裴瑞昌,李海合
(天水師范學院數(shù)學與統(tǒng)計科學學院,甘肅天水 741001)
一類二階Hamiltonian系統(tǒng)的無窮多周期解
裴瑞昌,李海合
(天水師范學院數(shù)學與統(tǒng)計科學學院,甘肅天水 741001)
研究一類超線性二階Hamiltonian系統(tǒng),且非線性項是奇的,不需要假設(shè)Ambrosetti-Rabinowitz的超二次條件,利用對稱型山路引理得到無窮多周期解存在性結(jié)果.
哈密爾頓系統(tǒng);周期解;超線性;對稱型山路引理
[1]Rabinowitz P H.Periodic solutions of Hamiltonian systems[J].Comm.Pure Appl.Math.,1978,31:157-184.
[2]Tang chunlei.Periodic solutions for second systems at resonance[J].Acta.Math.Sinica New series,1998, 14(4):433-440.
[3]Tang chunlei.Periodic solutions for second systems with sublinear nonlinearity[J].Proceedings of the American Society,1998,126(11):3263-3270.
[4]Xu xiangjin.Homolinic orbits for first order Hamiltonian systems possessing super-quadratic potentials[J]. Nonlinear Anal.,2002,51:197-214.
[5]Zou wenming.Infinitely many Homolinic orbits for the second order Hamiltonian systems[J].Applied Mathematics Letters,2003,16:1283-1287.
[6]Zhou H S.Existence of asymptotically linear Dirichlet problem[J].Nonlinear Anal.,2001,44:909-918.
[7]Mawhin J,Willem M.Critical Point Theory and Hamilton Systems[M].New York:Springer-verlag,1989.
[8]Rabinowitz P H.Minimax Methods in Critical Point Theory with Applications to Differitional Equations: CBMS Regional Conference Series in Math,No.65[C].Rhode Island:American Mathematical society,1986.
Infinitely periodic solutions for a class second-order Hamiltonian systems
PEI Rui-chang,LI Hai-he
(College of Mathematical and Statistical Science,Tianshui Normal University,Tianshui741001,China)
In this paper,we consider a class superlinear second order Hamiltonian systems,where the nonlinearity is odd.Under no Ambrosetti-Rabinowitz’s super quadratic condition,infinitely periodic solutions are obtained by using symmetric version mountain pass theorem.
Hamiltonian systems,periodic solutions,superlinear,symmetric version mountain pass theorem
O175
A
1008-5513(2009)04-0690-05
2008-04-21.
國家自然科學基金(10371098).
裴瑞昌(1975-),碩士,研究方向:偏微分方程.
2000MSC:34B15,58E05