子信息處理中糾纏態(tài)起著十分關(guān)鍵的作用,它是實(shí)現(xiàn)量子態(tài)隱形傳輸、稠密編碼、量子克隆等不可缺少的資源.因此,如何傳送一個(gè)糾纏態(tài),特別是多粒子糾纏態(tài)就成了一個(gè)很有意義的研究課題.本文給出連續(xù)變量兩體糾纏態(tài)的性質(zhì)與產(chǎn)生方法,提出用三個(gè)兩體糾纏態(tài)作為量子通道傳輸一種三體糾纏態(tài)的方案.
在雙模Fock空間中,兩粒子相對坐標(biāo)X1?X2與總動量P1+P2的共同本征態(tài)[4]是:
它是三個(gè)相互對易算符的共同本征態(tài):
假設(shè)Alice和Bob共同享有三個(gè)兩體糾纏態(tài)η.量子系統(tǒng)的初態(tài)為:
值得注意的是,三個(gè)兩體糾纏態(tài)還可以用來傳輸三模WECS態(tài)[6]和三體糾纏態(tài)η ,σ123θ[7].當(dāng)然還有其它類型的三體糾纏態(tài)也可以被傳輸.
本文給出了連續(xù)變量兩體糾纏態(tài)的性質(zhì)與產(chǎn)生方法,提出了一種利用三個(gè)兩體糾纏態(tài)作為量子通道傳輸一種三體糾纏態(tài)的方案.在分析傳輸方案的過程中,對三體糾纏態(tài)的表示運(yùn)用施密特分解方法進(jìn)行了分解,這種分解形式能清楚地顯示出該態(tài)的糾纏性,便于對該糾纏態(tài)的傳輸方案進(jìn)行分析.本文的研究表明,兩體糾纏態(tài)在量子信息傳輸中具有重要作用.
[1] Milburn G J, Braunsten S L. Quantum teleportation with squeezed vacuum states [J]. Physical Review A, 1999, 60: 937-942.
[2] Polkinghorne R E S, Ralph T C. Continuous Variable Entanglement Swapping [J]. Physical Review Letters, 1999, 83: 2095-2099.
[3] Lloyd S, Braunstein S L. Quantum Computation over Continuous Variables [J]. Physical Review Letters, 1999, 82: 1784-1787.
[4] 范洪義. 量子力學(xué)表象與變換論[M]. 上海: 上??茖W(xué)技術(shù)出版社, 1992: 72-73.
[5] 范洪義. 從量子力學(xué)到量子光學(xué)[M]. 上海: 上海交通大學(xué)出版社, 2005: 255-256.
[6] Yuan H C, Qi K G. Application of Bipartite and Tripartite Entangled State Representations in Quantum Teleportation ofContinuous Variables [J]. Communications in Theoretical Physics, 2005, 44: 269-273.
[7] Fan H Y, Liang X T. Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables [J]. Communications in Theoretical Physics, 2005, 44: 833-836.
Application of Bipartite Entangled State
XU Peng, XUE Li, HE Yong, JIANG Nianquan
(College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou, China 325035)
The characteristics and preparation of bipartite entangled state were presented in this paper. The decompositions of bipartite and tripartite entangled states of continuous variables in coordinate representation were obtained by using the normal product technique. And their completeness and orthonormality were shown at the same time. Then a scheme to transport a kind of tripartite entangled state of continuous variables by using a quantum channel composed of three bipartite entangled states was proposed.
Bipartite Entangled State; Continuous Variable; Quantum Transportation
O413
A
1674-3563(2010)02-0020-06
10.3875/j.issn.1674-3563.2010.02.005 本文的PDF文件可以從xuebao.wzu.edu.cn獲得
(編輯:王一芳)
2009-08-06
許朋(1984- ),男,安徽宿州人,碩士研究生,研究方向:量子信息.? 通訊作者,jiangnq@wzu.edu.cn