国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于PSWF的非正弦時(shí)域正交頻分調(diào)制方法

2010-01-26 10:13劉錫國舒根春劉傳輝
電訊技術(shù) 2010年11期
關(guān)鍵詞:頻帶正弦時(shí)域

劉錫國,張 磊,舒根春,劉傳輝

(海軍航空工程學(xué)院,山東煙臺 264001)

非正弦時(shí)域正交調(diào)制在大相對帶寬下存在的主要問題是脈沖產(chǎn)生的計(jì)算量大、復(fù)雜度高、系統(tǒng)實(shí)現(xiàn)困難、抗多徑性能差、不利于對調(diào)制信號進(jìn)行均衡和比特加載等。在大相對帶寬系統(tǒng)下的非正弦時(shí)域正交調(diào)制存在大相對帶寬與子帶數(shù)目的矛盾:為了提高系統(tǒng)的抗多徑性能、便于進(jìn)行均衡和比特加載,希望系統(tǒng)內(nèi)各脈沖具有小相對帶寬的特性;而為了降低脈沖組設(shè)計(jì)的復(fù)雜度,提高系統(tǒng)的可實(shí)現(xiàn)性,希望系統(tǒng)具有最少的并行脈沖路數(shù)。若要求系統(tǒng)具有較好的抗多徑性能,并且便于進(jìn)行均衡和比特加載,則需要將系統(tǒng)工作頻段劃分為很多個(gè)子頻段,在每個(gè)子頻段內(nèi)求解脈沖波形,并對所有脈沖進(jìn)行施密特正交化,這樣會(huì)導(dǎo)致系統(tǒng)實(shí)現(xiàn)復(fù)雜度過高,并且施密特正交化會(huì)改變原脈沖波形,破壞原有脈沖的頻譜特性,造成調(diào)制信號相位跳變,影響系統(tǒng)性能。

基于PSWF的非正弦時(shí)域正交頻分調(diào)制方法

劉錫國,張 磊,舒根春,劉傳輝

(海軍航空工程學(xué)院,山東煙臺 264001)

針對現(xiàn)有非正弦時(shí)域正交調(diào)制方法應(yīng)用于大相對帶寬系統(tǒng)中存在脈沖組設(shè)計(jì)復(fù)雜度高、實(shí)現(xiàn)困難、不利于對調(diào)制信號進(jìn)行均衡和比特加載的問題,提出一種改進(jìn)的非正弦時(shí)域正交頻分調(diào)制方法。把頻分復(fù)用的思想用于該調(diào)制方法,將工作頻段分為多個(gè)相鄰的子頻段,在每個(gè)子頻段內(nèi)分別進(jìn)行非正弦時(shí)域正交調(diào)制,利用頻分特性避免了在不同頻段內(nèi)進(jìn)行施密特正交化,降低了調(diào)制器的復(fù)雜度并且有利于信道均衡和比特加載。仿真結(jié)果表明,相同條件下,改進(jìn)的調(diào)制方法與原有方法的誤碼性能幾乎相同。該調(diào)制方法復(fù)雜度低、易于實(shí)現(xiàn),有利于進(jìn)行均衡和比特加載,抗多徑性能強(qiáng),更適用于大相對帶寬有線或無線通信系統(tǒng)。

大相對帶寬系統(tǒng);非正弦時(shí)域正交調(diào)制;橢圓球面波函數(shù);頻分復(fù)用;正交化

1 引 言

非正弦時(shí)域正交調(diào)制(Nonsinusoidal Orthogonal Modulation in Time Domain,NOM)[1]是一種新的高效調(diào)制方法,它不采用正余弦載波,而是采用頻譜集中度最佳的基于橢圓球面波函數(shù)(Prolate Spheroidal Wave Function,PSWF)[2-4]時(shí)域正交脈沖組多路并行傳輸信息,是一種脈沖并行傳輸體制,其調(diào)制信號頻譜可控、能量聚集性好,可不經(jīng)濾波直接用于發(fā)射。該調(diào)制方法通過頻譜混疊減小信號占用的頻譜帶寬,系統(tǒng)的頻帶利用率可快速接近奈奎斯特極限,其理論性能高于OFDM(Orthogonal Frequency Division Multiplexing)[5-7],可以用于有線或無線通信,是一種應(yīng)用前景廣闊的調(diào)制方式。

但是,非正弦時(shí)域正交調(diào)制方法首先需要根據(jù)系統(tǒng)的頻域特性求解時(shí)域波形,再通過施密特正交化構(gòu)建時(shí)域正交脈沖組。在寬帶系統(tǒng)中,考慮到均衡、比特加載和抗多徑性能[8-12]的要求,脈沖組內(nèi)各脈沖需要具有小相對帶寬的特點(diǎn),因此需要?jiǎng)澐州^多子頻帶,導(dǎo)致脈沖組內(nèi)的脈沖數(shù)目過多,施密特正交化后脈沖波形和相位變化較大,多路疊加后調(diào)制信號頻譜特性會(huì)發(fā)生變化,影響系統(tǒng)的性能。

針對該問題,本文提出一種改進(jìn)的非正弦時(shí)域正交頻分調(diào)制方法,在寬帶系統(tǒng)的工作頻段上,將系統(tǒng)頻段分為多個(gè)帶寬相同的較窄的子頻段,在子頻段上分頻段構(gòu)建子脈沖組,用于加載信息。由于PSWF的能量聚集性高,在各子頻段上的分組調(diào)制信號頻譜能量幾乎完全集中在子頻段內(nèi),相鄰子頻段滿足頻分復(fù)用(Frequency Division Multiplexing,FDM)的條件,因此可通過多種方法[13,14]進(jìn)行子頻段分離和解調(diào)。采用分組調(diào)制的方法可提高系統(tǒng)的抗多徑性能,降低系統(tǒng)復(fù)雜度,同時(shí)分組調(diào)制的結(jié)構(gòu)更加有利于均衡和比特加載。

2 非正弦時(shí)域正交調(diào)制

非正弦時(shí)域正交調(diào)制采用基于橢圓球面波函數(shù)的時(shí)域正交脈沖組加載信息,調(diào)制信號的頻譜特性由正交脈沖組決定,系統(tǒng)的傳輸速率和誤碼性能也由脈沖組的正交特性決定。因此,時(shí)域正交脈沖組的特性直接影響到整個(gè)系統(tǒng)的性能,正交脈沖組設(shè)計(jì)是非正弦時(shí)域正交調(diào)制通信系統(tǒng)的核心和關(guān)鍵。非正弦時(shí)域正交調(diào)制是本文提出方法的基礎(chǔ),因此這里首先詳細(xì)介紹其基本原理。

2.1 時(shí)域正交脈沖組設(shè)計(jì)

非正弦時(shí)域正交調(diào)制系統(tǒng)要求正交脈沖組必須具有高能量聚集特性和時(shí)域正交特性,而橢圓球面波函數(shù)(PSWF)是已知的能量聚集性最高的非正弦函數(shù),并且它具有雙正交性和完備性[13],因此可以利用其優(yōu)良特性設(shè)計(jì)時(shí)域正交脈沖組。由于PSWF沒有解析解,一般采用數(shù)值求解算法[13,14],并且頻段不同的PSWF不一定具有時(shí)域正交特性,因此需要進(jìn)行施密特正交化。基于PSWF的正交脈沖組設(shè)計(jì)構(gòu)建需要經(jīng)過頻段劃分、波形求解、施密特正交化等步驟完成。

假設(shè)系統(tǒng)的工作頻段為B=fH-fL,其中B為系統(tǒng)總帶寬。將該頻段等分為K個(gè)子頻段,其中第k個(gè)子頻段為:Bk=fk,H-fk,L,fk,L和fk,H表示第k個(gè)子頻段的頻率下限和頻率上限,各子頻段帶寬相同均為B0且相互間部分交疊,頻段劃分示意圖如圖1所示。

圖1 頻段劃分示意圖Fig.1 The diagram of band division

在第k個(gè)子頻段上,根據(jù)PSWF脈沖的參數(shù)構(gòu)建特性方程:

2.2 調(diào)制解調(diào)模型

非正弦時(shí)域正交調(diào)制解調(diào)系統(tǒng)模型如圖2所示。

圖2 非正弦時(shí)域正交調(diào)制解調(diào)模型Fig.2 The modulation/demodulation model of NOM

由圖2所示的調(diào)制模型可知,非正弦時(shí)域正交調(diào)制信號在一個(gè)碼元周期內(nèi)可表示為

式中,di為第i路待傳的二進(jìn)制數(shù)據(jù),ψi(t)為時(shí)域正交脈沖組中第i個(gè)脈沖,Ts為碼元持續(xù)時(shí)間,N為并行傳輸路數(shù)。可見,高速串行數(shù)據(jù)流經(jīng)串并轉(zhuǎn)換變?yōu)榈退俨⑿袛?shù)據(jù)流,分別與對應(yīng)支路的正交脈沖進(jìn)行調(diào)制,最后經(jīng)時(shí)域疊加變?yōu)橐宦泛铣尚盘枴?/p>

由圖2所示的解調(diào)模型可知,接收信號經(jīng)帶通濾波后分別送入相關(guān)解調(diào)器中進(jìn)行解調(diào),根據(jù)脈沖組的時(shí)域正交特性,接收信號r(t)分別與第i路本地模板脈沖ψi(t)進(jìn)行積分運(yùn)算,接收信號中,只有ψi(t)攜帶的信息di能夠解調(diào)出來,其余支路與ψi(t)積分的結(jié)果均為零,從而達(dá)到分離和解調(diào)各支路信號的目的。在理想情況下,第i路相關(guān)器的輸出可表示為

2.3 大相對帶寬下的問題

非正弦時(shí)域正交調(diào)制在大相對帶寬下存在的主要問題是脈沖產(chǎn)生的計(jì)算量大、復(fù)雜度高、系統(tǒng)實(shí)現(xiàn)困難、抗多徑性能差、不利于對調(diào)制信號進(jìn)行均衡和比特加載等。在大相對帶寬系統(tǒng)下的非正弦時(shí)域正交調(diào)制存在大相對帶寬與子帶數(shù)目的矛盾:為了提高系統(tǒng)的抗多徑性能、便于進(jìn)行均衡和比特加載,希望系統(tǒng)內(nèi)各脈沖具有小相對帶寬的特性;而為了降低脈沖組設(shè)計(jì)的復(fù)雜度,提高系統(tǒng)的可實(shí)現(xiàn)性,希望系統(tǒng)具有最少的并行脈沖路數(shù)。若要求系統(tǒng)具有較好的抗多徑性能,并且便于進(jìn)行均衡和比特加載,則需要將系統(tǒng)工作頻段劃分為很多個(gè)子頻段,在每個(gè)子頻段內(nèi)求解脈沖波形,并對所有脈沖進(jìn)行施密特正交化,這樣會(huì)導(dǎo)致系統(tǒng)實(shí)現(xiàn)復(fù)雜度過高,并且施密特正交化會(huì)改變原脈沖波形,破壞原有脈沖的頻譜特性,造成調(diào)制信號相位跳變,影響系統(tǒng)性能。

3 改進(jìn)的頻分調(diào)制方法

針對上述問題,本文提出一種基于頻分復(fù)用的非正弦時(shí)域正交頻分調(diào)制方法。主要思想是:將系統(tǒng)的工作頻段平均分為多個(gè)子頻帶,各子頻帶緊密相鄰,沒有保護(hù)帶寬,在每個(gè)子頻段內(nèi)利用時(shí)域正交脈沖組構(gòu)建方法構(gòu)建子脈沖組,并利用各子脈沖組分別調(diào)制信號,調(diào)制經(jīng)多路疊加,合成一路信號并行傳輸。解調(diào)時(shí),接收信號經(jīng)帶通濾波器后直接采用分組相關(guān)解調(diào)方式進(jìn)行解調(diào),最后將各組解調(diào)信號還原為單路信號。在該分組調(diào)制方法中,非正弦時(shí)域正交子脈沖組的構(gòu)建是系統(tǒng)的關(guān)鍵。下面首先對正交子脈沖組進(jìn)行分析。

3.1 分組正交子脈沖組設(shè)計(jì)

考慮系統(tǒng)要求的頻帶利用率、均衡的難易度、信道特性等因素,結(jié)合系統(tǒng)實(shí)現(xiàn)的復(fù)雜度和參與施密特正交化的脈沖個(gè)數(shù)確定子頻段數(shù)L,將工作頻段B=fH-fL劃分為L個(gè)相鄰的子頻段,每個(gè)子頻段的帶寬在每一個(gè)頻段內(nèi),根據(jù)系統(tǒng)要求的頻帶利用率,確定PSWF的時(shí)間帶寬積C和子頻帶個(gè)數(shù)M,并將子頻段劃分為M個(gè)相互交疊的子頻帶,相鄰子頻帶交疊度為η,每個(gè)子頻帶帶寬為B0,B0滿足:子頻段及子頻段內(nèi)的子頻帶劃分方案如圖3所示。

圖3 頻分調(diào)制頻段劃分示意圖Fig.3 The new band division diagram

按照上述頻段劃分方法,采用文獻(xiàn)[14]的方法在各子頻段內(nèi)分別設(shè)計(jì)求解子脈沖組,可以得到L組子脈沖組。

3.2 分組調(diào)制解調(diào)方法

利用上述子脈沖組即可完成分組調(diào)制和解調(diào)。調(diào)制和解調(diào)示意圖如圖4所示。

圖4 分組調(diào)制解調(diào)模型Fig.4 The modulation/demodu lationmodel of NOBD M

由圖可知,在發(fā)射端,信源信號經(jīng)串并轉(zhuǎn)換變?yōu)榕c各分組子脈沖相對應(yīng)的多路并行子信源,采用各分組子脈沖對相應(yīng)的子信源進(jìn)行非正弦時(shí)域正交調(diào)制,最后將各路調(diào)制信號經(jīng)時(shí)域疊加合成為一路信號,經(jīng)信道進(jìn)行傳輸。在接收端,接收信號經(jīng)多個(gè)對應(yīng)于各子頻段的帶通濾波器濾波,分組進(jìn)行相關(guān)解調(diào),得到多路解調(diào)信號,最后經(jīng)并串轉(zhuǎn)換變?yōu)橐宦方庹{(diào)信號輸出。

4 性能仿真及分析

本節(jié)分析改進(jìn)的非正弦時(shí)域正交頻分調(diào)制方法的頻帶利用率及功率譜特性,通過蒙特卡羅仿真研究了該方法在理想同步條件下、AWGN信道下的誤碼性能。仿真參數(shù)設(shè)置如下:假設(shè)系統(tǒng)工作在超寬帶頻段,fL=3.82 GHz,fH=7.64GHz,帶寬B=3.82 GHz。根據(jù)本文提出的方法,將系統(tǒng)工作頻段分為5個(gè)子頻段,每個(gè)子頻段帶寬B′=0.764 GHz。取PSWF脈沖的時(shí)間帶寬積C=2.2π,頻譜交疊度ρ=55%,分別在各個(gè)子頻段內(nèi)設(shè)計(jì)子脈沖組。

4.1 頻帶利用率

非正弦時(shí)域正交調(diào)制系統(tǒng)的頻帶利用率可表示為式中,N為傳輸路數(shù)。它具有比OFDM更高的頻帶利用率,其頻帶利用率隨著并行傳輸路數(shù)迅速趨近于2 bit/s·Hz-1的奈奎斯特極限。改進(jìn)的分組調(diào)制方法中,每一個(gè)子頻段上采用非正弦時(shí)域正交調(diào)制,其頻帶利用率也滿足式(8),由于各子頻段間沒有間隔,系統(tǒng)總的頻帶利用率與每一個(gè)子頻段上頻帶利用率相同。因此改進(jìn)的分組調(diào)制系統(tǒng)的總的頻帶利用率可表示為

式中,L表示系統(tǒng)劃分的子頻段數(shù)。

當(dāng)C=2.2π、ρ=55%,每個(gè)子頻段內(nèi)取C/π」=2個(gè)脈沖,劃分的子頻段L取不同值時(shí),改進(jìn)的分組調(diào)制系統(tǒng)的頻帶利用率與總的并行傳輸路數(shù)N的關(guān)系曲線如圖5所示。

圖5 并行傳輸路數(shù)與系統(tǒng)的頻帶利用率曲線Fig.5 The data rate-to-bandwidth ratio versus number of parallel channels

由圖可見,當(dāng)劃分的子頻段增加時(shí),系統(tǒng)的頻帶利用率隨著總的并行路數(shù)N增大的速率有一定的降低,但是其趨近速度仍然較快,因此仍可以以較少的并行路數(shù)迅速提高頻帶利用率。

4.2 功率譜特性

非正弦時(shí)域正交調(diào)制是一種脈沖通信體制,其功率譜特性與脈沖的頻譜關(guān)系密切。在上述仿真條件下,采用改進(jìn)的非正弦時(shí)域正交頻分調(diào)制方法仿真得到了調(diào)制信號的功率譜,如圖6所示。

圖6 頻分調(diào)制信號功率譜Fig.6 The power spectrum of NOBDM signal

由圖可見,調(diào)制信號的功率譜滾降特性非常好,旁瓣達(dá)到-40 dB以下,并且各子頻段頻譜相鄰、互不交疊,保證了不同子頻段內(nèi)脈沖分離的條件。

4.3 誤碼特性

在上述仿真條件下,采用改進(jìn)的非正弦時(shí)域正交頻分調(diào)制方法對二進(jìn)制隨機(jī)信源進(jìn)行調(diào)制,經(jīng)AWGN信號后進(jìn)行解調(diào)。假定理想同步,采用10萬個(gè)碼元進(jìn)行仿真,分析其在AWGN信道下的誤碼性能。為了便于比較,本文還給出了相同條件下非正弦時(shí)域正交調(diào)制系統(tǒng)的誤碼特性理論和仿真曲線。誤碼特性曲線如圖7所示。

圖7 誤碼特性曲線Fig.7 The curve of BER performance

由圖7可知,改進(jìn)的頻分調(diào)制方法的誤碼性能與原非正弦時(shí)域正交調(diào)制方法幾乎相同,并且與理論值吻合較好。需要指出的是,該仿真是在各子頻段旁瓣小于-40 dB的情況下完成的,因此各子頻段間脈沖幾乎沒有相互干擾。實(shí)際工程中,由于器件性能和脈沖發(fā)生器精度的影響,可能無法生成能量聚集性這樣好的脈沖頻譜,各子頻段間會(huì)產(chǎn)生一定的干擾,影響系統(tǒng)性能。

5 結(jié) 論

結(jié)合PSWF的高能量聚集特性,本文將頻分復(fù)用的思想應(yīng)用于非正弦波通信中,提出了一種基于橢圓球面波函數(shù)的非正弦時(shí)域正交頻分調(diào)制方法,

降低了系統(tǒng)脈沖組設(shè)計(jì)的復(fù)雜度,并且更有利于進(jìn)行均衡、比特加載和抗多徑性能的提高。在超寬帶頻段下,分析了系統(tǒng)的頻帶利用率和功率譜,理論分析并采用Monte Carlo仿真驗(yàn)證系統(tǒng)的誤碼性能并與原時(shí)域正交調(diào)制進(jìn)行了比較。分析和仿真結(jié)果表明,本文提出的改進(jìn)方法與原有的調(diào)制方法性能相當(dāng),更適用于大相對寬帶有線或無線通信系統(tǒng)。

[1] 王紅星,趙志勇,劉錫國,等.非正弦時(shí)域正交調(diào)制方法:中國,CN101409697A[P].2009.

WANG Hong-xing,ZHAO Zhi-yong,LIU Xi-guo,et al.The method of nonsinusoidal orthogonal modulation in time domain:China,CN101409697A[P].2009.(in Chinese)

[2] Lindquist M A,Zhang C,Glover G,et al.A generalization of the two-dimensional prolate spheroidal wave function method for nonrectilinear MRI data acquisition methods[J].IEEE Transactions on Image Processing,2006,15(9):2792-2804.

[3] Wei L,Kennedy R A,Lamahewa T A.Further results on signal concentration in time-frequency[C]//Proceedings of 2010 IEEE International Conference on Acoustics Speech and Signal Processing.Dallas,TX,USA:IEEE,2010:4082-4085.

[4] Lin Z,M cCallum R W,Wang H.Computation and performance of the prolate-spheroidal wave function window in spectral estimation[C]//Proceedings of 1996 International Conference Acoustics,Speech,and Signal Processing.Atlanta,GA:IEEE,1996:2976-2978.

[5] Keonkook Lee,Youngok Kim,Nam jeong Lee,et al.Adaptive switching between space-time and space-frequency block coded OFDM systems[C]//Proceedings of MILCOM 2008.San Diego,CA:IEEE,2008:1-5.

[6] Char-Dir Chung.Spectral precoding for constant-envelope OFDM[J].IEEE Transactions on Communications,2010,58(2):555-567.

[7] Ryu H.System design and analysis of MIMO SFBC CIOFDM system against the nonlinear distortion and narrowband interference[J].IEEE Transactions on Consumer Electronics,2008,54(2):368-375.

[8] Marelli D,Minyue F.Subband methods for OFDM equalization[C]//Proceedings of 2003 International Conference on Communications.Anchorage,Alaska,USA:IEEE,2003:2350-2354.

[9] Wang D,Cao Y,Zheng L.Efficient Two-Stage Discrete Bit Loading Algorithms for OFDM Systems[J].IEEE Transactions on Vehicular Technology,2010,59(7):3407-3416.

[10] Shin C,Park H,Kang J,et al.A per-stream coded bit loading algorithm for MIMO BIC-OFDM systems[C]//Proceedings of 2010 International ITG Workshop on Smart Antennas.Bremen:IEEE,2010:240-243.

[11] Chen S,Xu W,Wang L,et al.Performance of FM-DCSK UWB with timing error[C]//Proceedings of the 9th International Symposium on Communications and Information Technology.Icheon:IEEE,2009:1152-1156.

[12] Xu H,Zhu Y,Wang G.On the anti-multipath performance of UWB signals in indoor environments[C]//Proceedings of the 4th International Conference on Microwave and Millimeter Wave Technology.Beijing:IEEE,2004:163-166.

[13] Xiao H,Rokhlin V,Yarvin N.Prolate spheroidal wave functions,quadrature and interpolation[J].Inverse Problems,2001,17(4):805-838.

[14] Parr B,Cho B,Wallace K.A novel ultra-wideband pulse design algorithm[J].IEEE Communication Letters,2003,7(5):219-221.

A Novel Nonsinusoidal Orthogonal Band Division M odulation(NOBDM)M ethod Based on PSWF

LIU Xi-guo,ZHANG Lei,SHU Gen-chun,LIU Chuan-hui
(Naval Aeronautical and Astronautical University,Yantai 264001,China)

In allusion to the problem that the design of pulse sets is complex,difficult to be realized and be unfavourable for the equalization and bit loading when existing nonsinusoidal orthogonal modulation in time domain(NOM)method is applied in large broadband systems,a novel nonsinusoidal orthogonal band division modulation method(NOBDM)is proposed.The idea of frequency division multiplexing(FDM)is used in NOM method.The frequency band of the system is divided into a lot of shoulder-to-shoulder subbands and the NOM is used in each subband.Due to the best energy concentration character of the Prolate Spheroidal Wave Function(PSWF),the modulated signals of different bands are not interfered each other.The novel method not only has the advantages for equalization and bit loading but also reduces the complexity of orthogonal pulse sets design and implementation.The resultsof the Monte Carlo simulation show that the proposed method has approximate the same BERperformance as the old ways.The scheme is suitable for the wire or wireless broadband communication systems.

broadband communication system;nonsinusoidal orthogonal modulation in time domain;PSWF;frequency division multiplexing(FDM);orthogonality

TN911.3

A

10.3969/j.issn.1001-893x.2010.11.004

1001-893X(2010)11-0015-06

2010-07-16;

2010-09-02

劉錫國(1981-),男,山東煙臺人,2007年獲工學(xué)碩士學(xué)位,現(xiàn)為博士研究生,主要研究方向是現(xiàn)代通信新技術(shù)、非正弦波通信等;

LIU Xi-guo was born in Yantai,Shandong Province,in 1981.He

theM.S.degree in 2007.He is currently working toward the Ph.D.degree.His research interests include modern communication technology and non-sinusoidal communications.

Email:lxg1023@163.com

張 磊(1979-),男,安徽合肥人,2005年獲工學(xué)碩士學(xué)位,現(xiàn)為博士研究生,主要研究方向?yàn)楝F(xiàn)代通信新技術(shù)、超寬帶通信、非正弦波通信等;

ZHANG Lei was born in Hefei,Anhui Province,in 1979.He received the M.S.degree in 2005.He is currently working toward the Ph.D.degree.His research interestsinclude modern communication technology,UWB communications and non-sinusoidal communications.

Email:win-romance@163.com

舒根春(1970-),男,浙江金華人,2006年獲工學(xué)碩士學(xué)位,現(xiàn)為博士研究生,主要研究方向?yàn)楝F(xiàn)代通信系統(tǒng)、數(shù)字信號處理、非正弦波通信等;

SHU Gen-chun was born in Jinhua,Zhejiang Province,in 1970.He received the M.S.degree in2006.He is currently working toward the Ph.D.degree.His research interests include modern communication technology,signal processing and non-sinusoidal communications.

Email:sgc31@sohu.com

劉傳輝(1984-),男,山東濟(jì)寧人,2008年獲工學(xué)碩士學(xué)位,現(xiàn)為博士研究生,主要研究方向?yàn)楝F(xiàn)代通信新技術(shù)、非正弦波通信等。

LIU Chuan-hui was born in Jining,Shandong Province,in 1984.He received the M.S.degree in2008.He is currently working toward the Ph.D.degree.H is research interests include modern communication technology and non-sinusoidal communications.

Email:lchgfy@163.com

猜你喜歡
頻帶正弦時(shí)域
正弦、余弦定理的應(yīng)用
Wi-Fi網(wǎng)絡(luò)中5G和2.4G是什么?有何區(qū)別?
單音及部分頻帶干擾下DSSS系統(tǒng)性能分析
基于時(shí)域信號的三電平逆變器復(fù)合故障診斷
“美”在二倍角正弦公式中的應(yīng)用
基于極大似然準(zhǔn)則與滾動(dòng)時(shí)域估計(jì)的自適應(yīng)UKF算法
正弦、余弦定理在三角形中的應(yīng)用
基于時(shí)域逆濾波的寬帶脈沖聲生成技術(shù)
基于VSG的正弦鎖定技術(shù)研究
調(diào)諧放大器通頻帶的計(jì)算及應(yīng)用
东阳市| 罗定市| 呼图壁县| 张家港市| 梅河口市| 阜平县| 雷波县| 嘉善县| 长宁县| 尤溪县| 仁怀市| 霍邱县| 昭通市| 宜君县| 湛江市| 武山县| 常宁市| 深圳市| 平南县| 上犹县| 淮安市| 乌兰浩特市| 平乐县| 阜南县| 都兰县| 永新县| 泊头市| 惠水县| 诸城市| 深水埗区| 武穴市| 天峻县| 南通市| 保山市| 兴和县| 宜宾市| 巴东县| 抚顺县| 朝阳区| 阿瓦提县| 金塔县|